Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3759206 A
Publication typeGrant
Publication dateSep 18, 1973
Filing dateSep 15, 1971
Priority dateSep 16, 1970
Also published asCA1060815A, CA1060815A1, DE2146452A1, DE2146452B2, DE2146452C3
Publication numberUS 3759206 A, US 3759206A, US-A-3759206, US3759206 A, US3759206A
InventorsDalli A, Debenham M, Schackleford R
Original AssigneeBroken Hill Pty Co Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Push-in easy-opening closures
US 3759206 A
Abstract
This specification dislcoses an easy-opening closure for a can end which comprises an opening formed by partially severing a portion from the can end to leave the portion attached thereto by an integral neck, and a closure member formed from said severed portion and which is larger than said opening. The sheet metal adjacent the free edge of the opening is downwardly turned while the sheet metal adjacent the free edge of the closure member is upwardly turned, said free edges being in contact with or in close proximity to each other. A sealant is applied at least in the region of the free edges if required by the purpose for which the can end is to be used. The specification also discloses a method of forming such a closure comprising the steps of: forming an upwardly directed bulge in the sheet metal, thus stretching the sheet; partially severing a central portion of said bulge, to define an opening and said severed portion defining a closure member for said opening, and displacing the closure member downwardly so that its free edge is below the free edge of the opening; partially flattening the thus truncated bulge of sheet metal around said opening to reduce its size, and turning downwardly said free edge defining said opening; partially flattening the closure member to increase its size, and turning upwardly said free edge of the closure member, the free edge portion of said closure member being in contact with or in close proximity to said free edge defining said opening, and applying a sealant at least in the region of the free edges of the opening and the closure member to seal the closure if required by the purpose for which said container member is to be used.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

[111 3,759,206 [451' Sept. 18, 1973 1 PUSH-1N EASY-OPENING CLOSURES [75] Inventors: Alan George Dalli, Warrandyte,

Victoria; Michael Debenham, Frankston, Victoria; Ralph Edward Schacltleford, Ferntree Gully, Victoria, all of Australia [73] Assignee: The Broken Hill Proprietary Company Limited, Melbourne, Australia [22] Filed: Sept. 15, 1971 [21] Appl. No.: 180,785

[30] Foreign Application Priority Data Sept. 16, 1970 Australia 2556 [52] U.S. Cl. 113/121 C, 113/116 BB, 220/48 [51] Int. Cl. B2ld 51/00 [58] Field of Search 220/27, '48, 53, 54; 113/121 R, 121 A, 121 C, 11688, 116 CC [56] References Cited UNITED STATES PATENTS 2,261,117 11/1941 Jack, .lr 220/27 3,266,452 8/1966 Taylor 113/121 C 3,341,057 9/1967 Frankenberg 220/54 2,789,718 4/1957 Baumann 220/27 3,445,027 5/ 1969 Palmer 220/54 2,787,394 4/1957 Baumann'... 220/27 2,176,898 10/1939 Fn'ed..... 220/27 3,195,763 7/1965 Fried et a1. 220/54 3,410,436 11/1968 Foss et a1 215/40 3,362,569 l/l968 Geiger 220/48 3,355,058 11/1967 Asbury... 220/48 3,246,791 4/1966 Asbury... 220/47 3,236,409 211966 Cross et a1 220/47 3,227,304 1/ 1966 Asbury 220/48 3,261,497 7/ 1966 Lipske 220/47 2,842,295 7/1958 Bajada 222/485 2,652,169 9/1953 Brusien'ski 222/81 4/1971 Brossart, Jr 113/116 BB 3,552,341 1/197-1 Lannin 113/116 BB Primary Examiner-Charles W. Lanham Assistant ExaminerM. J. Keenan Attorney-Cushman, Darby & Cushman [57] ABSTRACT This specification dislcoses an easy-opening closure for a canend which comprises an opening formed by partially severing a portion from the can end to leave the portion attached thereto by an integral neck, and a clo-' sure member formed from said severed portion and which is largerthan said opening. The sheet metal adjacent the free edge of the opening is downwardly turned while the sheet metal adjacent the free edge of the closure member is upwardly turned, said free edges being in contact with or in close proximity to each other. A

