Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3758775 A
Publication typeGrant
Publication dateSep 11, 1973
Filing dateSep 29, 1971
Priority dateSep 29, 1971
Publication numberUS 3758775 A, US 3758775A, US-A-3758775, US3758775 A, US3758775A
InventorsHopkins J
Original AssigneeDepartment Of Transportion
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Railroad crossing signalling system
US 3758775 A
Disclosed is a highway-railroad crossing signalling system utilizing microwave telemetry to convey control information from a remote sensing location to a receiver coupled to an active motorist warning device.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

0 firmed States Patent 11 1 1111 3,758,775 Hopkins Sept. 11, 1973 RAILROAD CROSSING SIGNALLING [56] References Cited SYSTEM UNITED STATES PATENTS [75] Inventor: John B. Hopkins, Cambridge, Mass. 2,028,497 1/1936 Clausing et a1. 246/125 X m] 112 211 171222 222223131 :1 :,?;s represented y the secreflal'y 3,191,048 6 1965 Cowen 340/258 B Depa m of Transportwn, 3,307,176 2/1967 Sadler 340/416 Filed:

Washington, D.C.

Sept. 29, 1971 Appl. No.2 184,828

US. Cl 246/125, 246/30, 325/29, 340/31, 340/416 2 2s )lllilill] lllllllllllllllllillllllllllllllll 1H IIIIIIII I IIIIl IIllIIITI'IIIIIIIIII\YIIIIIIIII|| I'llllll'llll lllllllllllllllllllillllllllllllllllll lllllllllllll llllllIlllllllllllllllllllll l llflll z 24 lllll'hlllll lillllllllllllllllllllllll ll llll ITTITTIIII 'lllllll'llllllllllll llilllw ssusons as I I MODULATOR OSCILLATOR BATTERY Pririzary Examiner-Drayton E. Hoffman .Assistant Examiner-George H. Libman Attorney-Herbert E. Farmer et al.

ABSTRACT Disclosed is a highway-railroad crossing signalling system utilizing microwave telemetry to convey control informationfrom a remote sensing location to a receiver coupled to an active motorist warning device.

I 4 Claims, 5 Drawing Figures e4 31 so RECEIVER SIGNAL I CONTROLS BATTERY PATENTED 3E?! 1 5 SHEET 1 0F WJOIPZOO mmZmumm mm mm mmomzmm INIVENTOR= JOHN B. HOP


RAILROAD CROSSING SIGNALLING SYSTEM ORIGIN OF THE INVENTION The invention described herein was made by an employee of the United States Government and may be manufactured and used by or for the Government for governmental purposes without the payment of any royalties thereon or therefor.

BACKGROUND OF THE INVENTION This invention relates to highway-railway crossing detection signalling systems, and more particularly, to the use of microwave telemetry techniques in crossing signalling systems.

Major concerns of the railroad industry, and the cause of two thirds of the rail associated deaths in the United States, are highway-railway crossing accidents. Each year approximately 1,500 people die and 3,000 are injured in train-motor vehicle collisions. The death to injury ratio clearly illustrates the severity of these accidents. One important factor in the quest to eliminate crossing accidents is the installation of automatic warning devices such as flashing lights and movable gates. However, only 20 percent of the 225,000 crossings in the United States have active protection, the remainder being marked only by passive signs. The relatively slow rate at which active devices are being installed (l,0002,000 per year) is primarily due to high costs, which range from $15,000 to $100,000 for each crossing. Still further costs are associated with maintenance. The high costs are due inlarge measure to the difficult environments in which the systems must operate and the high reliability required since human life is involved. I

A major portion of signalling system costs stem from the required coupling between a warning device and a remote sensor. Many conventional warning systems utilize a source connected across the rails of an electrically isolated section of track. This isolated section must extend far enough from the highway-railway intersection to provide adequate warning time. Typically, the length is one half mile or less, one half mile providing a 30-second warning time with a 60 mph train. A detector, perhaps only a relay, is wired across the tracks at the crossing so that when a train enters the isolated section the tracks are short circuited and the detector receives no signal. This condition, zero received signal, is the operational definition of train presence, and the active signal devices are enabled in response thereto. This system illustrates the fail safe attribute necessary in railroad crossing detectors. That is, should power across the tracks be removed the signal devices are activated falsely, rather than possibly ignoring the presence of a train. Due to the great weight that railroad tracks must bear, provision of an electrically insulated section in a mechanically continuous track is costly and a source of recurrent maintenance problems. For example, water, particularly in the presence of salt spread on the road in the winter, can bridge the insulation that defines the isolated section, or even cause a false actuation. In addition, rust on seldom used tracks sometimes prevents strain from properly short circuiting the tracks. Other systems developed to alleviate these problems include connecting the warning device to a remote sensor by a cable. However, to insure against damage from weather or vandals, the cable must be buried which entails a substantial increase in cost of installation.

