US3760984A - Osmotically powered agent dispensing device with filling means - Google Patents

Osmotically powered agent dispensing device with filling means Download PDF

Info

Publication number
US3760984A
US3760984A US00293551A US3760984DA US3760984A US 3760984 A US3760984 A US 3760984A US 00293551 A US00293551 A US 00293551A US 3760984D A US3760984D A US 3760984DA US 3760984 A US3760984 A US 3760984A
Authority
US
United States
Prior art keywords
wall
solute
compartment
agent
dispensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00293551A
Inventor
F Theeuwes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alza Corp
Original Assignee
Alza Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alza Corp filed Critical Alza Corp
Application granted granted Critical
Publication of US3760984A publication Critical patent/US3760984A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0024Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0004Osmotic delivery systems; Sustained release driven by osmosis, thermal energy or gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/005Osmotic agents; Draw solutions

Definitions

  • ABSTRACT A device comprised of a wall formed of a material collapsable in response to mechanical force and surrounding a closed compartment for containing an agent, a dispensing passageway communicates with the compartment and the exterior of the device for dispensing agent therefrom, a filling passageway communicates with the exterior of the device and the compartment for filling the device, a layer of an osmotically effective solute is despoited on the collapsable walls outer surface, said solute capable of exhibiting an osmotic pressure gradient against an external fluid and increasing its volume as fluid diffuses by osmosis into the solute, an outer wall surrounding the layer of solute formed of a material having shape retaining properties, permeable to the fluid and substantially impermeable to solute, and wherein the filling passageway houses a material penetrable to a means for filling the compartment which material self closes on removal of the means to maintain the compartment in closed condition for subsequent collapsing thereof in response to mechanical or hydrostatic force generated by
  • This invention pertains to both a novel and useful device for dispensing a useful agent. More particularly, the invention relates to a dispensing device for the controlled and continuous dispensing of an agent over a prolonged period of time to produce a desired result. Specifically, the invention concerns an osmotic dispenser manufactured with a minimum number of com-' ponents wherein one of the components is a filling port with a means for self-closing the port to maintain the sterility and operability of the device after the device is charged with agent.
  • Osmotic dispensing devices for the delivery of active agent are well known to the prior art. These devices are of assorted designs and generally have a plurality of similar structural components. For example, the devices usually have anexternal wall or housing for containing an internal collapsable chamber for containing an agent.
  • the chamber in the device is surrounded by an osmotically effective solute that is capable of exhibiting a pressure gradient against an extem'al fluid and increasing its volume as external fluid diffuses into the solute to generate a force that is exerted against-the chamber causing it to collapse. As the chamber collapses, it ejects agent through a passageway that lead to the exterior of the device.
  • Still another object of the invention is to provide a novel osmotic dispensing device for dispensing an agent at a controlled rate for a prolonged period of time.
  • Yet still another object of this invention is to provide a novel and useful osmotic dispensing device that is simple in construction, designed with a minimum number of parts, easy to use, and in operation is practical and useful for the controlled, continuous, long-term administration of an agent.
  • Still another object of the invention is to provide an osmotic dispensing device that has a separate port for filling the device which is self closing to maintain the integrity of the device.
  • Yet still another object of the invention is to provide an osmotic dispensing device that can be filled with agent when needed from a separate source through a self closing port integral in the device.
  • Still a further object of the invention is to provide an osmotic dispensing device that is empty until charged and then can administer a complete pharmaceutical dosage regimen for a period of time, the use of which requires intervention only for initiation and termination of the regimen.
  • Yet another immediate object of this invention is to provide a dispensing device that can be filled with drug at the time of use for administering a drug to produce a locally acting or systemically acting drug to produce a physiologic or pharmacologic effect which device can release the drug at a rate that does not vary with time.
  • the invention concerns a device comprised of an outer wall surrounding an inner wall that defines a compartment as a means for containing an agent.
  • a layer of an osmotically effective solute capable of exhibiting an osmotic pressure gradient against an external fluid is housed between th outer and inner'wall.
  • a dispensing passageway leads from the compartment to the exterior of the device for releasing agent from the device.
  • a filling passageway leads from the exterior of the device to the compartment and'it houses a means for closing the passageway.