sealant is applied at least in the region of the free edges if required by the purpose for which the can end is to be used. The specification also discloses a method of forming such a closure comprising the steps of: forming an upwardly directed bulge in the sheet metal, thus stretching the sheet; partially severing a central portion of said bulge, to define an opening and said severed portion defining a closure member for said opening,

and displacing the closure member downwardly so that its freeedge is. below the free edge of the opening; partially flattening the thus truncated bulge of sheet metal around said opening to reduce its size, and turning downwardly said free'edge defining said opening; partially flattening the closure member to increase its size,

and'turningupwardly said free edge of the closure member, the free edge portion of said closure member being in contact with or in close proximity to said free edge defining said opening, and applying a sealant at least in the region of the free edges of the opening and the closure member to seal the closure if required by the purpose for which said container member is to be I used.

21 Claims, 17 Drawing Figures PATENTED SEP 1 8 I975 SHEET 1 BF 3 PATENTEUSEPIBIQR 3.759.206 sum-2 M3 swawalfill.

5 17b 1% F5 E/Z- PUSH-IN EASY-OPENING CLOSURES This invention relates to easy-opening closures for containers made at least partly from sheet metal, such as metal cans for beverages of all kinds, other liquids, and pourable products.

The most widely marketed easy-opening closures for beverage cans are formed in can ends made from aluminium or an aluminium alloy, the closure member being defined by a score line that weakens the metal and having attached to it'a pull ring for tearing the closure member from the can end. In another type of closure, a tinplate can end has an insert of aluminium that incorporates a closure member defined by a score line. Again, a pull ring is attached to the closure member to enable it to be torn from-the can end.

Can ends made from steel or tinplate and incorporating a score line defining an easy-opening closure adapted for removal by a pull ring are also known. However, the disadvantage with such closures is that the scoring operation causes work hardening of the steel, thus making more difficult the easy removal of the closure by the usual tearing operation. The difficulty is accentuated when the edge of the scoring tool becomes rounded in use. Then the strength of the deformed metal can reach levels where the forces necessary to tear the score are higher than those necessary to tear the adjacent sheet. As a result, the tear does not follow the score line and the can becomes difficult to open and dangerous in use.

A major disadvantage of such tear-out" closures is that they are relatively complicated and costly to manufacture. Another disadvantage is that the closure member, after being torn from the container, is usually thrown away thus producing a serious litter problem.

Easy-opening closures which are not torn out of the container have been proposed. Such closures are opened by displacing the closure member into the container. One such proposal is disclosed in Klein and Harper U.S. Pat. No. 3,334,775 which describes a closure formed by drawing and shaping thesheet metal so that it is underfolded in two superimposed 180 folds, the pushin closure member or gate panel being defined by a score cut near the lower of these folds. Since ac cess to the sheet metal is available only from he underside, a conventional shearing operation is not possible and the score cut must be made by forcing a knife into the sheet metal. This constitutes a major disadvantage because the service life of such a knife is likely to be short when the closure is made from steel or tinplate especially when these are of high temper. Another disadvantage is that the formation of the superimposed 180 folds involves severe deformation of the sheet metal and this can cause stress cracking especially if the formation is attempted athigh speed.

The primary object of the invention is therefore to provide an easy-opening closure that can be readily and economically formed from steel or tinplate and that avoids the abovementioned disadvantages. Another object of the invention is to provide an easy-opening closure that can be economically formed from aluminium or aluminium alloy and that has a closure member which is not removed from the confines of the container when the closure is opened thus reducing the litter problem.

