Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3757879 A
Publication typeGrant
Publication dateSep 11, 1973
Filing dateAug 24, 1972
Priority dateAug 24, 1972
Publication numberUS 3757879 A, US 3757879A, US-A-3757879, US3757879 A, US3757879A
InventorsBridwell H, Wilder A
Original AssigneeChristensen Diamond Prod Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Drill bits and methods of producing drill bits
US 3757879 A
Abstract
A diamond bit comprising a steel shank coated with abrasive particles, with a ring of tungsten-coated iron particles bonded together in a metal matrix and by metal to the end of the shank.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Wilder et al.

[451 Sept.v 1l. 1973 DRILL BITS AND METHODS oF PRoDUCING DRILL I'rs inventors: Arthur G. Wilder; Harold C.

Bridwell, both of Salt Lake City, Utah Assignee: Christensen Diamond Products Company, Salt Lake City, Utah Filed: Aug. 24, 1972 Appl. No.: 283,474

Related U.s. Application Dm Continuation-impart of Ser. No. 219,973, Jan. 24, 1972, and a continuation-impart of Ser. No. 220,351, Jan. 24, 1972, and a continuation-impart of Ser. No. 220,352, Jan. 24, 1972.

U.S. Cl.....";.. 175/329, 175/409 Int. Cl E2lb 9/36 Field of Search 175/329, 330, 409-411 Primary Examner-David H. Brown Attorney-Bernard Kriegel [57] ABSTRACT A diamond bit comprising a steel shank coated with abrasive particles, with a ring of tungsten-coated iron particles bonded together in a metal matrix and by metal to the end of the shank.

13 Claims, S Drawing Figures Q4Lf//.//

mab-- @wf/M DRILL BITS AND METHODS OF PRODUCING DRILL BITS This application is a continuation-in-part of Applications Ser. No. 219,973; 220,351; 220,352 tiled Jan. 24, 1972.

This invention is an improvement on diamond drills in which diamonds are incorporated in the body of or positioned on the surface of an abrader structure in the form of a drill, for example, as may be used for earth boring.

ln the conventional earth-boring drills, a plurality of different abrasive particles are employed. In addition to particles of high hardness values, for example, diamonds which act on the primary abrasive, there is positioned in the continuous phase ofa metal matrix binder a secondary abrasive of lower hardness value.

The purpose of this secondary abrasive particle is to wear away preferentially thus exposing new abrasive faces of the primary abrasive particle.

The abrader structures thus formed are deemed selfsharpening. That is, the matrix including the secondary abrasive wears away preferentially and uniformally exposing new primary abrasive cutting surfaces. This, however, tends to reduce the area of the interfacial sur- -faces between the bonding 'metal of the matrix and the primary and secondary abrasive particles. Where thel bond is weak, the particles are torn out of the metal matrix, causing excessive wear.

ln such a structure, it is conventional to form the abrader body of tungsten carbide to act as the secondary abrasive particle. The diamonds and tungsten carbide are bonded by means of a metal matrix which is formed by percolating molten metal to infiltrate the body of discrete tungsten carbide in a suitable mold to bond the tungsten carbide; if diamonds are also distributed throughout this metal matrix, the mixture of diamonds and tungsten carbide form the mass which is infiltrated by the molten metal. ln another form, the diamonds are positioned in space configuration on the external grinding surface of the drill. These are termed surface set diamond drills.

There are a number of difficulties in forming such drills arising from the nature of the tungsten carbide as the secondary abrasive and the diamonds as the primary abrasive.

One of the problems arising when using tungsten carbide and diamonds in such structures is the restriction which it places on the machinable metal which may be used for the purpose of producing the machinable section of the bit.

The form of the drills includes a hollow steel shank coated at its exterior surfaces and over its end forming the crown end of the drill, with a metal bonded sheath of abrasive particles bonded to the steel shank by the metal.

lt is desirable to cover the end of the metal bonded sheath at its end away from the crown end with a smooth bevel end. Such a structure would have the advantage that the bit when withdrawn from the bore hole would not hang up on a projection in the bore hole or the end of a casing section through which it is to be removedA However, the abrasive sheath is not conveniently machinable.

In order to solve this difficulty, we place a ring of machinable metal such as iron or nickel or alloys of these metals over the end of the abrasive section.

Conveniently, this may be done by providing auring of such metal powder so that when the sheath is formed it will be welded to the body and may be machined to suitable form.

However, since the structure is formed under fusion conditions, there is a danger that the molten machinable metal will invade the body of the sheath and attack the tungsten carbide and diamonds.

Diamonds and tungsten carbide are attacked by ironbased or nickel-based alloys. The W2C tungsten carbide is attacked or dissolved in the binder, and on freezing precipitates a new phase called Eta. This phase is an MsC type carbide, and in the case of nickel binders will have the composition Ni3W3C. Eta phase is more brittle than the original particle. The particle is said to be haloed. The haloed" portion of particle will have a hardness only of about 1,500 kilograms per square millimeter, compared, for example, to 1,950 to 2,100 kilograms per square millimeter (Knoop) for the coretof the particle.

