Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3760335 A
Publication typeGrant
Publication dateSep 18, 1973
Filing dateMay 27, 1971
Priority dateMay 27, 1971
Also published asCA963551A1, DE2224326A1, DE2224326C2
Publication numberUS 3760335 A, US 3760335A, US-A-3760335, US3760335 A, US3760335A
InventorsL Roberts
Original AssigneeAmp Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Pre-loaded electric connector
US 3760335 A
Abstract
Multi-contact electrical connector comprises an insulating body having a plurality of electrical contact terminals therein. The rearward ends of the terminals are provided with slotted plate-type contact means which are adapted to receive insulated wires to form electrical and mechanical connections between the terminals and the wires. The arrangement of the contact terminals in the connector housing is such that a plurality of wires can be connected to the individual terminals in a single operation so that the connector can be quickly applied to the end of a multi-conductor cable at a work site.
Images(10)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

ilnite tates Roberts tet 1 1 Sept. 18, 1973 PRE-LOADED ELECTRIC CONNECTOR [75] lnventor: Lincoln Edwin Roberts,

Winston-Salem, N.C.

[73] Assignee: AMP Incorporated, Harrisburg, Pa.

[22] Filed: May 27, 1971 [21] Appl. No.: 147,569

52 us. (:1. i 339/99 R 511 rm.- :1 ..n011- 9/08 [58] Field 61 Search 339/95, 97 99, 339/176, 196, 206, 207, 209

[56] References Cited UNITED STATES PATENTS 3,189,863 6/1965 Leach 339/99 3,514,746 5/1970 001611 et al 339/276 T 1/1961 l-lubbell et al 339/196 M 3,417,362 12/1968 Reynolds 339/91 R Primary Examiner-Joseph H. McGlynn Attorney-William .l. Keating, Gerald K. Kita,

John R. Flanagan and Allan B. Osborne [57] ABSTRACT Multi-contact electrical connector comprises an insulating body having a plurality of electrical contact terminals therein. The rearward ends of the terminals are provided with slotted plate-type contact means which are adapted to receive insulated wires to form electrical and mechanical connections between the terminals and the wires. The arrangement of the contact terminals in the connector housing is such that a plurality of wires can be connected to the individual terminals in a single operation so that the connector can be quickly applied to the end of a multi-conductor cable at a work site.

11 Claims, 21 Drawing Figures PAIENIEDSEPI ems sum o1nr1o IIO PATENTEDSEPWW 3.760.335

sum 02 or 10 PATENTEDSEPI 81973 saw on or 1o PATENTEU SEPT 8 I975 saw us or 10- PRE-LOAIDIEI) ELECTRIC CONNECTOR BACKGROUND OF THE INVENTION other electrical devices, such as switches, relays, and

housings for electrical circuitry (black boxes) as will be apparent to those skilled'in the electrical arts.

The terms electrical connector and connector part" are used herein to denote a device comprising an insulating housing which contains a plurality of electrical contact terminals. The terminals are secured to the ends of conductors so that when the connector is coupled to a complementary connector, to form a connector, assembly, the conductors are connected to other conductors that extend to the complementary connector. The term pre-loaded as used herein is intendedto specify that the connector contains an electrical contact terminal or a plurality of contact terminals to which the wires are to be connected. The invention is herein disclosed in an embodiment comprising a multi-contact electrical connector of a type widely used in the telephone industry although other uses for the invention will be apparent to those skilled in the art.

Prior to the widespreadadoption in the electrical industry of crimped electrical connections between wires and terminals, pre-loaded electrical connectors were the mostcommon type used and they are still used in large numbers. The terminals in the connector are usually formed with a rearward end that is adapted to be soldered to a wire. When a conventional pre-loaded connector is assembled to a plurality of wires, it is thus necessary to solder each of the individual conductors to the ends of each 'of the terminals in separate soldering operations. Furthermore, where the connector is of the high density type, the wire connecting ends of the terminals will be positioned closely adjacent to each other and the soldering operation assumes an added degree of difficulty. I

1 With the advent and the widespread acceptance of crimping techniques for securing contact terminals to wires, the post-loaded connector has come into widespread u'seage and has supplanted the pre-loaded connector-in 'many.,circumstances. In accordance with present day connector manufacturing and assembly techniques for post-loaded connectors, a terminal is crimped onto -a wire and the terminal is subsequently inserted into a contact receiving cavity in the connector housing. The terminalsare usuallyindividually removable from their contact receiving cavities so that a damaged terminal can be replaced. Additionallypthe time consuming and uncertain soldering operation'is eliminated.

There are, however, circumstances under which preloaded connectors offer distinct advantages and preloaded connectors having solder type terminals are still widely used. Crimping techniques have not been successfully adapted to the presently used pre-loaded connectors for 'thereason, among others that it is impractical to design crimping tooling in accordance with previously known crimping techniques which is capable of crimping the wire connecting end of a terminal onto a wire when the wire connecting end of the terminal is located extremely close to adjacent terminals in the same connector housing.

The instant invention is directed to the achievement of a pre-loaded electrical connector which does not require soldered connections between the contact terminals in the connector and the wires extending to the connector. The invention is further directed to the achievement of a connector which can be produced, if desired, with a large number of contact terminals on closely spaced centers and which can be applied to the end of a plurality of wires in a minimum of time, and without the requirement of a high degree of skill on the part of the technician.

It is accordingly an object of the invention to provide an improved multi-contact electrical connector. A further object is to provide an improved pre-loaded electrical connector. A still further object is to provide preloaded electrical connector which can be applied with relatively simple tooling to the end of a multiconductor cable so that each individual conductor in the cable will be connected to one contact terminal in the connector. A further object isto provide a preloaded multi-contact electrical connector to which conductors can be connected by means of solderless connections. A further object is to provide a pre-loaded electrical connector containing removable contact terminals which can be replaced by simple manipulative operations. A still further object is to provide a low cost connector which can be manufactured from inexpensive plastic materialswithout sacrifice of strength or durability.

These and other objects of the invention are achieved in a preferred embodiment thereof which is briefly described in the foregoing abstract, which is described in detail below, and which is shown in the accompanying drawing in which:

FIG. i is a perspective view of a connector assembly in accordance with a preferred embodiment of the invention comprising two connector parts, the parts being shown as coupled to each other in this figure.

FIG. 2 is a perspective view showing the two connector parts separated from each other and showing the connector housing as exploded from its shroud or cover.

FIG. 3 is a sectional view taken along the lines 33 of FIG. 2.