In accordance with the invention, therefore, there is provided in a container member formed from sheet 2 metal, an easy-opening closure comprising an opening formed by partially or wholly severing a portion of the -.sheet metal of said container member, the free edgeof said sheet metal from which said portion is severed deor comprising said'severed portion and which is larger than said opening, said closure member having part of a free edge portion thereof in contact with or in close proximity to said free edge defining said opening, or the interior surface of the sheet metal adjacent said opening, said closure member having a sealant at least in the region of the free edges of said opening and closure member if required'by the purpose for which said container member is to be used and being adapted to be pushed away from said interior surface to open the closure.

The closure member is larger than the opening in order that any internal pressure arising from the contents, e.g., carbonated beverages, of the container is resisted by the overlap.

Preferably, said portion is only partially severed from said container member to leave an integral neck that serves as a hinge during the opening operation and ensures that the closure member remains connected to the container member. Alternatively, a hinge may be formed separately, such as by a strong adhesive material.

In the present specification, the term container member" is intended to include any integral part of a container, such as part of the container body, a container end or an insert adapted to form part of a container body or end. The term sheet metal includes steel, tinplate, aluminium and its alloys, other metals suitable for container manufacture, and laminates of these metals with relatively thin plastic films. The term severing means an incision extending through the full thickness of the sheet metal from one surface to the other. Thus partially severing portion of the sheet metal means that such portion remains attached to the parent metal only by one or more necks of unincised metal between the two ends of the incision or incisions. The term free edge means the metal surface created by the incision and includes the corners defining said surface. The term free edge portion includes the free edge as defined as well as the sheet metal adjacent to the corners of the free edge. The term in close proximity" includes spacings such that aseal effective for the purpose for which the container member is to be used is obtained by the use of a suitable conventional sealant. ln the case of constructions not requiring sealant, say for powders, the term includes spacings such that the contents of the container can not escape.

When the contents of the container are at or below atmospheric pressure, the invention provides an easyopening closure as hereinbefore described and in which a segment or segments of the free edge portion of the closure member are formed to extend over the exterior surface of the sheet metal adjacent to the opening. The extent to which this overlap occurs is designed to resist opening of the closure by atmospheric pressure or acciv an opening and said severed portion defining a closure member for said opening, and then reducing the size of said opening and/or increasing the size of said closure member, a part of a free edge portion of said closure member being in contact with'or in close proximity to said free edge defining said opening or the interior surface of the sheet metal adjacent said opening and applying a sealant at least in the region of the free edges of the opening and closure member if required by the purpose for which said container member is to be used.

In order that the invention may be more clearly understood, typical preferred forms thereof are hereinafter more fully described with reference to the accompanying drawings in which:

FIG. 1 is a plan view of one form of a can end embodying the invention; a

FIG. 2 is a sectional elevation view taken along the line 2-2 of FIG. 1;

FIG. 3 is an enlarged plan view of one closure of the can end of FIG. 1;

FIG. 4 is a plan view of a form of can end suitable forcontainers having contents at or below atmospheric pressure;

FIG. 5 is a plan view of a modified form of can end suitable for containers with contents at or below atmospheric pressure;

FIG. 6 is a sectional elevation view taken along the line 99 of FIG. 3 and shows the first stage in the formation ofa closure in the can end shown in the preceding figures;

FIGS. 7, 8 and 9 are sectional elevation views taken along line 9-9 of FIG. 3, showing successive stages in the formation of the said closure;

FIG. 10 is a sectional elevation view taken along the line 1010 of FIG. 3;

FIG. 11 is a sectional elevation view taken along the line 11-11 of FIG. 4, and

FIG. 12 is a sectional elevation view taken along the line 12-12 of FIG. 5.

For clarity the Figures show the configurations of the metal defining the closure during the various stages of formation in a somewhat exaggerated and idealized form. The actual configurations may therefore depart from those shown. I

The can end 10 shown in the drawings comprises a circular disc of tinplate, the rim of which is preformed (FIG. 2) in the usual way for subsequent attachment by a seaming operation to the upper end of a can body.