Tungsten carbide has been used in the past among other properties because of its high specific gravity, hardness, and high melting point.

The bonding metal chosen should be fluid at ythe temperature at which it is desired to employ the molten metal in forming the composite drill structure, for example, below 2,000 F. and desirably should have, when solid, ductility as measured in the terms of microhardness of below about 400 kg/mmZ. Desirably, also, it should have a compressive strength above about 90,000 p;s.i. and an impact strength above about 5 foot pounds.

For this purpose, we may use copper-based alloys such as brass and bronze alloys and copper-basedalloys, for example, copper-based alloys containing various amounts of nickel, cobalt, tin, zinc, manganese, iron and silver, east iron, iron-based alloys, nickelbased alloys, for example, nickel-copperaluminasilicon alloy melting below 2,000 C.

We have found that we may use alumina, silicon carbide, boron nitride, and other abrasives as listed in Table l in place of tungsten carbide. The most practical both from point of view of economy and functional suitability are aluminum oxide, boron nitride, and silicon carbide. However, these materials may not be employed when a metal matrix is to be used asa bonding agent. vThe particles are not sufficiently wetted by the molten metal.

We have solved this problem by forming the drill bit by either the conventional procedures, using an abrader body for the bit formed of secondary abrasive such as tungsten carbide employing either the inltrant method to produce a surface set diamond bit or an impregnated bit and forming at the upper end of the abrader body a ring of metal-bonded, metalencapsulated iron or iron alloy. The secondary abrasive as well as the tunsten-eoated iron is bonded with a moltile metal compound at an elevated temperature sufficient to maintain the metal compound in vapor form and contact the vapor with a solid substrate under metal deposition conditions.

While diamonds and the secondary abrasive may be used as the primary abrasive and secondary abrasive in encapsulated form, our invention permits their use in unencapsulated form in the structure of our invention.

Cobalt-based, nickel-based, or iron-based alloys are undesirable as metal-bonding agents since in their molten condition they attack tungsten carbide and the diamonds. The inclusion of these metals when used to produce the machinable portion of the drill is avoided in our invention by the encapsulation of the particles of these metals.

We prefer to use for encapsulation of the abrasive particles and the aforesaid iron particles tunsten, tantalum, niobium (columbium), and molybdenum, and, among the primary abrasive particles, we prefer to employ diamonds, either the natural or synthetic forms; and as secondary abrasive, we may use tungsten carbide but we may employ encapsulated alumina, or encapsulated silicon carbide or encapsulated boron nitride with tungsten carbide or the encapsulated alumina most preferred because of the inherent properties and relatively low cost of alumina, or boron nitride and prefer to employ tungsten as the encapsulating material, deposited under conditions to produce pure tungsten of the crystal form as described herein.

We prefer to employ as a bonding agent a metal having a significantly lower melting point than the metal envelope.

TABLE l BP. C.

at 760 m.m.* Molybdenum Pentachloride [MoCl] 268 Molybdenum Hexafluoride [MoFe] 35 Molybdenum Carbonyl [Mo(CO)a] 156.4 Tungsten Pentabromide [WBr 333 Tungsten Hcxabromide [WBre] 17.5 Tungsten Pentachloride [WCIS] 275.6 Tungsten Hexachloride lWCla] 346.7 Tungsten Carbonyl [W(CO)] 175 at 766 m.m. Tantalum Pcntachloride [TaCL5] 242 Tantalum Pentafluoride [TaF5] 229.5 Titanium Tetraboride [TiB] 230 Titanium Hexafluoride [TiF] 35.5 Titanium Tetrachloride [TiCl4] 136.4 Columbium Pentabromide [CbBr] 361.6 Columbium Pentafluoride [CbF5l 236 Columbium Pentachloride [CbCl5] 236 Unless otherwise indicated When employing encapsulated or unencapsulated diamonds as the primary abrasive particle, we prefer to limit the melting point of the metal matrix to a temperature below about 2,800 F., i.e. l,538 C., in order not to expose the diamonds to excessive temperature which may impair the mechanical strength of the diamonds.

We prefer to employ for the encapsulation of the abrasive particles the reduction of a vapor of the metal compound.

In view of the above consideration, the metals whose compounds are listed in Table l may be employed; however, we prefer to employ tungsten as an encapsulating metal because of its particular suitability in the drill of our invention. It gives under the conditions of fabrication according to our invention a coating of exceptionally high strength. It is readily wetted by the molten metal matrixes described above and forms a strong metallurgical bond with the metal matrixes'employed in our invention.

The invention will be further described by reference to the following figures:

FIG. l is a diagrammatic flow sheet of our preferred process of encapsulation.

FIG. 2 is a schematic vertical section through a mold for use in the infiltrant technique of forming a bit according to our invention.