The object of this invention therefore is to provide a railraod crossing detection system that is low in cost, can be easily installed, is highly reliable in the difficult railroad environment and possesses the essential fail safe'characteristic. A particular object is to provide reliable, low cost coupling between a train sensor and a warning device.

SUMMARY OF THE INVENTION The invention is characterized by a signalling system including a microwave transmitter for producing a beam of microwave energy that conveys information concerning the presence or absence of a train from a remote location on a railroad track to a receiver located adjacent a highway-railroad crossing. In response to a predetermined modulation characteristic of the microwave beam that signifies the presence of a train, the receiver enables an active motorist warning device. According to one preferred embodiment of the invention, the transmitter is located at a position substantially displaced from the crossing and includes a modulator with a sensor to detect rail traffic on the track section immediately adjacent to the transmitter. The microwave beam is directed toward the receiver and the modulator imposes upon the beam the predetermined modulation characteristic signifying the presence of railroad traffic in response to appropriate signals from the sensor. Considerations such as visibility and the average speeds of the rail and road traffic traversing a particular crossing determine the spacing between the transmitter and the receiver. Typically the spacing is one-fourth to one-half mile. Many prior detection systems utilize the tracks themselves to convey the intrusion information to the receiver, but the tracks are subject to malicious or accidental short circuiting. Other systems utilize cables to make the connections, but it hasbeen found that the cables must be buried to be immune from vandals and weather. Inasmuch as the present system requires no connecting apparatus between the remote transmitter location and the crossing these problems are eliminated. Also, costs are lower than those incurred with the previously known systems since, for example, the expensive burial step is not needed. In addition, microwaves are well suited for these detectors because they are unaffected by inclement weather and can be range limited so as to prevent cross-coupling to other devices.

According to another preferred embodiment of the invention the transmitter is positioned at the crossing with the receiver and includes a radiator to direct the beam parallel to the railroad track. A remote reflector apparatus directs the beam across the tracks and thence back toward the crossing. The receiver includes a detector responsive to the returning beam which is interrupted by a train at the remote location. An advantage of this system is that all apparatus requiring power is placed near the highway, thereby simplifying service and routine maintenance, and providing ready access to electrical power lines if utilization of an external power source is desired.

A feature of the invention is the utilization of a pulse modulator with a low duty cycle, for example, a duty cycle of 1 percent. IN this mode of operation the transmitter generates a beam only 1 percent of the time so that power requirements are substantially reduced. A

self-contained battery source can be functional for a year with this low duty cycle pulse modulation thereby simplifying routine maintenance tasks by eliminating the need for frequent battery replacement.

Another feature of the invention is the inclusion of an attenuator in the sensor for suppressing the beam of microwave energy when the presence of a train is sensed. The receiver enables the warning device only in the event of a sustained absence of the beam. The response of the receiver is too slow to enable the warning device during the spaces between the pulses, but requires a time equivalent to several pulses. This system provides a failsafe feature in that breakdown of either the transmitter or the receiver results in the zero received signal that actuates the warning device. Therefore, in the event of system failure a false alarm will be delivered rather than permitting a train to cross the intersection without warning.

DESCRIPTION OF THE DRAWINGS These and other features and objects of the present invention will become more apparent upon a perusal of the following description taken in conjunction with the accompanying drawings wherein:

FIG. 1 shows a diagram of a signalling system in conjunction with a highway-railroad crossing comprising multiple tracks;

FIG. 2 shows a block diagram of a transmitter utilized in the system shown in FIG. 1;

FIG. 3 showsa block diagram of the receiver utilized in the embodiment shown in FIG. 1;

FIG. 4 shows an adaptation of the preferred embodiment shown in FIG. 1 that utilizes a single transmitter to protect a plurality of highway-railroad crossings; and