The can end 10 is provided with a diametrically opposed pair of easy-opening closures each including an integral push-in closure member 12 which has been severed from the disc and each of which remains connected thereto by a narrow neck 14 which is best shown in FIGS. 3 and 10, each suck neck being arranged centrally at the outer end of the respective closure member 12 and serving as a hinge during the closure opening operation.

The particular location of the neck or hinge 14 with respect to closure member 12 has been chosen to strengthen the can end in resisting internal pressure created by the contents of the can. However, other locations can be used providing the can end can resist the maximum internal pressure for the particular application.

The formation of each closure member 12 in the can end 10 provides a corresponding opening 16 defined by the free edge 17 of the can end 10 which is created by the severing of closure member 12 from the can end 10 but each such opening is completely covered and sealed by the respective closure member 12 until the latter is subsequently pressed downwardly, as shown in broken lines in FIG. 10, to open the closure. It will be appreciated that only one such closure member 12 need be formed in the end 10 and that the closure or closures may assume any desired shape or configuration. The shape shown in the drawings has been chosen both for its pouring characteristics and its aesthetic appeal.

As best seen in FIGS. 9 and 10, the free edge 18 of the free edge portion 19 of the closure member 12 is in contact with or in close proximity to the free edge 17 of the opening 16. The closure member 12 is most desirably formed so as to be resiliently biased towards the opening 16 so that contact with the free edge 17 of the opening occurs at least around some of its periphery. Clearly, since the closure member 12 has part of its free edge 18 beyond or outside the free edge 17 of the opening 16, the area of the closure member 12 is larger than that of the opening 16. The amount of overlap between the closure member 12 and the opening 16 is indicated by the distance x in the various Figures. Hence, the closure member will be positively restrained from being displaced upwardly by internal pressure in a can to which the end 10 is applied. The application of a suitable sealant S to seal any gap between the free edge 18 of the closure member 12 and the free edge 17 opening 16 results in the closure providing an hermetically sealed can after filling and completion. To gain access to the contents, the closure member may be readily pushed downwardly as shown in FIG. 10 and when so displaced remains attached by neck 14 to the can end 10.

The sealants may be any suitable polymer, either natural or synthetic. Typical sealants that may be used are those based on polyvinyl chloride, polyvinyl dichloride, polyethylene or its copolymers, polyamides, and the like. Conceivably, soft solder could also be used. The coating of lacquer commonly applied to the interior surfaces of metal containers may serve to seal the closure.

If a relatively viscous sealant is applied to the interior of the closure, unsightly penetration of sealant to the exterior does not take place even if the closure member is not in a close proximity to the opening as would have to be the case when a relatively fluid sealant is used. In both cases, the objective is to prevent unsightly penetration of sealant to the exterior surface of the closure, and to obtain an effective seal after the sealant 'has been subjected to the normal curing process. We have found that when using a coventional polyvinyl chloride resin with a plastisol, for example a commercial product made by W.R. Grace Australia Ltd. and known as Darex cap compound no. 6385-A4, the proximity of the closure member to the opening is not critical, and a gap of a few thousandths of an inch (a few 0.025 mm) can be tolerated without difficulty.

The general method of forming each closure 12 is illustrated in successive stages in FIGS. 6, 7, 8 and 9 though it will be apparent to those skilled in the art that the required result is not dependent upon using the particular shapes which are illustrated and that the number of forming operations could be reduced or increased.

Referring to FIG. 6, an upward bulge 20 is formed initially in can end 10, either before, after or during formation of its rim, thus stretching the sheet metal within the region of the bulge 20. The bulge has a shoulder 22 where the metal is generally parallel to the plane of the undeformed sheet metal around the bulge 20.