FIG. 3 is a partial section of one form of drill bit of our invention.

FIG. 4 is a fragmentary view partly in section of a modified mold.

FIG. 5 is a view partly in section of a modified drill bit of our invention.

FIG. l illustrates a flow sheet of our preferred process for producing the novel encapsulated abrasive of our invention. The particles to be coated are placed in the reactor l, whose cap 2 has been removed. The reactor has a perforated bottom to support the particles of selected mesh size. With cap 2 replaced and the valves 3, 4, 5, and 13 closed, and with valve 7 open, the vacuum pump is started to de-aerate the system. Valve 7 is closed and the system filled with hydrogen from hydrogen storagell, valve 5 being open.

The reactor is heated by the furnace 9 to the reaction temperature, for example, from about 1,000o to about 1,200 F. while purging slowly with hydrogen. The hydrogen flow rate is increased until a fluidized bed is established. Hydrogen prior to introduction into the reactor passes through a conventional palladium catalyst to remove any impurities, such as oxygen in the hydrogen. Vaporized metallic compound is discharged from the vaporizing chamber l0, which may if necessary be heated by furnace 14, together with an inert gas, for example, argon from argon storage 6, into the reaction chamber. v

Preferably we desire to employ the volatile metal halides referred to above, although, in some cases, we may use the carbonyls listed in Table l. Where the halide is employed, the reaction forms hydrogen halide, which is passed through the bubble traps and is absorbed in the absorber. lWhere the volatile compound employed is a fluoride, the product formed is a hydrogen fluoride, and we may use sodium fluoride for that absorption. We prefer to employ hydrogen in stoichiometric excess. i

The reaction deposits metal on the substrate and the effluent material, being in the vapor state, is discharged, leaving no contaminants on or in the metal. The metal is formed in its pure state.

The rate of metal deposition depends on the temperature and flow rate of the reactants, being the greater the higher the temperature and the greater the flow rate of the hydrogen and volatile metals compound.

After the deposit is formed, the valves 4 and 5 are closed and argon is continued to pass into the reactor and the encapsulated abrasive is allowed to cool to room temperature in the non-oxidizing condition of the argon environment.

The conditions in the reactor, both because of the mesh size and particle size distribution of the particles and because of the velocity of the vapors and gases fluidizes the particles. As will be recognized by those skilled in the art, a dense phase is established in the lower part of the reactor in which the particles are more or less uniformally distributed in violent agitation in the dense phase. This results ina substantially uniform deposit per unit of surface of the particles.

The reaction products and the carrier gases and excess hydrogen enter the upper space termed the disengaging space where they are separated from any entrained particles.

For purposes of illustration, not as limitations of our invention, the following examples are illustrative of the process of depositing a metal sheath upon a substrate.

rThe actual mesh size employed depends upon the service to which the abrader is to be placed. We may use iron particles of size (Tyler mesh) through a 16 and on a 400 mesh (-16 -l- 400). Preferably we employ 30 to 100 mesh material, for example, -30 60 mesh. In depositing tungsten, we may and prefer to employ tungsten hexafluoride, which is contained and vaporized in 10. lt is volatile at atmospheric temperatures and need not be heated. In the reactor employed after the system has been deaerated and backfilled, hydrogen flow is established at a low flow rate of about 100 ml/min; and as described above, the temperatures in the reactor l having been adjusted to l,150 F., as measured by the thermocouples, the hydrogen flow is increased to about 1,250-1 ,350 ml/min, and the flow of the tungsten fluoride vapor to about 150 ml/min and the argon gas is adjusted to about 285 ml/min, all as measured by the flow meters as indicated in FIG. l, the hydrogen being in stoichiometric excess over the tungsten hexafluoride.

The thickness of the coat of the tungsten on the particle depends on the duration of the treatment and suitably for the 40 to 50 mesh diamonds described above, the coat will be l mil thick in about 1 hour. Suitable thickness deposit will run from about 0.1 to about 1.5 mils thick.

In the above example, the substrate surface is completely coated, indicating that the process of vacuum chemical vapor deposition has great throwing power. The outer surface of the coated particles is topographically congruent to the outer surface of the underlying substrate and reproduces it. The interlocked structure produces a coating of high tensile and bending strength.

The preferred embodiment of the surface set drill bit, as illustrated in FIGS. 2-4, may be. formed in a graphite mold section 18, which is formed with sockets positioned in the interior surface of the mold. Diamond particles 19 are placedin the sockets positioned on the interior surface of the crown end of the mold.

With mold cap 24', section l8b and 18a removed and core 25 with vent holes 26 in position, a layer 20 of particles of tungsten carbide, such as described above, is placed in the mold 18 to cover the protruding diamonds and vibrated in position to compact the powder.

'I'he threaded steel shank 15 is then placed over the mold above the powder 20, spaced from the surface of the mold 18, and held in position with a suitable fixture not shown.