FIG. 4 is an axial sectional view showing the forward ends of the two parts of the connector assembly of FIG. 1 in alignment with each other preparatory to their being coupled to each other.

FIG. 5 is a view similar to FIG. 4 but showing the partscoupled to each other.

FIG. 6 is a fragmentary sectional view showing a rearward portion of the connector housing and the rearward. portion of a contact terminal and illustrating a position of a wire which is about to be connected to the contact terminal. 1

FIGS; 7 and 8 are views similar to FIG. 6 but illustrating the successive stages of the insertion of the wire into the wire receiving slots of the terminal.

' FIG. 9 is a sectional perspective view showing the lefthand end portion of a connector receptacle part in accordance with the-invention and illustrating details of the contact receiving cavities of the receptacle.

FIG. I0 is a top plan view of a portion of the receptacle part of the connector assembly.

FIG. 11 is a sectional view taken along the lines ll-11 of FIG. 10.

FIG. 12 is a perspective view of one form of wire trimming and inserting tool for inserting a plurality of wires into the connecting portions of terminals contained in a connector in accordance with the embodiments of FIG. 1-11, this view showing the positions of the parts while the wires are being located inpositioning or holding jigs of the tool.

FIG. 13 is a frontal view, partially in section, of the tool of FIG. 12, the righthand portion of this drawing showing the positions of the parts at the time the wires are being positioned in the holding jigs and the lefthand portion of the drawing showing the positions of the parts-immediately prior to trimming of the wires and insertion of the wires into the terminals.

FIG. 14 is a fragmentary side view looking in the direction of the lines 14-14 of FIG. 13.

FIG. 15 is a fragmentary plan view showing one of the wire holding jigs and showing a wire locating plate mounted adjacent to the jig.

FIG. 16 is a view taken along the lines 16-16 of FIG.

FIG. 17 is a fragmentary perspective view showing one of the barrier pins of the positioning jigs.

FIG. 18 is a view taken along the lines 18-'18 of FIG. 13, it should be noted, however, that the parts on both sides of thecenter line of the tool are in the positions they assume immediately prior to trimming of the wires and insertion of the wires into the connecting portions of the terminals.

FIG. 19 is a view similar to FIG. 18 but showing the position of the parts after trimming of the wires has taken'place and immediately prior to insertion of the wires into the connecting portions of the terminal.

FIG. 20 is a plan view of a wire locating guide, shown in FIG. 15.

FIG. 21 is a perspective view of a modified form of wire trimming and inserting apparatus in accordance with the invention.

Referring first to FIGS. 1 and 2, an electrical connector assembly 2 in accordance with the invention comprises a connector receptacle part 4 and a connector plug part 6. As will be explained below, both of these connector parts contain a plurality of contact terminals which are electrically and mechanically connected to individual conductors or wires contained in cables 8, 10. When the connector parts 4, 6 are coupled to each other as shown in FIG. 1, the conductors in the cables will then be connected to each other. 1

The plug and receptacle connectors are in some re spects identical to each other and in other respects substantially similar to each other so that a description of one connector will, in a large measure, suffice for both. Accordingly, only the receptacle part of the connector assembly is described in detail below and the same reference numerals, differentiated by prime marks, will be 4 are inverted relative radially outwardly adjacent to the rearward side or face 20. This flange is enlarged at the ends of the housing as shown at 26 and openings 28 are provided which are adapted to receive fastener means as indicated at 30, 32 to lock the two parts of the connector assembly to each other.

A trough-like recess 34 extends transversely across the mating face 22 of the housing and has an inner wall 36, sidewalls 37, andend walls 41. A transversely extending rib 38 projects rearwardly from their rearward side 20 and is enlarged adjacent to the rearward'side to form a stepped structure defining laterally facing surfaces 66.

A plurality of contact receiving cavities, which are generally indicated at 44, extend through the housing from the upper and lower surfaces 40, 42 (as viewed in FIG. 4) of the rib 38 and open into inner wall 36 of the trough-like recess 34. These cavities are arranged in two parallel rows and are identical to each other although the cavities of the lower row as viewed in FIG. to the cavities of the upper row in FIG. 4. 1

Each cavity contains apre-loaded electrical contact terminal 46 comprising a rearward wire connecting section 48, a shank portion'52, and a contact portion 56. The wire connecting section 48 is generally U- shaped and has an opening 50 extending into the bight of the U."This opening communicates with slots 51 in each leg of the ,U which have a width somewhat less than the diameter of the conducting core of a wire to which the terminal is to be connected. It will be apparfected by forcing the wire downwardly through the used to denote corresponding structural elements of the two parts. The structural differences between the plug and receptacle will also be specifically pointed out. v I

Referring now to-FIGS. 2, 4, 9 and 10, the receptacle part of the connector assembly comprises a housing 16 of suitable plastic material and a cover or. shroud 18 which is removably secured to the rearward or conductor receiving side of the housing. The housing'has a mating side or face 22 and a flange 24 which extends opening 50 and into the slots 51. Electrical connections of this general type are more fully' disclosed and claimed in application Ser. No. 805,160, now U.'S. Pat. No. 3,617,983, and need not be described in detail here. It should be'mentioned at this point, however, that a plurality of wires can be connected to'a like plurality' of terminals in a connector in accordance with the invention by'means of suitable tooling of the generaltype described below and claimed in copending application'Se'r. No. 147,578. I

The flat rectangular shank portion 52 extends forwardly from the lefthand leg ofthewire connecting portion as viewed in FIG.,9 and merges with the relatively narrow transition section 54 which isinclined upwardly as shown in FIG. 4 relative to the plane of shank portion'52.'The transition section54 in turn merges with the contact portion 56, the width of which is the same as thatof the transition section 54, this contact portion being adapted to engage a contact portion of a complementary terminal-in the connector plug part 6. The end portion of the terminal-is inclined upwardly as shown at 58 and a laterally inwardly bent ear 60 is pro vided on one side of the tip 58 of the terminal. Terminals of the type shown can be manufactured by stamp ing and forming'methods from any suitable conductive 42 by a distance which is greater than the height of the 7 wire connecting portions 48 of the terminals so that these wire connecting portions are electrically segrated from each other. The portions of the barrier ribs which are adjacent to the rib section 39 are of reduced height as shown at 64. The end barriers 68 are relatively thicker than the other barriers as will be apparent from FIGS. 2 and 9 and are slightly higher.