In the succeeding operation shown in FIG. 7, a generally central portion 24 of the bulge 20 is partially severed approximately centrally of the shoulder 22, thus defining the portion which will be formed into the closure member 12 and also defining the opening 16. The portion 24 which remains connected to the can end by the unincised neck 14. of sheet metal not visible in FIGS. 6 to 9, is also displaced downwardly so that its free edge 18 is below the free edge 17 defining the opening 16. As FIG. 7 clearly shows, the portion 24 and the opening 16 are surrounded by flat rims, formerly parts of the shoulder 22. k

In the next operation shown in FIG. 8, the truncated portion of bulge 20 around the opening 16 including the flat rim is partially flattened, thus reducing the size of the opening 16 by forcing its free edge 17 inwardly. The free edge 17 is also turned downwardly, which has the important result of presenting a smooth periphery to the openers fingers or lips should he drink from the can.

In the final operation shown in FIG. 9, the closure member 12 is partiallyflattened, thus increasing its size by forcing its free edge 18 outwardly. The free edge 18 is also turned upwardly so that it is in contact with or at least in close proximity to the free edge 17 of the opening 16. The upward turning of the free edge of the closure member has the advantage that any fin F of raw and ragged metal produced by the shearing operation at the lower corner of the free edge 18 of the closure member 12 is located more definitely in the region of application of sealant S around the gap. The covering of the fin F with sealant is desirable in order to prevent contact of raw metal with the contents of the can.

As those skilled in the art will appreciate, the steps shown in FIGS. 6 and 7 may be performed in one die operation. Similarly, the steps shown in FIGS. 8 and 9 may also be performed simultaneously, the sealant application normally being a separate operation.

The downward and'upward turning of the free edges of the opening and the closure member respectively is of course achieved by the use of suitably shaped dies. Using known techniques, the dies are also designed so that the closure member is resiliently biased towards the opening as previously mentioned.

The desirable amount of overlap it depends inter alia on the size of the closure, the properties of the sheet metal, and the pressure in the container for which the can end is made. By way of example, an end for a beer can made from high temper tinplate about 0.012 inches (0.3 mm) thick, we have found that an overlap x of 0.0l5 inches (038mm) is very satisfactory.

It will be appreciated that complete overlap between the free edges 17 and 18 may be desirable and in such a case, the free edge 17 is preferably disposed outwardly of and above the lever of free edge 18. Here the contact or close proximity may be between free edge 17 and the outside surface of free edge portion 19 or between free edge 18 and the interior surface of can end 10 adjacent opening 16. However, it should be appreciated that complete overlap is not essential and that the embodiment described above is a commercially workable and acceptable embodiment.

Many alternatives exist for obtaining the desired overlap between the closure member and the opening although some of these have obvious disadvantages. For example, the whole of the bulge or only the central portion of it falling within the shoulder may be formed downwardly. In this case, there is contact (or close proximity) between the interior surface of the can end and the exterior surface of the free edge portion of the closure member.

Another alternative construction is shown in FIGS. 13 to 17 where parts similar to those of the first embodiment are indicated by the suffix c. As in the first embodiment, the closure member 12c remains connected to the end 106 by a neck 14c of metal and the free edge 180 of the free edge portion 19c is disposed beyond or outside the free edge 17c of the opening 16c. However, the edge portion l c an d the edge 170 are not turned upwardly and downwardly but remain-in their severed orientation as clearly shown in FIG. 14. It will be seen that there is contact (or close proximity) between the free edge 17c and the exterior surface of the free edge portion 19c.

The method of forming the closure 120 is illustrated in its successive stages in FIGS. l5, l6 and 17. In the first stage (FIG. 15) an upward fiat-topped bulge 20 is formed to the height of shoulder 22 of the first embodiment. In the second stage (FIG. 16) a generally central portion 24c of the bulge 20 is severed from end 100, except for a portion defining the neck 14c, and the severed portion is displaced downwardly so that its free edge 18c is below the free edge 17c of the opening. The final stage (FIG. 17) involves the partial flattening of the truncated bulge around the opening to reduce the opening to a size smaller than the size of the closure member 120, and then the application of a sealant S as in the first embodiment.