Secondary abrasive particles, such as tungsten carbide, which may be but need not b'e encapsulated as described above, or, for example, encapsulated alumina particles 17 are introduced into the annulus at the exterior and in the annulus at thc interior of the shank 15. 'lhe layer of the particles 17 in the exterior annulus reaches the level ofthe top of the mold section 18, but thc powder in the interior annulus may, if desired, reach a higher level as shown.

'Ihc mold section 18a is then placed over the shank l5 and on the mold section 18. A ring of tungstencoated iron particles 2l is placed in the exterior annulus over the particle section 17.

The mold section l8b is then set over the shank l5 and on the-mold section 18a; and infiltrant metal powder 22, for example, of 200 mesh size such as described above, is introduced into the annulus on the exterior and the annulus at the interior of the shank 15 above the particles 2l and reaching into the space 23.

The ratio ofthe metal to the total void volume of the mold is desirably such that when the inflltrant metal melts it may till all of the space between the secondary abrasive particles and cover the exposed diamonds.

As previously described, in carrying out this procedure, we wish to select a temperature of formation which will be below about 2,800 F., in order not to expose the diamonds to an excessive temperature. The binder metal will melt and percolate through the interstices including those in the encapsulated iron particles and those between the abrasive particles and till all of the voids as described above and will also wet the metallic shank. If a metallic coating is placed upon the diamond as well as the secondary abrasive particles, the binder metal will wet the surfaces of the encapsulated particles, thus producing a tight bond to the matrix.

The particle sizes of the abrasive particles are chosen to give proper compaction and void area. A particle size through a 30 mesh and on a 60 mesh (-30 -l- 60) is suitable.

The tungsten-coated iron powder 2l is used to provide a machinable shoulder which acts as a barrier and cover to the exterior section of the abrasive section 17.

Thetungsten envelope of the iron acts to protect the iron metal from escaping because its melting point will be below the temperature at which the mold is fired and could if it reached the unencapsulated diamonds or unencapsulated ytungsten carbideA attack them. It also provides for a machinable mass since the tungsten forms only a thin coat as described above.v

The section is beveled as shown in FIGS. 3 and 5. This will assure that there is no exterior ledge which would otherwise be formed by the secondary abrasive section which is substantially unworkable to provide for a bevel surface. In the absence of this beveled section, there would be a danger that the drill bit could hang up on the bore wall or be caught on a casing section in which the drill string is to operate.

When the assembly has cooled, it is` removed from the mold and the section 2l is machined as shown in FIGS. 3 and 5, the interior box threads can receive the pin and box connector 26 to assemble the drill.

The drill is thus composed of a tubular shank 15 carrying a threaded section 28. Bonded to the interior tubular surface and exterior tubular surface of the shank 5l and over its crown end a coating of abrasive particles 17 bonded by a metal matrix in the form shown in FIG. 3, the crown of said bit carries spaced diamonds embedded in said crown and protruding externally therefrom.

The encapsulation of the iron with the tungsten will prevent the iron from melting and percolating through the mass to attack the diamond and the tungsten carbide if used.

It will be understood that the iron may be any form of the'iron, such as powdered cast iron, steel or other ferrous alloy. l

A particularly `useful tungsten carbide when used in either layer 20 or 17 is one ranging from WC having 6.12 wt percent of carbon to W2C having a carbon content about 3.16 wt. percent. A useful material is socalled sintered tungsten carbide and consists of microsized WC crystals and cobalt metal bonded by liquid phase sintering at high temperature. The cobalt content varies from 3 wt. percent to over 25 wt. percent. This material has a hardness of about 1,250 to 1,350 kg/mm2 (Knoop). Another form of eutectic alloy containing about 4 percent by weight of carbon having a hardness in the range of 1,900 to 2,000 kg/mm2 (Knoop) may also be used.

The drill described above may also be produced by an impregnation technique by mixing a primary abrasive, for example, diamonds with a secondary abrasive described above, for example, tungsten carbide.

In this case, the mold section 18a does not contain pockets for insertion of diamonds but is smooth. In all other respects, the mold is the same as the mold shown in FIG. 2. With the shank 15 and core 25 in position in section 18, a mixture of the metal-coated secondary abrasive and the primary abrasive, for example, diamonds is introduced in the same manner as is the case of 17 in FIG. 2. This forms a layer 26 extending part way up the exterior annulus of l and to a higher level in the annulus in the interior side of l5.

The section 18a is then placed in position and the layer 2l introduced. The section l8b is then placed in position and the infiltrant metal 22 is introduced into the space 23 and the cap 24 placed in position. The same procedure is then followed-as described in connection with FIG. 2.

The mesh size of the inltrant metal is suitably through a 200 mesh; and in both forms, the metal may be of the kind previously described as suitable for infiltrant purposes.