Referring now to FIG. 9, an individual cavity which extends through the housing from the upper surface 40 of the rib 38 will be described in specific detail. As noted above, the lower row of cavities are inverted relative to the upper row and the terms used to describe the cavity of the upper row shown in FIG. 9 such as roof" and floor must be interpreted in this light.

The floor 70 of the cavity merges with the surface 40 of the rib 38 and extends uninteruptedly through the housing to the inner wall 36 of the trough-like recess. The opposed sidewalls'72 of the cavity are spaced apart somewhat less than the width of the floor 70 so that the cavity isin the form of an inverted T. The roof or top wall 78 of each cavity of the upper row slopes upwardly so that it can perform a camming function described below and the height of each cavity therefore increases from the front of the cavity, at the inner wall 36, to the rearward end of the cavity. The downwardly facing ledge 75, on the upper surface of the wide lower por' tion of the cavity extends rearwardly adjacent to the rearward side of the housing and then slopes upwardly as shown at 76, the slope of this ledge being substantially equal to the slope angle of the roof 78. The nar-' row portions of the sidewalls extend externally of the cavity as shown at 74 and form ears on the sides of the barrier 62. The opposite sides of the cavities are mirror images of each other and the cavities are symmetrical about the axes of their T-shaped cross sections.

When an individual terminal is to be inserted into a cavity, it is positioned as shown in FIG. 9 in alignment with the cavity and moved leftwardly-until the leading end 58 of the terminal engages the top wall 78. The leading end will then be cammed downwardly as insertion proceeds so that when the contact portion 56 has been inserted for a substantial distance and the shoulders 53 on the leading end of shank 52 approach the sidewall extensions 74, these shoulders will be between the extensions 74 and the surface 40. The wider shank portion 52 of the terminal will thus be guided into the wider lower section of the cavity. After the terminal has been fully inserted, the wide shank portion 52 is captured in the wide portion of the cavity as best shown in FIG. ll and the contact portion extends into the trough-like recess 34.

The sidewalls 37 of recess34 are provided with low barrier ribs 80 between adjacent cavities and relatively deeper recesses 82 extend inwardly from the mating face. The inner ends of therecesses 82 slope obliquely rearwardly and the recesses are adapted to receive the ears 60 of the terminals to lock them in place as illustrated best in FIG. 9.

As shown in FIG. 4, the plug part 6 of the connector differs from the receptacle in that it has projecting plug rib 34' rather than a recess 34, this rib being dimensioned to be received in the recess. Also, a recess or cavity is provided in surrounding relationship to the plug rib 34 to receive the sidewalls and end walls of the receptacle housing. The contact terminals which are used in the plug part differ from the contact terminals used in the receptacle in that the tip portions 58 of the plug terminals are bent in the opposite direction from the tip portions 58 of the receptacle terminals. The contact surfaces 56' of the plug terminals are thus spaced slightly from the surfaces of the rib 34' and are resiliently flexed when the two parts of the connector are coupled to each other to provide contact pressure at the electrical interface.

As will be explained below, all of the conductors in a multi-conductor cable can be connected to all of the con-tact terminals in a connector parts in a mass insertion operation by the use of a suitably designed tool. At this stage it should be explained generally that forming of the electrical and mechanical connections merely involves the forcing of an in-dividual conductor downwardly through the relatively wide opening 50 at the rearward end of the terminal and into the slots 51 in the spaced apart sides of the wire connecting portion of the terminal, the width of these slots being such that the insulation of the wire will be penetrated and electrical contact will be established with a conducting core thereof. Preferably, the rearward slot is somewhat wider than the forward slot to provide mechanical strain relief for the electrical connection in the forward slot. The essence of the wire in-sertion operation is illustrated in FIGS. 6-3 from which it can be seen that the wire need merely be aligned with the opening 50 and forced downwardly by a suitable insertion toolhaving legs 88, 89 and a center pushing member 91 which engage the wire on each side of the portion 48 of the terminal. As the wire is forced downwardly, the projecting end portion 90 of the wire is severed by the cooperable action of the lefthand leg of the insertion tool 8% and the corner 86 of the rib portion 39 of the housing. If the trimming operation is carried out in the manner shown FIG. 6%, the housing should be made of relatively firm material or a cutting edge of suitable metal may be mounted on the corner 36.

A variety of insulating materials may be used for the manufacture of the housing 16. The material should be a relatively firm insulator having suitable dielectric properties and having suitable resistance to the environment in which the connector will be used. A suitable thermo plastic such as a glass filled nylon can be used since no heat is required to connect the individual conductors M to the contact terminals mounted in the housing. In previously known and used pre-loaded connectors, in which the individual wires are soldered to the terminals, it is necessary to use an insulating material for the housing which is capable of withstanding the heat required for the soldering operation such as dyallyl phthalate. These-materials are in general relatively more expensive than a glass filled nylon so that connec' tors in accordance with the invention can be produced at a lower cost than previously known pre-loaded electrical connectors.

The shield or cover 18 may also be of a suitable plastic such as glass filled nylon or can be a formed metal part if a higher degree of strength is desired than that available in plastic materials. The disclosed form of shield 18 is generally U-shaped in cross section throughout most of its length and has sidewalls 92 adapted to abutt the rearward side of the connector housing. The marginal edge portions 94 of the sidewalls are relatively thicker or heavier than the adjacent portion and are provided with grooves 96 which conform to the end barriers 68 on the rearward side of the housing. The shield is thus applied to the housing by merely aligning the grooves 96 with the barriers and sliding the shield axially until the ear 100 on the lefthand end of the shield is in alignment with the leftwardly extending portion of the flange 26 of the housing. The shield is then clamped in place by means of the screw 30 which is threaded through the bushing 28 in the housing flange.

Shield 18 has a semi-circular wire support 102 extending from its righthand end as viewed in FIG. 2 which is used in cooperation with a semi-circular spacer 104. The end portion of the cable 8 is located against the surface of the support 102 and the spacer is placed against the opposite side of the cable. The spacer and support have laterally extending bosses 109 which extend through slots in a conventional cable clamp 106. The cable clamp has radially extending ears which are adapted to receive fastening means 110. When the cable clamp is tightened firmly on the spacer, the spacer and support are urged firmly against the sheath of the cable 8 to clamp the shield securely to the cable and to prevent the transmission of any tensil forces to the conductors extending to the terminals in the connector.

As previously noted, the disclosed embodiment of the invention partcularly adapted for use in the communications industry and can be dimensioned to be mateable with a presently used multi-contact connector having solder type contact terminals therein. Other embodiments of the invention can be designed for other uses and varying numbers of contact terminals can be loaded in the connector.