Alternatively again, the bulge may be annular in shape with the central portion being in the plane of the undeformed sheet or at any rate lower than the height of the annulus. Severance of the metal around the high est part of the annulus then defines an opening and a closure member each having a raised rim which when partially flattened reduces the size of the opening and increasesthe size of the closure member.

In the can end shown in FIGS. 4 and 11, where parts similar to those of the previous embodiment are indicated by the suffix a, suitable for contents at atmospheric pressure or below, the closure member 12a has some of its free edge portion 19a at 25 in contact with or closely overlying the exterior surface of the can end 10. This prevents the closure member 12a from being opened by accidental contact or by atmospheric pressure. In practice, the width of the overlap between edge 15 and the periphery of the opening would be much less than that shown in FIG. 4 and even in FIG. 11. At

each extremity of the overlap 25, a short incision may ments 25b of free edge 19b on the exterior surface of g the can end.

In each of the embodiments, the easy-opening closure and the immediately surrounding parts of the can end may be covered by a removable adhesive covering strip of paper, plastic film or other suitable material if this is found desirable for reasons of hygiene.

The ebodiments described are primarily intended for cans having liquid contents. Cans for powdered, granular or other non-liquid contents would not essentially require a sealant since a small dab of adhesive in one or more places around the closure member would be satisfactory. The closure would of course be designed so that any gap between the closure and opening would not allow the contents to escape. For substances such as salt and pepper, perforated caps may be provided to fit into the opening after the closure member has been displaced.

in the easy-opening closure defined above, and all other closures embodying the essential features of the invention there is an essential difference between our invention and that disclosed in US. Pat. No. 3,334,775. Whereas in our invention, the closure member is larger than the opening as defined by its free edge, the gate panel or closure member in said disclosure is larger than the opening defined by the convex rim of the upper 180 fold and is not larger than the opening defined by the score cut. in fact, the gate panel may be considered to be smaller than the opening defined by the score cut by an amount of the width of the cut. Furthermore our closures do not require severe metal deformation during their formation. Accordingly, when our closures are fonned from high temper (e.g., Temper 6) or double reduced steel the metal does not suffer from stress cracks and therefore such closures have distinct advantages over the above U.S. art. When-formed from low temper steel (such as for contents at atmospheric pressure) the closures have the advantage that their formation is simple and economic.

We claim:

1. A method of forming an easy-opening closure in a sheet metal container member, said method comprising forming a bulge in an area of the sheet metal container member,

at least partially severing a portion of the sheet metal in said area to provide a free edge wherein at least a portion of said bulge lies substantially outside of said portion,

the free edge of the sheet metal from which said portion is at least partially severed defining an opening, and said severed portion defining a closure member for said opening,

thereafter reducing the size of said opening by at least partly flattening said bulge to place at least a part of the free edge portion of said closure member and the free edge defining said opening or the interior surface of the sheet metal adjacent said opening in overlapping contact or in overlapping close proximity, whereby said container member having said easyopening closure is suitable for use in forming a container for liquids.

2. Method as claimed in claim 1, wherein said portion of the sheet metal is only partially severed with at least one unsevered area connecting said closure member to the remainder of said sheet metal and serving as a hinge during the closure opening operation.

3. Method as claimed in claim 2, wherein said bulge includes an approximately flat area of sheet metal that is generally parallel to the plane of the sheet metal surrounding said bulge, said severing being carried out substantially within said flat area.

4. Method as claimed in claim 3, wherein said sheet metal is steel.

5. Method as claimed in claim 4, wherein after said bulge is flattened, a sealant is applied to at least the region of the free edges of said opening and said closure member.