The mesh size of the secondary abrasive particles employed in the form shown in FIGS. 2 and 3 as well as in FIGS. 4 and 5 may be the same, and the size diamond particles employed in the mixture with the secondary abrasive used in forming the layer 26 may be equal to that of the secondary abrasive particles. The quantity of the diamond particles may be that of the secondary abrasive particles. The diamond particles and the secondary abrasive are intimately mixed to produce a uniform distribution.

Instead of employing a mixture of diamonds and secondary abrasive to form the entire layer shown at 26, we may proceed as in the case of the form described in connection with 2 and 5 employ an initial crown layer formed of the mixture of diamonds and secondary abrasive particle described for forming the crown layer 20 in FIG. 2. We may then introduce on top of the crown layer thc material 17 and the layer of tungstencoated iron as described in connection with FIG. 2 and complete the operation as described for the formation of the drill in connection with FIGS. 2 and 3.

The drill shown in FIG. 3 and also S is composed of a threaded shank l5 having a core 30 to act as the conduit for mud or other drilling fluid. The shank carries the abrasive coating 17 or 26 welded to the shank by the bonding metal which wets the shank at the high temperatures ofthe process. The abrasive coating extends part way along the exterior and interior surface ofthe shank and over the lower end of the shank away from the threaded free end 28, to form the hollow crown end 29 of the drill. In the form shown in FIG. 2,

embedded in the abrasive coating at the crown end of the drill are a plurality of closely spaced diamonds 19 embedded in and protruding from the crown end. This is termed a surface set diamond drill.

Where the impregnated type of drill shown in FIG. 5

is formed, the diamonds are not positioned in the crown end but are distributed uniformally throughout the abrasive body carried by the shank, or in a layer adjacent the crown end and the remainder of the abrasive body bonded to the shank.

We claim:

l. ln a drill bit comprising a shank, a bore through said shank, the improvement comprising a coat, said coat including abrasive particles, metal matrix bonding said abrasive particles in said coat and bonding said coat to the lower end of said shank, an external ring of metal-encapsulated iron particles bonded in metal to said coat covering the end of said coat on the exterior of said shank and metal bonded to said coat.

2. The drill bit of claim 1 in which the metal encapsulating said iron particles is tungsten, or tantalum, or columbium (niobium) or molybdenum or titanium.

3. In the drill bit of claim 2, said abrasive particles in said coating are tungsten carbide, or metalencapsulated alumina, or metal-encapsulated silicon carbide, or metal-encapsulated boron nitride.

4. In the drill bit of claim 3 in which the ring is metalbonded tungsten-coated iron or iron-based alloy.

S. The drill bit of claim l in which said coat extends over the crown end of said shank and in which diamond particles are surface set in said end, in space configuration over the said end surface forming the crown of said bit.

6. The drill bit of claim 5 in which the metal encapsulating particles in said ring is tungsten, or tantalum, or columbium (noibium) or molybdenum or titanium.

7. The drill of claim 5 in which the ring contains metal-bonded tungsten-encapsulated iron, or iron-based alloy.

8. The drill of claim l in which the coat extends over the crown end of said shank and at said crown end contains a metal-bonded mixture of diamond particles and particles of tungsten carbide, or metal-encapsulated alumina, or metal-encapsulated silicon carbide, or metal-encapsulated boron nitride.

9. The vdrill of claim 8 in which the metalencapsulating said ring contains iron, or iron-based alloy encapsulated with tungsten, or tantalum, or columbium, or molybdenum, or titanium.

l0. In the drill bit of claim 8 in which the ring contains iron or iron-based alloy encapsulated with tungsten.

ll. The drill of claim l in which said coat extends over the crown end and contains a mixture of diamond particles and tungsten carbide particles and said coat above said crown is substantially free of diamond partcles and contains tungsten carbide, or metalencapsulated alumina, or metal-encapsulated silicon carbide, or metal-encapsulated boron nitride.

l2. The bit of claim ll in which said encapsulating metal in the particles of metal in said ring is tungsten, or tantalum, or columbium (niobium), or molybdenum, or titanium.