  • the outer wall of the device isformed of a material having shape retaining properties and it is permeable to an external fluid and substantially impermeable to solute.
  • the inner wall is formed of a material essentially impermeable to external fluid and solute and collapsable when force is exerted thereon.
  • external fluid permeates at a rate controlled by the wall permeability, wall dimensions, and osmotic pressure gradient into the solute causing it to increase in volume.
  • the increased volume generatesa mechanical or hydrostatic compressing or deflating pressure on the collapsable wall, which pressure, negligible to the equilibrium in osmotic pressure of the fluid, in turn ejects the active agent out of the chamber at an osmotic-permeation controlled rate over a prolonged and continuous period of time.
  • FIG. 1 is an elevated illustration of an osmotic dispenser of the invention.
  • FIG. 2 is a cross-sectional view of FIG. 1 through 2-2 illustrating the structure of the device of FIG. 1.
  • FIG. 3 is a perspective, top view of a dispensing device of the invention illustrating another embodiment of the invention.
  • FIGS. 4 through 7 represent a graphic illustration of osmotic pumps showing their release rate from the devices over a prolonged period of time.
  • FIG. 1 is an illustration of various delivery devices of the invention, and which examples are not to be construed as limiting, one embodiment of a novel osmotic delivery device is indicated in FIG. 1 by the number 10.
  • Delivery device 10 is comprised of a body portion 11, a discharge passageway 12 and a filling passageway 13 integrally formed with device 10.
  • a means 14 for self closing filling passageway 13 is seen in broken lines in passageway 13.
  • Device 10 of FIG. 1 is seen in FIG. 2 in open section through 2-2 of FIG. 1.
  • device 10 is comprised of a body 11 formed of an inner wall 15 formed of a flexible material collapsable in response to pressure and relatively impervious to fluid as osmotic solute, the wall surrounds and forms a compartment 16 defined by wall 15s inner surface.
  • Compartment 16 is a means for containing an active agent and it is pro- Vided with a means 17 for dispensing the agent to the 1 exterior of device 10.
  • Compartment 16 is further provided with a means 18 for filling compartment 16.
  • Means 18, also referred to as filling port or filling passageway is Provided with a means 14 for self closing passageway 18.
  • Closing means 14 is made from a material that is essentially impermeable and inert to agent form properties across all its dimensions, that is, it is substantially imperforate or substantially homogenous, or wall 20 can be formed of a material that is microporous.
  • a layer 21 of an osmotically effective solute that exhibits an osmotic pressure gradient against an external fluid, when the device is positioned in the environment of use.
  • these solutes osmotically attract fluid through the semi-permeable membrane 20 to pro prise a solution of the solute which increases in volume while simultaneously generating mechanical or hydrostatic force that is exerted against wall 15 to cause it to correspondingly collapse.
  • wall 15 collapses it ejects active agent out of chamber 16 through dispensing passageway 17 to the exterior of device. 10 at an osmotically membrane controlled rate over a prolonged period of time.
  • FIG. 3 illustrates another embodiment of the invention.
  • device 10 is illustrated comprised of a body 11 having a pair of ports 22 each distant from the other.
  • Ports 22 can be optionally used as filling ports or discharge ports and each houses a material 14 for closing the port after penetrated by a needle.
  • either port can be equipped with a needle for discharging agent from device 10.
  • the osmotic delivery device of the invention provides many important advantages over previously known osmotically operated delivery devices.
  • One advantage of the device is the ease of construction of the drug delivery device by standard manufacturing techniques into devices of various shapes and forms for delivering agent to recipient or environment.
  • a more important advantage of the claimed delivery device is that it can be manufactured comprised of a minimum number of parts.
  • osmotic delivery device 10 Another important advantage for osmotic delivery device 10 is the device and its agent can be separately stored and the device charged with agent at the time of use. This feature prevents or substantially reduces deterioration of the agent since agents susceptible to deterioration can be stored in glass containers and charged into the device at the time of use. Yet another important advantage for the devices of this invention resides in the users option to formulate special agents or compositions of agents that can be charged into the compartment at the time of use and at the environment of use. Another important advantage for the device resides in the device entering the commerical stream uncharged with agent in a simple sterile package. The feature enhances the utility of the device and simultaneously makes it possible to design special devices for special application that can be charged with agent at the environment of use.
  • the invention provides the device with a filling port generally positioned distant from the discharge port.
  • the filling port is equipped with a self sealing or self closing stopper or bung that fills the internal space of the filling port and can be repeatedly penetrated and closed following withdrawal by a penetrating instrument.