6. Method as claimed in claim 4, wherein the container contents are below atmospheric pressure.

7. Method as claimed in claim 4, wherein the container contents are above atmospheric pressure.

8. Method as claimed in claim 2, wherein said bulge is formed before said portion is severed.

9. Method as claimed in claim 8, wherein the size of said closure member is increased prior to the application of said sealant.

10. Method as claimed in claim 9, wherein said closure member is bulged when severed, and thereafter the bulged closure member is flattened to increase the size thereof.

11. Method as claimed in claim 2, wherein said freeedge portion of said closure member has a plurality of segments, at least one of said segments overlying a surface of the sheet metal adjacent said opening, and' at least one other of said segments overlying the opposite surface of the sheet metal adjacent said opening.

12. Method as claimed in claim 2, wherein said unsevered area is located in the bulged area of the sheet metal container member.

13. A method of forming an easy-opening closure in a container member of sheet metal comprising the following steps:

1. forming a bulge in the sheet metal, thus stretching.

the sheet;

2. partially or wholly severing a central portion of said bulge to provide a free edge, the free edge of said sheet metal from which said portion is severed defining an opening and said severed portion defining a closure member for said opening;

3. displacing the closure member in the opposite direction from said bulge so that its free edge is in a different plane than the free edge of the opening;

4. at least partially flattening the bulge of sheet metal around said opening to reduce its size and to place at least a part of the free edge portion of said closure member and said free edge defining said opening or the surface of the sheet metal adjacent said opening in overlapping contact or in overlapping close proximity, and

5. applying a sealant at least in the region of the free edges of the opening and the closure member to seal the closure if required by the purpose for which said container member is to be used, whereby said container member having said easy- 1 opening closure is suitable for use in forming a container for liquids.

14. Process as claimed in claim 13, wherein the free edge defining said opening is displaced in the direction of the closure member displacement.

15. Method as claimed in claim 13, wherein steps (1) and (2) are in a single operation.

.16. Method as claimed in claim 13, wherein said bulge includes an approximately flat area of sheet metal that is generally parallel to the plane of the sheet metal surrounding said bulge, said severing being carried out substantially within said flat area.

17. Method as claimed in claim 16, wherein said portion of the sheet metal is only partially severed with at least one unsevered area connecting said closure memher to the remainder of said sheet metal and serving as a hinge during the closure opening operation.

18. Method as claimed in claim 17, wherein saidprovide a free edge of displaced metal outwardly of the severed portion at least partially defining an opening, with said severed portion defining a closure member for said opening;

and reducing the size of said opening by at least partly flattening the said displaced metal defining said opening to move the marginal portion of the free edge and the marginal edge portion of the closure member into overlapping relationship.

21. Method as claimed in claim 2, wherein the free edge defining said opening is displaced towards the free edge portion of the closure member, whereby the easyopening closure presents a smooth opening periphery to an openers finger. I