FIG. 5 shows another preferred embodiment of the invention with the transmitter and receiver together at the crossing and remote reflectors disposed so as toreturn the beam to the receiver in the absence of a train.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring first to FIG. 1 there is shown a preferred crossing detection and signalling system 21 at a highway-railroad crossing 22- formed by the intersection of a highway and three tracks 23, 24 and 25. At a location 26 substantially displaced from the crossing 22 is ,a transmitter 27 that projects a beam of microwave enbe of the magnetic flange detector type manufactured by the Servo Corporation and which are mounted on the railroad track to generate a signal when the trail wheel passes over the sensor, within the transmitter 27 sense the presence of trains on the tracks 23, 24 and at the location 26 and in response thereto supply a suppression signal to a pulse modulator 35 through line 36. The modulator'35, when not suppressed, modulates a microwave oscillator 37, which may be of the Gunndiode oscillator type, that feeds a transmitting antenna 38 to form the beam 28. A self-contained transmitting battery 39 powers the modulator 35. The signals on the line 36 indicating train presence do not distinguish between the individual tracks 23, 24 and 25. Such a distinction is not necessary inasmuch as the warning device 32 must be activated in response to the presence of a train on any track 23, 24 or 25.

Referring next to FIG. 2 there is shown a block diagram of the transmitter 27 including one of the sensors 34 connected by the line 36 to a pulse generator 41. An output of the pulse generator is carried by a line 42 to a power amplifier 43, an output thereof being carried by a line 44 to the oscillator 37. The battery 39 supplies power to the modulator 35 that includes the pulse generator 41 and the power amplifier 43. Power for the oscillator 37 is supplied intermittently on the line 44. The beam 28 is therefore an intermittent or pulsed microwave beam, and when a train is detected by the sensor 34 the pulse generator 41 is suppressed entirely. Consequently, the beam 28 is off during the presence of a train at the location 26. Conventionally, a Gunn-diode oscillator suitable for telemetry requires approximately 5 watts of input power. However, the low duty cycle of the pulse modulator 35, being approximately 1 percent, reduces that power requirement to an average of 50 milliwatts. Consequently, a conventional automobile battery 39 can function for 12 months unattended.

Referring next to FIG. 3 there is shown a block diagram of the receiver 29 and'the signal controls 31. An output of thereceiving antenna 30 resulting from the beam 28 impinging thereon .is detected by a diode 51 and the detected signal is amplified in an amplifier 52.

Receiving the amplified detected signal on a line 53 is an RC circuit 54 including a capacitor 55 and a resistor 56 that acts as a pulse stretcher. A Schmidt trigger 57, followed by a power amplifier 58, receives the stretched signal from the resistor 56. A rectifier 59 passes the output of the power amplifier 58 to a filter capacitor 61 and an enabling relay 62. Contacts 63 of the relay 62 are normally closed and are open, as shown in FIG. 3, only'when the relay is energized. When the contacts 63 close, power from thebattery 33 is carried by a line 64 to the signal controls 31 causing the resultantactivation of the warning device 32. The receiver 29 as shown enclosed ,within a dashed line in FIG. 3 includes the diode 51, the amplifier 52, the RC I circuit 54, the Schmidt trigger 57, the power amplifier 58, the rectifier 59, the filter capacitor 61 and the enabling relay 62.

During operation of the warning system 21 as shown in FIGS. 1, 2 and 3, the absence of a train at the location 26 is accompanied by the absence of a signal on the line 36. Therefore, a pulsating voltage on the line 44.powers the oscillator 37 so as to produce the intermittent microwave beam 28. The presence of the beam 28 with the particular pulsating modulation characteristic signifies the absence of a train to the receiver 29. Each pulse of the beam 28 is detected by the diode 51 and amplified by the amplifier 52 thereby producing a pulse of a substantially higher amplitude on the line 53. The signal supplied to the Schmidt trigger 57 is of longer duration than the pulses on the line 53 as a result of the low-pass RC circuit coupling. Therefore, the Schmidt trigger 57 is in the on state for a substantially longer time than the period of the pulses on the line 53. The longer period of the pulses delivered to the power amplifier 58 insures that the output thereof is at a high average energy level as compared to the energy level of the voltage on the line 53. Rectification and filtration of the output of the power amplifier 58 produces a sustained dc voltage across the capacitor 61 while the pulsating beam 28 is received. The voltage across the capacitor 61 holds the enabling relay 62 in the activated state, thereby keeping the contacts 63 open and the warning device 32 inactivated. In the event that a train is sensed at the location 26 the pulse generator 41 becomes inoperable and transmission of the beam 28 ceases. With the beam 28 absent, the voltage across the capacitor 61 quickly decays through the relay 62 to a level that can no longer maintain activation and the contacts 63 close. Activation of the warning signal 32 results from the voltage supplied on the line 64 through the closed contacts 63. After the passing of the train, the transmission of the beam 28 is resumed causing the voltage to again appear across the capacitor 61; therefore, the relay 62 is activated and the signal 32 is stopped.