In all embodiments of the invention, a distinct advantage which is achieved is that the terminals can be preloaded in the connector at a factory and the connector applies to a conductor or conductors at the side of a wiring operation. A particularadvantage of a disclosed embodiment is that multi-conduetor cables of the type shown at 8 and 10 can be cut from a substantially endless cable supply and applied to the .ends of the connectors by an installer at the site of a telephone wiring operation. In accordance with prior practice in the telephone industry, it was common practice to manufacture multi-conductor cables in standard lengths and to solder the conductors of the cables to connectors in a factory.

THE TRlMMlNG AND lNSERTlON TOOL FIGS. 12-20 show a preferred form of apparatus for trimming the ends of a plurality of conductors and inserting the trimmed ends into terminals contained in one of the connector parts 4, 6 in a single operation. At the outset, it should be explained that in the communications industry, conductors are utilized as twisted pairs as shown at 15 in FIG. 12. Every cable, as with the cable 8 shown, will contain a plurality of twisted pairs of conductors. When two cable ends are connected to each other, individual pairs 'in the one cable end are connected to the individual pairs in the other cable end. Furthermore, the individual pairs are identified by color coding schemes as will be described below so that they may be quickly located. It follows that when the conductors of the cable 8 are connected to the terminals of the connector part, theycannot be indiscriminately connected to the terminals but must be connected to predetermined connectors so that predetermined pairs of conductors in the conductors of one cable end will be electrically connected to predetermined pairs of conductors in the other cable end.

As shown in FIGS. 12 and 13, the disclosed form of tool comprises a frame block 122 having a recess 124 extending therethrough and an upwardly extending arm 126 having a forwardly facing surface 128. The block is also notched as shown at 130 in front of the arm 126 to define a horizontal surface 132 which functions as a locating surface for one side of the rearwardly extending rib of the connector housing The housing is positioned as shown in FIG. 12 with its mating face opposed to the surface 128 of the arm 126 and is held in position by steel spring plates 134, 134 which are secured by fasteners 136 to the'sides of the arm 126 and which extend beyond the rearward face of the connector housing. The arms 126 and the plates 134, 134 thus constitute a jig which precisely positions the housing on the apparatus.

As will be apparent from FIG. 12, the apparatus is substantially symmetrical about its vertical center line so that a description of the structural parts on the righthand side of the center line will suffice for the corresponding structural parts of the lefthand side of the center line. Accordingly, the righthand side of the apparatus will be described in detail and the same reference numerals, differentiated by prime marks, will be used 'to denote corresponding structural elements on the lefthand side of the center line.

The following brief description of the principle of operation of the trimming and insertion tool will facilitate the understanding of the detailed structural elements thereof presented below. When the conductors of the cable 8 are to be connected to the terminals in a connector housing, the housing is positioned as shown in FIG. 12 and one pair 15 of conductors is selected from the pairs of the cable. The end portions of the wires of the selected pair are separated and one wire is positioned in each of two wire holding jigs 140, 140' at predetermined locations on the jigs. The operation is repeated for every pair 15 in the cable, the one wire of the pair always being positionedat a location in the jig 140 which corresponds to the location in the jig 140' in which the other wire is positioned. After the wires have all been positioned in the holding jigs 140, 140', the jigs are swung upwardly to locate the wires adjacent to the terminals in the connector housing. The handles 192, 192' are then swung through counter clockwise arcs respectively as viewed in FIG. 12 so that trimming and insertion tools 188, 188 which are mounted on these handles will trim the ends of the wires and insert the trimmed end wires into the terminals in the connector housing.

The wire holding jig 140 on the righthand side of the apparatus is mounted on a support arm v142 which has a central elongated slot 143 therein through which the inserting and trimming tool 188 may move, see FIG.

16. The inner end of the arm 142, that is, the end adjacent to the frame 122, has an integral plate-like section 144 from which a laterally extending ear 146 projects. This ear is pivotally mounted on a pivot pin 148 which extends through the recess or opening 124 in frame 122. Pivotal movement of the arm 142 in a clockwise direction is limited by a pin 150 which extends inwardly from the front side of the recess 124, see FIG. 14. A similar pin 150' is located on the rearward side of the recess to limit the pivotal movement of the arm 142' in a counter clockwise direction. The arms are thus shown in their open or outward position in FIG. 12. In FIG. 13, the arm 142 is shown in its open position while the arm 142 is shown in its closed position.

The wire holding jig means comprises a pair of plastic strips 152, I53 mounted on the upper surface of arm 142 on each side of the slot 143. These strips 152, 153 have depending flanges 154 on their sides which are adjacent to the sides of the arm 142 and these lips project laterally over the edges of the arms as shown best in FIG. 18. The strips are held in place by means of thin clamping plates 156 disposed against the flanges or lips and fasteners 158 which extend through the clamping plates and into the side edges of the arm 142. An L- shaped clamping block 159 which is mounted on the outer end of the arm 142 by means of a screw 161 also supports and assists in the location of the strips 152, 153 on the upper surface of the arm, see FIG. 13.

The strip 152 has a plurality of upwardly extending barriers 162 which are spaced apart by a distance slightly less than the diameter of the conductors 14. Thespacing between the barriers, and the number of barriers, is such that when the arm is in the closed position, as shown on the left in FIG. 13, the barriers 162 will be in alignment with the barrier plates 62 on the rearward side of the connector housing, and the spaces between the barriers will be in alignment with the connecting portions of the terminals in the housing.

The base strip 153 isalso provided with barrier members 164 having vertically extending ribs 166 on their opposed sides, see FIG. 17. The number of integral barriers 164 on the strip 153 is however, only one-half of that of the number of cavities on each row of the connector. U-shaped separator pins 168 are provided between each adjacent pair of barriers 164 so that each adjacent pair of barriers and the separator pin contained therebetween defines twoslots for reception of a wire or wires as shown in FIG. 15.

The individual wires are thus located in the wire holding jig means by moving them downwardly between the barriers extending from the plastic strips 152, 153 and the wires will be held during subsequent trimming and insertion operation as will be explained below.