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2176898 *Sep 6, 1938Oct 24, 1939Us Can CorpContainer
US2261117 *Jun 9, 1939Nov 4, 1941Us Can CorpClosure member and method of preparing same
US2652169 *Feb 24, 1948Sep 15, 1953Brusienski Paul EHand pressure released container opening
US2787394 *Jan 21, 1954Apr 2, 1957Baxter Laboratories IncClosure
US2789718 *Sep 28, 1953Apr 23, 1957Baxter Laboratories IncOne-piece tear-cap or closure
US2842295 *Jan 24, 1956Jul 8, 1958Anthony BajadaLid closure for can containers
US3195763 *Nov 10, 1960Jul 20, 1965Louis FriedReceptacle and opening means therefor
US3227304 *Sep 8, 1964Jan 4, 1966Ashury Charles TCan opening arrangement
US3236409 *Jul 6, 1964Feb 22, 1966United States Steel CorpPush-in can-end closure with holding means
US3246791 *Aug 12, 1963Apr 19, 1966Asbury Charles TCan-opening arrangement
US3261497 *Mar 2, 1964Jul 19, 1966Nat Can CorpCan
US3266452 *Dec 7, 1962Aug 16, 1966American Can CoSift-proof dredge closure and method of producing same
US3341057 *Dec 1, 1964Sep 12, 1967Continental Can CoEasy opening container end
US3355058 *Dec 6, 1965Nov 28, 1967Asbury Charles TPush-in can lid
US3362569 *Aug 24, 1964Jan 9, 1968Joseph A. GeigerContainer closures with breakable openings
US3410436 *Sep 23, 1966Nov 12, 1968Anchor Hocking Glass CorpClosure cap with venting means
US3445027 *Jan 18, 1968May 20, 1969Jones & Laughlin Steel CorpEasy opening containers
US3552341 *Aug 1, 1968Jan 5, 1971Stanray CorpMethod for forming a roof hatch assembly
US3575122 *Jul 3, 1968Apr 13, 1971Stanray CorpMethods of constructing a hatch frame and cover therefor
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3886881 *Dec 3, 1973Jun 3, 1975Coors Container CoMethod of making a press tab container end from a metallic shell
US3888199 *Dec 3, 1973Jun 10, 1975Coors Container CoMethod of making a press tab container end from a metallic web
US3929251 *May 7, 1973Dec 30, 1975Aluminum Co Of AmericaContainer wall with rupturable weakening line
US3935961 *Sep 30, 1974Feb 3, 1976Bennett Robert AUnitary beverage container
US3958717 *Aug 15, 1975May 25, 1976Jos. Schlitz Brewing CompanyLid construction for a container
US3980034 *May 14, 1974Sep 14, 1976Michael DebenhamMethod of producing an easy-opening closure
US3980200 *Aug 18, 1975Sep 14, 1976Klein Gerald BSealant for pushdown gate in a can lid
US3981652 *Aug 5, 1974Sep 21, 1976Usm CorporationMachine for partly coating articles
US3999494 *May 30, 1975Dec 28, 1976Toyo Seikan Kaisha LimitedMethod and apparatus for forming openings in a can end and applying a sealant to the inside surfaces of the openings
US4024980 *May 7, 1976May 24, 1977Crown Cork & Seal Company, Inc.Easy opening can end having a closure plug
US4319692 *Jun 23, 1980Mar 16, 1982Gundlach Roy LLitter free protective beverage can lid
US4723684 *Apr 29, 1986Feb 9, 1988Lambert G StevenCan lid with integral push-in tab
US5769259 *Mar 2, 1995Jun 23, 1998The Broken Hill Proprietary Co LtdFull-open end panel for container closure
US6131763 *Jul 19, 1999Oct 17, 2000Stanish; WaltBeverage container and dispenser apparatus
US8640905Jul 13, 2012Feb 4, 2014Daniel Robert GibsonContainer
US9315290Feb 3, 2014Apr 19, 2016Cml&J, LlcContainer
DE2707064A1 *Feb 18, 1977Nov 16, 1978American Can CoForming opening tab in sheet metal container end closures - using bulge whose height is reduced and reformed into opening tab
DE3941432A1 *Dec 15, 1989Jun 20, 1991Rasselstein AgSheet-metal tin lid - has strip stamped out of opening edges opposite to lug hinge forming spring lug
EP0008191A1 *Jul 31, 1979Feb 20, 1980Michael Fred JoyceMetal end cover for a container and method for producing it
EP0030649A2 *Nov 22, 1980Jun 24, 1981Schmalbach-Lubeca AGProcess for the production of lids made of sheet metal for containers, especially cans
Classifications
U.S. Classification413/13, 413/17, 413/19, 220/268
International ClassificationB65D17/28, B65D17/32, B21D51/44, B21D51/38
Cooperative ClassificationB21D51/383, B65D17/161, B65D2205/00
European ClassificationB21D51/38B, B65D17/16B