As noted above, railroad signalling systems should be fail safe. That is, the warning device 32 should be activated in the event of system failure because false alarms are preferable to insensitivity to rail traffic. This fail safe attribute is achieved in the system 21 since obstruction of the beam 28 or transmitter 27 or receiver 29 failure causes the voltage on the capacitor 61 to decay and results in activation of the warning device 32.

Referring next to FIG. 4 there is shown another highway-railwaycrossing signalling and detector system 71 in conjunction with a single track 72 and a plurality of highways 73a, 74a and 75a forming a plurality ofcrossings 73, 74 and 75. A single transmitter and antenna combination 76 is connected by a cable 77 to a sensor (not shown) that detects the presence of trains on the track 72 adjacent to the transmitter. The transmitter 76 is similar to the transmitter 27 andv produces a pulsating microwave signal that is suppressed in response to the presence of a train. Associated with each crossing 73, 74 and 75 is a receiver and warning devicecombination 81, 82 and 83 respectively. The receiver combination 81 receives the microwave output from the transmitter 76 and is similar to the receiver 29 and warning device 32 combinationl correspondingly, the receiver combination 82 also receives the microwave output from the transmitter 76 and is similar to the receiver combination 81 with the exception that conventional delay circuits prevent activation of the warning device for a period of time after transmission has stopped. That period of time corresponds to the time required for a train'to travel from the crossing 73 to the crossing 74. Likewise, delay circuits in the receiver 83 delay activation of the associated warning device for a period of time equivalent to the time required for a train to travel from the crossing 73 to the, crossing 75.

During operation of the system 71 activation of each transmitter receiver pair 76,81; 76,82; and 76,83 is similar tooperation of the embodiment 21. The embodiment 71 is useful and economical it a plurality of closely spaced highway-railroad crossings 73, 74 and 75 must be protected. Utilization of a single transmitter 76 results in a substantial cost saving.

Referring now to FIG. 5 there is shown a third preferred railroad crossing signalling and detection system 91 including a transmitter 92 and a receiver 93 both adjaccnt to a crossing 94 including a single road 95 and 6 a single track v96. At a location 97 substantially displaced from the crossing 94 a reflector 98 at an angle to the track 96 receives a pulsating microwave beam 99 from the transmitter 92 and reflects it across the track to another reflector 101. The beam 99 strikes the reflector 101 perpendicularly thereto and therefore is reflected back along its original path to the reflector 98 and then toward the transmitter 92. DUe to dispersion of the beam 99 a portion of the returning beam from the reflector 98 impinges on an antenna 102 connected to the receiver 93. Also connected to the receiver 93 is an active motorist warning device 103. The transmitter 92 is similar to the transmitter 27 and the receiver 93 is similar to the receiver 29.

During operation of the system 91 the pulsating microwave beam 99 normally is reflected to the antenna 102, and the receiver therefore maintains the warning device 103 in the inactive state. When a train at the location 97 passes between the reflectors 98 and 101, the return beam is interrupted and the receiver 93 responds as did the receiver 29 to the absence of a signal by activating the warning device 103. The system 91 is similarly fail safe, in that the presence of a positive signal prevents the activation of the warning device 103, and the interruption of the signal'by a train or system failure causes the activation of the warning signal 103.

Obviously, many modifications and variations of the present invention are possible in light of the above teachings. For example, different and/or more complex modulation can be used so that the system can sense not only train presence, but also train velocity and distinguish which tracks are being used. Also, there are many different types of sensors which can be used by those skilled in the art in many different modes of operation to control the modulation. In addition, each of the described embodiments can-be used with any of the crossings shown, and others that maybe encountered. It is to be understood, therefore, that the invention can be practiced otherwise than as specifically described.

What is claimed is:

l. A railroad crossing signalling system comprising:

transmitter means for producing a beam of microwave energy for conveyingtrain presence information;

modulator means for modulating said beam, said modulator means comprising a sensor means having attenuator means for suppressing said beam when a train is sensed to detect the presence of trains at said displaced location and low duty cycle pulse modulator means for modulating said beam in response thereto; 7 receiver means for receiving said beam of microwave energy and for detecting the presence or absence of trains according to the modulation characteristics of said beam; and active warning means responsive to said receiver means for warning motorists of the presence of trains detected by said detection means, said receiver means and said warning means are disposed adjacent a highway'railroad-track crossing and said transmitter means is disposed at a substantially displaced location therefrom adjacent said railroad track and is coupled to said receiver means by said beam.