It will be apparent that when the pairs of conductors are. connected to the terminals in the connector housing, it is necessary to secure the two conductors of each pair to predetermined terminals in the connector housing. Proper location ofthe conductors is facilitated by means of a locating block 180, described in detail below, which is supported on a steel tray I72 mounted beside the arm 142. This tray has an extension 174 on its side which extends past the underside of the arm and which is secured to the underside of the arm by screws 176. The wire locating block 180 is contained between upstanding flanges 178 on the ends of the tray, the guide block being provided with a suitable trunnions Iii 132 which are received in openings in the flanges 178.

After all of the conductors in the cable have been positioned in the wire holding jigs I40, both of the arms are swung arcuately against the sides of the upstanding arm 126 of the frame member. In order to precisely position the mounting arms 142 with respect to a connector housing held between the clamping plates 134, 134' locating pins 184, 184' are provided in the blocks 159, 159' on the ends of the support arms 142, 142'.These locating pins are adapted to enter notches 186, 186' on the upper edges of the plates 134, 134 as shown in FIG. 13.

The wire trimming and inserting block 188 which is mounted on the righthand side of the apparatus, comprises a plate-like member which is secured by suitable fasteners to a lever 190 having an integral offset handle 192. The inner end of the lever 190 has a laterally ex tending mounting portion 194 which is pivotally mounted on the previously identified pin 158. The block 188 has a groove extending along its upper edge which defines two spaced apart flanges 198, 200, see FIG. 16. The flange 200 extends somewhat beyond the flange 198 and is located on the side of the plate 188 which will move past the plastic locating member 152. Inserting pins 292 are mounted in the groove 196 at spaced apart locations corresponding to the spacingbetween adjacent contact terminals in the connector. The plate 188 is so located on the lever 190 that it will pass through the previously identified slot 143 in the support arm 142 as illustrated in FIG. 16. As also shown in this figure, the sides of opening 143 diverge but the opening at its upper end as viewed in this figure has a width which is substantially equal to the thickness of the plate 18%. By virtue of this arrangement, the plate will be precisely located and guided during the very critical insertion operation.

The conductors of the cable 8 are connected to thr. terminals in a connector housing as follows: The operator first positions the parts of the tools as shown in FIG. 12 and selects a pair 15 from the plurality of pairs in the cable 8. He then locates one wire of the pair in the wire locating jig I40 and the other wire of the pair in the wire locating jig 140'. It is advantageous to locate the first wires in the first pair in the innermost positions on the locating jigs. He then selects a second pair and locates the wires of this second pair in the adjacent positions in the jigs, the final pairs of wires of the cable being located in the outermost positions in the jigs. Ultimately then, the first pair selected will be connected to the terminals in the lower and of the housing 16 on the opposite sides of the central rib which projects from the rearward side of the housing.

After all of the wires have been positioned in the loeating jigs, the jigs are swung inwardly until the pins 184 enter the notches 1%, 186'. The handles I92, 192' are then swung arcuately upwardly in opposite directions to cause the plate members 1%, 18b, to pass through the openings in the support arms 142, 142'. Referring specifically to FIGS. 18 and 19, the flanges 26W, 200' on these arms will engage the wires and push them towards the terminals contained in the connector. As the flanges 19$, I98 move past the edges of the clamping plates 138, 138', the end portions of the wires will be sheared as illustrated in FIG. 19 and the wires will be pushed inwardly towards each other and inserted into the terminals by the inserting pins 202, 202'. During insertion, the portions of the wires on each side of the inserting pins will be pushed toward the opposed surfaces of the rib of the connector housing so that the wires will be securely seated in the terminals at the conclusion of the inserting operation.

The wire guide block, FIG. 20, may be provided with any desired indicia which will assist the technician loeating the conductors in any predetermined locations in the connector. The embodiment shown is particularly intended for use with a 25-pair cable of the type used in communication industry and having a specific color coding scheme for identifying different pairs of wires. In accordance with coding conventional practice, each wire has a predominant background color, and a specifically identifying stripe superimposed on the background color. The two wires of a pair will have the same colors but their background and stripe colors will be reversed; thus a pair may be composed of one wire having a white background on which a blue strip is superimposed and the other wire will have a blue background on which a white stripe is superimposed. The surface of the guide block 180 is provided on one side with colored blocks and narrow color bands of different colors which correspond to the color coding scheme. The guide block 180 thus has a wide color bands on its upper side and has five differently colored narrow bands immediately beneath each wide band. The guide blocks mounted on the two arms 142, 142 are oriented such that the same colors are located as corresponding or the same distances from the center line of the tool. Guide blocks of the type shown in FIG. 1 can be manufactured with the same markings on both sides, but reversed end-for-end and by virtue of the trunnion mountings of the guide blocks, they can be reversed so that the technician can adapt the blocks to any particular wiring sequence he wishes to follow.

FIG. 21 shows a modification in which the frame member has a base 204 from which a pair of spaced apart blocks 206, 208 extend. The pivot pin on which the arms and levers are mounted extends between these blocks as shown and the rearward block is provided with a recess 210 in which an arm 212 is pivoted. This arm can be swung rearwardly as shown from an upright position to a horizontal position so that the technician who is performing the task of positioning the wires in the wire holding jigs will have a less cluttered work space. After the wires have been located in the wire holding jigs, the arm 212 is swung to an upright position and the general organization of the tool and operation thereof will be as explained above.

It will be apparent from the foregoing description that connectors and tools as disclosed therein offer substantial advantages where multi-conductor cables are being used in wiring installations or installing new communications wiring. A multi-conductor cable of the required length need merely be severed from an endless length of cable and the conductors thereof positioned in the wire holding jigs are described. The conductors can then be connected to the individual terminals in a pre-loaded connector to produce a finished cable of the precise length for the particular wiring requirement.

Alternative embodiments of tools of the type disclosed will be apparent to those skilled in the art. If desired, and where the connector has only one row of contact terminals therein, the tool need be provided with only one wire positioning jig and inserting member. Tools in accordance with the invention can furthermore be designed to insert relatively large numbers of wires with relative ease, particularly where the wires are small size. The disclosed type of tool is adapted to simultaneously insert all of the conductors of a 25-pair cable (50 individual conductors) into the terminals of a 50-position pre-loaded connector.

Changes in construction will occur to those skilled in the art and various apparently different modifications and embodiments may be made without departing from the scope of the invention. The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only.