13. The drill of claim ll in which the ring contains iron or iron-based alloy encapsulated with tungsten.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2125332 *Apr 5, 1937Aug 2, 1938Firm Morehead BursellBit casting means, method, and article
US2174980 *Jan 12, 1939Oct 3, 1939J K Smit & Sons IncDiamond bit
US2511991 *Feb 25, 1948Jun 20, 1950Leon NussbaumRotary drilling tool
US2582231 *Feb 5, 1949Jan 15, 1952Wheel Trueing Tool CoAbrasive tool and method of making same
US2712988 *Feb 29, 1952Jul 12, 1955Kurtz JacobIndustrial drilling tools
US2833520 *Jan 7, 1957May 6, 1958Owen Robert GAnnular mill for use in oil wells
US3145790 *Jun 10, 1963Aug 25, 1964Jersey Prod Res CoDrag bit
US3537538 *May 21, 1969Nov 3, 1970Christensen Diamond Prod CoImpregnated diamond bit
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3885637 *Jan 4, 1974May 27, 1975Barkov Vasily AndreevichBoring tools and method of manufacturing the same
US4156329 *May 13, 1977May 29, 1979General Electric CompanyDiamond or boron nitride abrasives, coating with a brazing metal
US4225322 *Jan 10, 1978Sep 30, 1980General Electric CompanyComposite compact components fabricated with high temperature brazing filler metal and method for making same
US4365679 *Dec 2, 1980Dec 28, 1982Skf Engineering And Research Centre, B.V.With cutting teeth for drilling rock
US4667756 *May 23, 1986May 26, 1987Hughes Tool Company-UsaMatrix bit with extended blades
US4884477 *Mar 31, 1988Dec 5, 1989Eastman Christensen CompanyRotary drill bit with abrasion and erosion resistant facing
US5011514 *Jul 11, 1989Apr 30, 1991Norton CompanyHard particles with metal coating as matrix; high strength cutting tools
US5062865 *Nov 22, 1989Nov 5, 1991Norton CompanyChemically bonded superabrasive grit
US5090491 *Mar 4, 1991Feb 25, 1992Eastman Christensen CompanyEarth boring drill bit with matrix displacing material
US5154245 *Apr 19, 1990Oct 13, 1992Sandvik AbDiamond rock tools for percussive and rotary crushing rock drilling
US5217081 *Jun 14, 1991Jun 8, 1993Sandvik AbTools for cutting rock drilling
US5264283 *Oct 11, 1991Nov 23, 1993Sandvik AbDiamond tools for rock drilling, metal cutting and wear part applications
US5284215 *Dec 10, 1991Feb 8, 1994Baker Hughes IncorporatedEarth-boring drill bit with enlarged junk slots
US5335738 *Jun 14, 1991Aug 9, 1994Sandvik AbTools for percussive and rotary crushing rock drilling provided with a diamond layer
US5358026 *Aug 2, 1989Oct 25, 1994Simpson Neil A AInvestment casting process
US5417475 *Nov 3, 1993May 23, 1995Sandvik AbTool comprised of a holder body and a hard insert and method of using same
US5496638 *Aug 29, 1994Mar 5, 1996Sandvik AbDiamond tools for rock drilling, metal cutting and wear part applications
US5624068 *Dec 6, 1995Apr 29, 1997Sandvik AbDiamond tools for rock drilling, metal cutting and wear part applications
US5837071 *Jan 29, 1996Nov 17, 1998Sandvik AbDiamond coated cutting tool insert and method of making same
US5839329 *Sep 24, 1996Nov 24, 1998Baker Hughes IncorporatedMethod for infiltrating preformed components and component assemblies
US5947214 *Mar 21, 1997Sep 7, 1999Baker Hughes IncorporatedBIT torque limiting device
US5957006 *Aug 2, 1996Sep 28, 1999Baker Hughes IncorporatedFabrication method for rotary bits and bit components
US6051079 *Mar 23, 1998Apr 18, 2000Sandvik AbWear resistant, diamond enhanced cutting tool for excavating
US6073518 *Sep 24, 1996Jun 13, 2000Baker Hughes IncorporatedBit manufacturing method
US6082461 *Jun 24, 1998Jul 4, 2000Ctes, L.C.Bore tractor system
US6089123 *Apr 16, 1998Jul 18, 2000Baker Hughes IncorporatedStructure for use in drilling a subterranean formation
US6182774Oct 14, 1998Feb 6, 2001Baker Hughes IncorporatedBit torque limiting device
US6200514Feb 9, 1999Mar 13, 2001Baker Hughes IncorporatedProcess of making a bit body and mold therefor
US6209420Aug 17, 1998Apr 3, 2001Baker Hughes IncorporatedMethod of manufacturing bits, bit components and other articles of manufacture
US6220117Aug 18, 1998Apr 24, 2001Baker Hughes IncorporatedMethods of high temperature infiltration of drill bits and infiltrating binder
US6325163Dec 6, 2000Dec 4, 2001Baker Hughes IncorporatedBit torque limiting device
US6354362Nov 17, 1998Mar 12, 2002Baker Hughes IncorporatedMethod and apparatus for infiltrating preformed components and component assemblies
US6357538Dec 6, 2000Mar 19, 2002Baker Hughes IncorporatedBit torque limiting device
US6454030Jan 25, 1999Sep 24, 2002Baker Hughes IncorporatedDrill bits and other articles of manufacture including a layer-manufactured shell integrally secured to a cast structure and methods of fabricating same
US6581671Mar 11, 2002Jun 24, 2003Baker Hughes IncorporatedSystem for infiltrating preformed components and component assemblies