2. A railroad crossing signalling system according to claim 1 wherein said receiver means comprises enabling means to enable said warning means in response to a sustained absence of said beam.

4. A railroad crossing signalling system according to claim 3 wherein each of said self-contained power source means comprises a battery. I!

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US266904 *Oct 31, 1882 Electric railway signaling apparatus
US2028497 *Jun 23, 1931Jan 21, 1936Clausing Leroy M ERadio signaling system
US3191048 *Nov 22, 1961Jun 22, 1965Cowen Richard GLight sensitive alarm system
US3307176 *Aug 17, 1964Feb 28, 1967Chubb Mosler And Taylor SafesElectrical protection system
US3419847 *Jan 28, 1966Dec 31, 1968Robert S. BonneyLow bridge warning device for vehicles
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4107737 *Jan 24, 1977Aug 15, 1978Sanders Associates, Inc.Synchronization signal powered television transmitter
US4302746 *Feb 1, 1980Nov 24, 1981The United States Of America As Represented By The Secretary Of The NavySelf-powered vehicle detection system
US4868887 *Sep 13, 1988Sep 19, 1989Pomagalski S.A.Cable-car with information transmission via the cable
US4942395 *Aug 24, 1987Jul 17, 1990Ferrari John SRailroad grade crossing motorist warning system
US5554982 *Aug 1, 1994Sep 10, 1996Hughes Aircraft Co.Wireless train proximity alert system
US5572201 *Aug 5, 1994Nov 5, 1996Federal Signal CorporationAlerting device and system for abnormal situations
US5620155 *Mar 23, 1995Apr 15, 1997Michalek; Jan K.Railway train signalling system for remotely operating warning devices at crossings and for receiving warning device operational information
US5729213 *Aug 21, 1995Mar 17, 1998Ferrari; John S.Train warning system
US5864304 *Aug 8, 1996Jan 26, 1999At&T CorpWireless railroad grade crossing warning system
US6157322 *Nov 9, 1993Dec 5, 2000Anderson; Merrill J.Automated railroad crossing warning system
US6323785 *May 20, 1999Nov 27, 2001Larry NickellAutomatic railroad alarm system
US6345233Aug 18, 1998Feb 5, 2002Dynamic Vehicle Safety Systems, Ltd.Collision avoidance using GPS device and train proximity detector
US6457682 *Dec 6, 2000Oct 1, 2002Railroad Controls LlcAutomated railroad crossing warning system
US6471162Jul 11, 2000Oct 29, 2002Eva Signal CorporationRailroad maintenance-of-way personnel warning system apparatus and method therefor
US7075427Oct 14, 2003Jul 11, 2006Eva Signal CorporationTraffic warning system
US7196636Feb 24, 2004Mar 27, 2007Graham Kevin MRailroad crossing warning system
US7429935 *Jun 24, 2005Sep 30, 2008Brenner Matthew DDirectional audio train signaling system and method
US9019115 *Jul 2, 2010Apr 28, 2015General Electric CompanyWarning horn control system, radar system, and method
US9481385 *Apr 24, 2014Nov 1, 2016General Electric CompanySystems and methods for predictive maintenance of crossings
US20050184883 *Feb 24, 2004Aug 25, 2005Graham Kevin M.Railroad crossing warning system
US20070085703 *Mar 8, 2006Apr 19, 2007Jeffrey W. ClarkTraffic crossing warning device, and method for warning of an oncoming locomotive object
US20120001767 *Jul 2, 2010Jan 5, 2012Ballinger Forrest HWarning horn control system, radar system, and method
US20150192636 *Apr 24, 2014Jul 9, 2015General Electric CompanySystems and methods for predictive maintenance of crossings
EP0939718A1 *Jan 13, 1997Sep 8, 1999EVA Signal CorporationRailroad traffic warning system apparatus and method therefor
EP0939718A4 *Jan 13, 1997Jul 16, 2003Signal Corporation EvaRailroad traffic warning system apparatus and method therefor
WO2001091083A1 *May 23, 2001Nov 29, 2001Eva Signal CorporationSelf-testing train detection system
U.S. Classification246/125, 340/551, 340/539.1, 246/30, 340/933, 455/41.2
International ClassificationB61L29/00, B61L29/28
Cooperative ClassificationB61L29/282
European ClassificationB61L29/28A