What is claimed is: 1. A multi-contact electrical connector which is adapted to be applied to the ends of a plurality of electrical conductors, said connector comprising:

an insulating housing having a conductor receiving side and a mating side, a plurality of contact receiving cavities extending from said conductor receiving side to said mating side, said cavities being arranged in a row on spaced-apart parallel axes,

electrical contact terminals in said cavities, each of said contact terminals having contact means at its forward end proximate to said mating side and having a plate-like portion at its rearward end,

said plate-like portions being arranged in a common plane which is spaced from, and parallel to, one surface of said conductor receiving side of said housing, each of said plate-like portions having a free end and having a wire-receiving slot extending therein from said free end and cover means removably mounted on said housing,

said cover means extending at least partially over said conductor receiving side and having internal surface portions which are adjacent to said platelike portions of said terminals whereby, upon removal of said cover means and positioning sa' 1 conductors in a plane which extends transversely oi said common plane with the axes of said conductors in alignment with said slots, and upon movement of said conductors laterally of their axes into said slots, said conductors are electrically and mechanically connected to said contact terminal, and upon replacement of said cover means on said housing, said cover means will maintain said conductors in said slots.

2. A multi-contact electrical connector as set forth in claim 1 wherein said cover means has a groove on its internal surface, said plate-like portions being received in said groove, the sides of said groove constituting said internal surface portions.

3. A multi-contact connector as set forth in claim 1 including a rib extend-ing from said conductor receiving side of said housing in supporting relationship to said rearward ends of said terminals.

4. A multi-contact electrical connector as set forth in claim 1 wherein said housing has a second row of contact receiving cavities, said second row being parallel to, and spaced from said first row, electrical contact terminals in said second row of cavities, said contact terminals in said second row being reversely oriented with respect to said first row.

5. A multi-contact electrical connector as set forth in claim 4 including a rib extending from said conductor receiving side of said housing between said rows of terminals.

6. A multi-contact electrical connector adapted to be applied to the end of a cable having a plurality of pairs of electrical conductors and adapted to be mated with a complementary connector on the end of a similar cable having a like number of pairs of electrical conductors therein, said connector comprising:

an insulating housing having a plurality of contact receiving cavities extending therethrough from the rearward side to the mating side thereof, said cavities being arranged in two parallel rows extending between the ends of said housing, rib means integral with said housing on said rearward side, said rib means extending medially on said rearward side between said ends of said housing and between said rows, said rib means defining surfaces which face laterally in opposite directions, said cavities opening onto said surfaces, separator fins extending normally from said surfaces,

said separator fins being between said cavities, an electrical contact terminal in each of said cavities, each of said terminals having a contact portion at the forward end thereof proximate to said forward end of said housing and a wire connecting portion on its rearward end, said wire connecting portion extending over said surface and laterally between adjacent ones of said separator fins, said wire connecting portion of each of said terminals having a wire-receiving slot extending inwardly therein and laterally towards the axis of said housing whereby said conductors of said cable can be connected to said terminals by forcing said conductors into said slots.

7. A multi-contact electrical connector as set forth in claim 6 wherein said wire connecting portion of each of said terminals comprises a generally U-shaped formation on the end of said terminal, the bight portion of said U-shaped formation being spaced from the one of said surfaces on which the terminal is located, said U- shaped formation of each terminal being spaced from said rearward side of said housing. 7

8. A multi-contact electrical connector as set forth in claim 7including cover means removably secured to said rearward side of said housing, said cover means having a groove therein, said U-shaped formations of said contact terminals being received in said groove whereby upon application of said connector to a cable, said cover means serves to maintain the conductors of said cable in said wire-receiving slots.

9. An electrical device which is adapted to have a plurality of electrical conductors connected thereto, said device comprising:

an insulating housing, said housing having a conductor-receiving side,

a plurality of metallic terminal devices, each of said devices having at least one plate-like portion, said plate-like portions being arranged in side-by-side relationship in a common plane, said plane being substantially parallel to, and spaced from, said conductor-receiving side of said housing,

each of said plate-like portions having a shank portion extending from one side thereof towards, and into, said conductor receiving side,

each of said plate-like portions having a wirereceiving slot extending into the side thereof which is opposite to said one side whereby,

a conductor can be connected to each of said terminal devices by locating said conductor with its axis extending transversely of said common plane and in alignment with the wire-receiving slot of said terminal device, and moving said conductor laterally of its axis and into said slot.

10. A device as set forth in claim 9 including cover means removably mounted on said conductor receiving side of said housing, said cover means having recess means therein, said plate-like portions extending into said recess means, and said cover means having portions extending between said common plane and said conductor receiving side whereby said cover means maintains conductors in said wire-receiving slots.