US6594881Feb 21, 2002Jul 22, 2003Baker Hughes IncorporatedBit torque limiting device
US6655481Jun 25, 2002Dec 2, 2003Baker Hughes IncorporatedMethods for fabricating drill bits, including assembling a bit crown and a bit body material and integrally securing the bit crown and bit body material to one another
US7384443Dec 12, 2003Jun 10, 2008Tdy Industries, Inc.Improved hardness, wear resistance; consolidation, sintering; for use as cutting elements of drill bits used for oil and gas exploration
US7398840Jan 10, 2006Jul 15, 2008Halliburton Energy Services, Inc.Matrix drill bits and method of manufacture
US7513320Dec 16, 2004Apr 7, 2009Tdy Industries, Inc.Cemented carbide inserts for earth-boring bits
US7597159Sep 9, 2005Oct 6, 2009Baker Hughes IncorporatedDrill bits and drilling tools including abrasive wear-resistant materials
US7625521Jun 5, 2003Dec 1, 2009Smith International, Inc.displacements within a mold are coated with a mixture of superabrasive free matrix-material and polypropylene carbonate binder, mold is packed with a mixture of matrix material and superabrasive powder and the arrangement heated to form a solid drill bit body, removing the body, forming pockets
US7687156Aug 18, 2005Mar 30, 2010Tdy Industries, Inc.for modular rotary tool; wear resistance, fracture toughness, tensile strength, corrosion resistance, coefficient of thermal expansion, and coefficient of thermal conductivity
US7703555Aug 30, 2006Apr 27, 2010Baker Hughes IncorporatedDrilling tools having hardfacing with nickel-based matrix materials and hard particles
US7703556Jun 4, 2008Apr 27, 2010Baker Hughes IncorporatedMethods of attaching a shank to a body of an earth-boring tool including a load-bearing joint and tools formed by such methods
US7775287Dec 12, 2006Aug 17, 2010Baker Hughes IncorporatedMethods of attaching a shank to a body of an earth-boring drilling tool, and tools formed by such methods
US7776256Nov 10, 2005Aug 17, 2010Baker Huges Incorporatedisostatically pressing a powder to form a green body substantially composed of a particle-matrix composite material, and sintering the green body to provide a bit body having a desired final density; a bit body of higher strength and toughness that can be easily attached to a shank
US7784381Jan 18, 2008Aug 31, 2010Halliburton Energy Services, Inc.Matrix drill bits and method of manufacture
US7784567Nov 6, 2006Aug 31, 2010Baker Hughes IncorporatedEarth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits
US7802495Nov 10, 2005Sep 28, 2010Baker Hughes IncorporatedMethods of forming earth-boring rotary drill bits
US7807099Dec 27, 2007Oct 5, 2010Baker Hughes Incorporateddispersed through aluminum alloy matrix; infiltration, powder compaction, and consolidation; for drilling subterranean formations
US7841259Dec 27, 2006Nov 30, 2010Baker Hughes IncorporatedMethods of forming bit bodies
US7846551Mar 16, 2007Dec 7, 2010Tdy Industries, Inc.Includes ruthenium in binder; chemical vapord deposition; wear resistance; fracture resistance; corrosion resistance
US7913779Sep 29, 2006Mar 29, 2011Baker Hughes IncorporatedEarth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
US7954569Apr 28, 2005Jun 7, 2011Tdy Industries, Inc.Earth-boring bits
US7997358Oct 20, 2009Aug 16, 2011Smith International, Inc.Bonding of cutters in diamond drill bits
US7997359Sep 27, 2007Aug 16, 2011Baker Hughes IncorporatedAbrasive wear-resistant hardfacing materials, drill bits and drilling tools including abrasive wear-resistant hardfacing materials
US8002052Jun 27, 2007Aug 23, 2011Baker Hughes IncorporatedParticle-matrix composite drill bits with hardfacing
US8007714Feb 20, 2008Aug 30, 2011Tdy Industries, Inc.Earth-boring bits
US8007922Oct 25, 2007Aug 30, 2011Tdy Industries, IncArticles having improved resistance to thermal cracking
US8025112Aug 22, 2008Sep 27, 2011Tdy Industries, Inc.Earth-boring bits and other parts including cemented carbide
US8074750Sep 3, 2010Dec 13, 2011Baker Hughes IncorporatedEarth-boring tools comprising silicon carbide composite materials, and methods of forming same
US8087324Apr 20, 2010Jan 3, 2012Tdy Industries, Inc.Cast cones and other components for earth-boring tools and related methods
US8104550Sep 28, 2007Jan 31, 2012Baker Hughes IncorporatedMethods for applying wear-resistant material to exterior surfaces of earth-boring tools and resulting structures
US8109177 *Oct 12, 2005Feb 7, 2012Smith International, Inc.Bit body formed of multiple matrix materials and method for making the same
US8137816Aug 4, 2010Mar 20, 2012Tdy Industries, Inc.Composite articles