11. An electrical device as set forth in claim 10, said recess means comprising a groove in said cover means.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2970288 *Jun 19, 1956Jan 31, 1961Hubbell Inc HarveyTop wired electrical cap and connector
US3189863 *Jun 6, 1963Jun 15, 1965Minnesota Mining & MfgConnector
US3417362 *Jun 20, 1967Dec 17, 1968Amp IncElectrical connector and electrical terminals therefor
US3514746 *Jul 17, 1968May 26, 1970Amp IncElectrical connectors for terminating leads of micromodular components or the like
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3864010 *Jan 30, 1973Feb 4, 1975Amp IncPre-loaded electrical connecting device
US3878603 *Aug 21, 1973Apr 22, 1975Leo Anker JensenMethod and apparatus for the solderless splicing of multi-lead cables
US3920301 *Nov 30, 1973Nov 18, 1975Amp IncElectrical connectors for flat cable and methods of making same
US3926498 *Sep 14, 1972Dec 16, 1975Bunker RamoElectrical connector and insulation-piercing contact member
US3937549 *Jun 18, 1974Feb 10, 1976Amp IncorporatedStrimp
US3963300 *Oct 11, 1974Jun 15, 1976Amp IncorporatedMulti-conductor tap-connector
US3988707 *Nov 14, 1974Oct 26, 1976Amp IncorporatedSwing out load coil assembly
US4007534 *Jan 14, 1976Feb 15, 1977Amp IncorporatedMulti-conductor half tap
US4009922 *Nov 10, 1975Mar 1, 1977Minnesota Mining And Manufacturing CompanyConnector
US4026625 *Nov 10, 1975May 31, 1977Minnesota Mining And Manufacturing CompanyUniversal connector
US4034470 *Mar 15, 1976Jul 12, 1977Amp IncorporatedMethod for fabricating multi-conductor tap connector
US4036547 *Jul 27, 1976Jul 19, 1977Bunker Ramo CorporationElectrical connector having an elongate rear slot communicating with conductor receiving channels via conductor receiving and holding notches
US4074929 *Aug 29, 1973Feb 21, 1978Amp IncorporatedCable card edge connector
US4116525 *Jan 27, 1977Sep 26, 1978Automatic Equipment Development CorporationElectrical connector assembly
US4118091 *Oct 7, 1976Oct 3, 1978Trw Inc.Electrical connection assemblies
US4147399 *Feb 1, 1978Apr 3, 1979Amp IncorporatedFlat cable connector assembly
US4221445 *Feb 2, 1978Sep 9, 1980Amp IncorporatedCross connect distribution system and apparatus
US4264117 *Dec 21, 1979Apr 28, 1981Amp IncorporatedSocket for wedge base incandescent lamp
US4327958 *May 5, 1980May 4, 1982Amp IncorporatedConnector jack
US4352538 *May 19, 1980Oct 5, 1982General Motors CorporationLow profile connector for printed circuit board
US4392701 *Nov 9, 1981Jul 12, 1983Amp IncorporatedTap connector assembly
US4398780 *Sep 15, 1982Aug 16, 1983Amp IncorporatedShielded electrical connector
US4469387 *Aug 23, 1982Sep 4, 1984Amp IncorporatedPrinted circuit board connector
US4508410 *Nov 17, 1982Apr 2, 1985Allied CorporationElectrical termination system and connector member
US4564258 *May 18, 1983Jan 14, 1986General Motors CorporationPreloaded electrical connector
US4653830 *Oct 23, 1985Mar 31, 1987Pegram Warren JElectrical connector and method
US4721473 *Nov 17, 1986Jan 26, 1988Amp IncorporatedRetention feature for printed circuit board mounted connectors
US4744774 *Jan 20, 1987May 17, 1988Amp IncorporatedElectrical connector having conductive sheath-clamping means
US4744775 *Feb 12, 1987May 17, 1988Amp IncorporatedElectrical tap connector assembly
US4795356 *Mar 10, 1988Jan 3, 1989Amp IncorporatedElectrical tap connector assembly
US4995828 *Apr 12, 1990Feb 26, 1991Itt CorporationConnector for paired wire cable
US5004430 *Nov 17, 1986Apr 2, 1991Amp IncorporatedPanel mount electrical connector
US5079827 *Mar 26, 1991Jan 14, 1992Amp IncorporatedMass terminating wires to electrical connectors
US5099570 *Jun 27, 1991Mar 31, 1992Amp IncorporatedSelf aligning inserter
US5127152 *Mar 26, 1991Jul 7, 1992Amp IncorporatedWiring tool having wire combs
US5169330 *Jun 5, 1992Dec 8, 1992Amp IncorporatedUniversal contact system and test fixture
US5201883 *Nov 27, 1991Apr 13, 1993Kel CorporationMethod of making in-molded plug connector
US5219294 *Feb 13, 1992Jun 15, 1993Amp IncorporatedElectrical docking connector
US5273459 *Jan 25, 1993Dec 28, 1993The Whitaker CorporationConnector feature for improved contact wiping
US5295843 *Jan 19, 1993Mar 22, 1994The Whitaker CorporationElectrical connector for power and signal contacts
US5342216 *Aug 10, 1993Aug 30, 1994The Whitaker CorporationJackscrew mechanism
US5383794 *Jul 16, 1993Jan 24, 1995The Whitaker CorporationLatch actuator for a connector
US5399106 *Jan 21, 1994Mar 21, 1995The Whitaker CorporationHigh performance electrical connector
US5409400 *May 6, 1994Apr 25, 1995The Whitaker CorporationShielding for an electrical connector
US5431584 *Jun 17, 1994Jul 11, 1995The Whitaker CorporationElectrical connector with reduced crosstalk
US5518421 *Jan 26, 1993May 21, 1996The Whitaker CorporationTwo piece shell for a connector
US5562499 *Jan 30, 1995Oct 8, 1996Stanley E. GatelyMultiposition electrical connector filter adapter
US5567168 *Dec 22, 1992Oct 22, 1996The Whitaker CorporationElectrical connector having electrostatic discharge protection
US5567169 *Nov 17, 1992Oct 22, 1996The Whitaker CorporationElectrostatic discharge conductor to shell continuity
US5688129 *Nov 21, 1995Nov 18, 1997Flaherty; Roger J.Electrical connector with lead positioning comb
US5722861 *Feb 28, 1996Mar 3, 1998Molex IncorporatedElectrical connector with terminals of varying lengths
US5761805 *Mar 28, 1996Jun 9, 1998The Whitaker CorporationMethod of making a high density electrical connector
US5766033 *Mar 28, 1996Jun 16, 1998The Whitaker CorporationHigh density electrical connector
US5785557 *Feb 8, 1993Jul 28, 1998The Whitaker CorporationElectrical connector with protection for electrical contacts
US5827092 *Jun 25, 1997Oct 27, 1998The Whitaker CorporationFiltered electrical adapter and connector
US5944561 *Jul 23, 1997Aug 31, 1999The Whitaker CorporationElectrical connector and cover assembly
US6000955 *Dec 9, 1998Dec 14, 1999Gabriel Technologies, Inc.Multiple terminal edge connector
US6168458 *Sep 30, 1998Jan 2, 2001Steelcase Inc.Communications cabling system
US7086888 *Aug 3, 2004Aug 8, 2006Hon Hai Precision Ind. Co., Ltd.Serial ATA cable assembly with small size
US7361059Jul 26, 2004Apr 22, 2008Sandisk Secure Content Solutions, IncElectrical connector
US7500861Mar 3, 2008Mar 10, 2009Sandisk Secure Content Solutions, IncElectrical connector
US7727025 *Oct 9, 2007Jun 1, 2010Tyco Electronics CorporationModular electrical connector with enhanced plug interface
US8414336 *May 17, 2011Apr 9, 2013Alltop Electronics (Suzhou) Co., LtdCable end connector
US8461465Nov 16, 2012Jun 11, 2013Apple Inc.Conductive frame for an electrical connector
US8517751 *Dec 19, 2012Aug 27, 2013Apple Inc.Dual orientation connector with external contacts and conductive frame
US8517766Nov 16, 2012Aug 27, 2013Apple Inc.Plug connector with external contacts
US8535075 *Jan 10, 2013Sep 17, 2013Apple Inc.Electronic device with circuitry to detect the insertion orientation of a plug connector
US8573995Nov 16, 2012Nov 5, 2013Apple Inc.Dual orientation connector with external contacts and conductive frame
US8647156Feb 6, 2013Feb 11, 2014Apple Inc.Plug connector with external contacts
US8686600Dec 20, 2012Apr 1, 2014Apple Inc.Techniques for configuring contacts of a connector
US8708745Sep 7, 2012Apr 29, 2014Apple Inc.Dual orientation electronic connector
US8777666Sep 7, 2012Jul 15, 2014Apple Inc.Plug connector modules
US8806067Nov 16, 2012Aug 12, 2014Apple Inc.Techniques for configuring contacts of a connector
US8882524Jun 21, 2011Nov 11, 2014Apple Inc.External contact plug connector
US8911260Jun 21, 2011Dec 16, 2014Apple Inc.External contact plug connector
US8926373 *Jan 7, 2011Jan 6, 2015Koninklijke Philips N.V.Male connector, female connector and connector arrangement
US8931962Jun 20, 2011Jan 13, 2015Apple Inc.Dual orientation connector with side contacts
US8998632 *May 27, 2011Apr 7, 2015Apple Inc.Dual orientation connector with external contacts
US20130059482 *Jan 7, 2011Mar 7, 2013Koninklijke Philips Electronics N.V.Male connector, female connector and connector arrangement
US20130217253 *May 27, 2011Aug 22, 2013Apple Inc.Dual orientation connector with external contacts
US20140068933 *Oct 11, 2012Mar 13, 2014Apple Inc.Connectors and methods for manufacturing connectors
USRE31132 *Feb 16, 1977Jan 25, 1983Bunker Ramo CorporationElectrical connector and insulation-piercing contact member
USRE39380Jul 28, 2000Nov 7, 2006The Whitaker CorporationElectrical connector with protection for electrical contacts
USRE45050Sep 14, 2011Jul 29, 2014Apple Inc.Systems and methods for determining the configuration of electronic connections
CN1074592C *Jan 18, 1994Nov 7, 2001惠特克公司Electrical connector for power and signal contacts
CN100474709CJul 26, 2004Apr 1, 2009桑迪士克防护内容解决公司Electrical connector
DE2525641A1 *Jun 9, 1975Jan 2, 1976Amp IncVorrichtung zum gleichzeitigen einsetzen jedes leitungsdrahts von zwei elektrischen leitungsdrahtgruppen in einen schlitz eines einzelnen elektrischen kontakts eines elektrischen verbinders
DE2651214A1 *Nov 10, 1976May 26, 1977Amp IncWerkzeug zum einsetzen von leitungsdraehten in leiteraufnahmeschlitze von elektrischen kontaktgliedern
DE2651525A1 *Nov 9, 1976May 12, 1977Minnesota Mining & MfgSteckverbinder
DE2721748A1 *May 13, 1977Dec 1, 1977Amp IncElektrische anschlussklemme
DE3019686A1 *May 23, 1980Nov 27, 1980Thomas & Betts CorpAnschlussverbindungsstueck fuer flachkabel
DE4034950B4 *Nov 2, 1990Mar 31, 2005Amp Inc.Anschließvorrichtung zum Anschließen von elektrischen Leitungsdrähten
DE10301278A1 *Jan 15, 2003Jul 29, 2004Siemens AgData cable connection device, especially for copper data cable, has contact strips that are aligned parallel to the cable axes, so that individual wires have essentially the same length and signal transmission times
DE10301278B4 *Jan 15, 2003May 19, 2005Siemens AgVorrichtung zur Verbindung von Leitern von Datenkabeln sowie Kabelmuffe mit einer derartigen Vorrichtung
DE29514522U1 *Sep 8, 1995Nov 9, 1995Osi GmbhGehäuse für eine Kabel-Steckverbindereinheit
EP0001885A1 *Sep 29, 1978May 16, 1979AMP INCORPORATED (a New Jersey corporation)Electrical connector assembly including latching means
EP0003435A1 *Jan 26, 1979Aug 8, 1979AMP INCORPORATED (a New Jersey corporation)Electrical connector for establishing connections between a flat flexible cable and a further connector
EP0003650A1 *Jan 26, 1979Aug 22, 1979AMP INCORPORATED (a New Jersey corporation)Electrical plug and a telecommunications distribution assembly comprising such a plug
EP0007711A1 *Jun 29, 1979Feb 6, 1980AMP INCORPORATED (a New Jersey corporation)Apparatus for inserting wires into electrical contacts
EP0021785A1 *Jun 18, 1980Jan 7, 1981AMP INCORPORATED (a New Jersey corporation)Electrical connector assembly with male and female connectors clamped together
EP0032615A2 *Dec 2, 1980Jul 29, 1981AMP INCORPORATED (a New Jersey corporation)Electrical connector
EP0039568A2 *Apr 27, 1981Nov 11, 1981AMP INCORPORATED (a New Jersey corporation)A kit of parts for tapping selected contacts of an electrical connector
EP0189730A1 *Nov 8, 1985Aug 6, 1986KRONE AktiengesellschaftPlug for high plug-in frequency
EP0607920A2 *Jan 18, 1994Jul 27, 1994The Whitaker CorporationElectrical connector for power and signal contacts
EP0668634A2 *Dec 16, 1994Aug 23, 1995The Whitaker CorporationHigh performance electrical connector
EP0724312A2 *Jan 24, 1996Jul 31, 1996The Whitaker CorporationMultiposition electrical connector filter adapter
WO2005013436A1 *Jul 26, 2004Feb 10, 2005Mdrm IncElectrical connector
WO2009142686A2 *Apr 17, 2009Nov 26, 2009Tyco Electronics CorporationHigh density circular interconnect with bayonet action
WO2009142686A3 *Apr 17, 2009Jun 23, 2011Tyco Electronics CorporationHigh density circular interconnect with bayonet action
Classifications
U.S. Classification439/398, 439/493
International ClassificationH01R13/506, H01R43/01, H01R4/24, H01R13/502, H01R13/26, H01R13/58, H01R13/514, H01R13/46, H01R13/595, H01R13/56, H01R24/00, H01R13/02
Cooperative ClassificationH01R13/26, H01R4/2462, H01R43/01, H01R13/595, H01R2107/00, H01R23/02
European ClassificationH01R4/24B6D, H01R23/02, H01R13/26, H01R43/01
Legal Events
DateCodeEventDescription
Jul 2, 1987ASAssignment
Owner name: CANADIAN IMPERIAL BANK OF COMMERCE, NEW YORK AGENC
Free format text: SECURITY INTEREST;ASSIGNOR:AMPHENOL CORPORATION;REEL/FRAME:004879/0030
Effective date: 19870515