US8172914Aug 15, 2008May 8, 2012Baker Hughes IncorporatedInfiltration of hard particles with molten liquid binders including melting point reducing constituents, and methods of casting bodies of earth-boring tools
US8176812Aug 27, 2010May 15, 2012Baker Hughes IncorporatedMethods of forming bodies of earth-boring tools
US8201610Jun 5, 2009Jun 19, 2012Baker Hughes IncorporatedMethods for manufacturing downhole tools and downhole tool parts
US8221517Jun 2, 2009Jul 17, 2012TDY Industries, LLCCemented carbideómetallic alloy composites
US8225886Aug 11, 2011Jul 24, 2012TDY Industries, LLCEarth-boring bits and other parts including cemented carbide
US8230762Feb 7, 2011Jul 31, 2012Baker Hughes IncorporatedMethods of forming earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials
US8261632Jul 9, 2008Sep 11, 2012Baker Hughes IncorporatedMethods of forming earth-boring drill bits
US8272295Dec 7, 2006Sep 25, 2012Baker Hughes IncorporatedDisplacement members and intermediate structures for use in forming at least a portion of bit bodies of earth-boring rotary drill bits
US8272816May 12, 2009Sep 25, 2012TDY Industries, LLCComposite cemented carbide rotary cutting tools and rotary cutting tool blanks
US8308096Jul 14, 2009Nov 13, 2012TDY Industries, LLCReinforced roll and method of making same
US8309018Jun 30, 2010Nov 13, 2012Baker Hughes IncorporatedEarth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US8312941Apr 20, 2007Nov 20, 2012TDY Industries, LLCModular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US8317893Jun 10, 2011Nov 27, 2012Baker Hughes IncorporatedDownhole tool parts and compositions thereof
US8318063Oct 24, 2006Nov 27, 2012TDY Industries, LLCInjection molding fabrication method
US8322465Aug 22, 2008Dec 4, 2012TDY Industries, LLCEarth-boring bit parts including hybrid cemented carbides and methods of making the same
US8388723Feb 8, 2010Mar 5, 2013Baker Hughes IncorporatedAbrasive wear-resistant materials, methods for applying such materials to earth-boring tools, and methods of securing a cutting element to an earth-boring tool using such materials
US8403080Dec 1, 2011Mar 26, 2013Baker Hughes IncorporatedEarth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components
US8440314Aug 25, 2009May 14, 2013TDY Industries, LLCCoated cutting tools having a platinum group metal concentration gradient and related processes
US8459380Jun 8, 2012Jun 11, 2013TDY Industries, LLCEarth-boring bits and other parts including cemented carbide
US8464814Jun 10, 2011Jun 18, 2013Baker Hughes IncorporatedSystems for manufacturing downhole tools and downhole tool parts
US8490674May 19, 2011Jul 23, 2013Baker Hughes IncorporatedMethods of forming at least a portion of earth-boring tools
US8512882Feb 19, 2007Aug 20, 2013TDY Industries, LLCHafnium carbon nitride wear resistant coating on a substrate comprising tungsten carbide in a binder comprising cobalt and ruthenium; machine difficult materials as titanium, titanium alloys, nickel, nickel alloys, super alloys, and exotics
US8637127Jun 27, 2005Jan 28, 2014Kennametal Inc.Composite article with coolant channels and tool fabrication method
US8647561Jul 25, 2008Feb 11, 2014Kennametal Inc.Composite cutting inserts and methods of making the same
US8697258Jul 14, 2011Apr 15, 2014Kennametal Inc.Articles having improved resistance to thermal cracking
US8746373Jun 3, 2009Jun 10, 2014Baker Hughes IncorporatedMethods of attaching a shank to a body of an earth-boring tool including a load-bearing joint and tools formed by such methods
US8758462Jan 8, 2009Jun 24, 2014Baker Hughes IncorporatedMethods for applying abrasive wear-resistant materials to earth-boring tools and methods for securing cutting elements to earth-boring tools
CN101356031BNov 10, 2006Jun 15, 2011贝克休斯公司Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
EP0312487A1 *Oct 12, 1988Apr 19, 1989Eastman Teleco CompanyEarth boring drill bit with matrix displacing material
EP0546523A1 *Dec 9, 1992Jun 16, 1993Baker-Hughes IncorporatedEarth-boring drill bit with enlarged junk slots
WO2005106183A1 *Apr 28, 2005Nov 10, 2005Tdy Ind IncEarth-boring bits
WO2007058904A1 *Nov 10, 2006May 24, 2007Baker Hughes IncEarth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
Classifications
U.S. Classification175/434
International ClassificationE21B10/46
Cooperative ClassificationE21B10/46
European ClassificationE21B10/46
Legal Events
DateCodeEventDescription
Sep 21, 1987ASAssignment
Owner name: EASTMAN CHRISTENSEN COMPANY, A JOINT VENTURE OF DE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:NORTON COMPANY;NORTON CHRISTENSEN, INC.;REEL/FRAME:004771/0834
Effective date: 19861230
Owner name: EASTMAN CHRISTENSEN COMPANY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NORTON COMPANY;NORTON CHRISTENSEN, INC.;REEL/FRAME:004771/0834