  • the filling port housing the bung is constructed with the wall in intimate contact with the bung by shrinking the wall to the bung during fabrication of the device.
  • This unique feature of the device also makes it possible to fill the device with agent without developing air pockets in the compartment and without penetrating the devices walls which could lead to a loss of osmotic pressure and leakage.
  • another advantage for the novel osmotic pump is that pumps made with along and narrow catheter which could not be filled heretofore can now be filled by entering the chamber through filling port equipped with the bung.
  • Wall 20 of the device is a material that is semipermeable, for example a material that is permeable to an external fluid such as water and the like while essentially impermeable to a selected product or to other compounds in the device.
  • the material forming the wall can be non-erodible or bioerodible after a predetermined period of time and in each instance it is semipermeable to external fluid but not to solute and is suitable through its shape retaining properties during its useful life for construction of the osmotic powered device.
  • Typical materials for forming the wall include membranes known to the art as osmosis and reverse osmosis membranes such as commercially available unplasticized cellulose acetate, plasticized cellulose acetate, reinforced cellulose acetate, cellulose nitrate with 1 1 percent nitrogen, cellulose diacetate, cellulose triacetate, agar acetate, amylose triacetate, beta glucan acetate, beta glucan triacetate, celluloseacetate, acetaldehyde dimethyl acetate, cellulose acetate ethyl carbamate, cellulose acetate phthalate, cellulose acetate methyl carbamate, cellulose acetate succinate, cellulose acetate dimethaminoacetate, cellulose acetate ethyl carbonate, cellulose acetate chloroacetate, cellulose acetate ethyl oxalate, cellulose acetate methyl sulfonate, cellulose acetate butyl sulfonate,
  • membranes having a fluid permeability of 0.01 to 10 cclcm /hour or day or higher at atmosphere pressure against a saturated product solution or saturated solute solution to a changing concentration at the temperature of use while simultaneously possessing a high degree of impermeability to the product or solute are useful and within the spirit of the invention.
  • Wall 15, or the inner wall of the device that defines the compartment and is in intimate contact with bung 14 is a heat shrinkable, polymeric material that collapses on the application of force thereto and simultaneously maintains the self sealing bung in the filling port.
  • the polymeric membrane is selected from the class of heat shrinkable polymeric films in the form of tubes, spheres, ellipsoids, envelopes, films, laminates, and other geometric shapes and fabricated structures is in one embodiment a material that has been prepared by inducing strong molecular orientation by uni-axially or bi-axially stretching of the film, which operation, preferably, can be preceded by the introduction of inter-molecular primary valence cross-linkage by chemical or radiation processes.
  • the degree of cross-linking when employed, should be sufficient to impart to the film a thermoset character, which can be'conveniently defined as the ability to exhibit a minimum tensile strength of about 50 lbs./in. at a temperature of 300F.
  • heat shrinkable is meant in'this embodiment that the film can contract by at least 10 percent and typically from about 25 percent .tO 75 percent of its stretched dimension in one or more directions upon heating.
  • the material is expanded or stretched mechanically, hydraulically, or pneumatically, either uniaxially or bi-axially, at room temperature or elevated temperatures, and then is set or fixed, or frozen, into this expanded, high energy state. Procedures for accomplishing this are well known in the polymer fabrication art.
  • the film is prepared by extrusion through a shaping die with a long, narrow horizontal slit of such width as to give the desired film thickness.
  • the hot ribbon of polymeric material issues from the die, it is gripped along its two edges by tenter hooks which tend to stretch the film along its width and to stretch it in a forward direction at the same time.
  • This operation imparts bi-axial orientation and yields a film with equal shrinkage along both axes.
  • such a film will have a potential shrinkage of 50 percent in both directions. Not only is the rate of stretching important in achieving this result, but the rate of cooling and the temperature profile during the stretching are important. As described here, this operation is done in-line with extrusion, but it can also be done on preformed film by heating and stretching the film.
  • the polymer is first prepared in tubular shape, preferably by extrusion through a die of the desired cross-sectional configuration.
  • the tubing can then be subjected to ionizing radiation consisting of a stream of high energy electrons as delivered by a van de Graaff generator or other electron accelerating equipment.
  • the tubing can be treated with gamma rays as emanating from cobalt-60.
  • the dosage delivered can vary, depending upon the polymer system, from 0.5 to megarads to achieve the desired degree of intermolecular cross-linkage.
  • the tubing is then subjected to uni-axial molecular orientation by drawing it, optimally in a warm or heated condition, over an appropriately shaped mandrel, which increases the cross-sectional area by a factor of 2 to 16.
  • the polymer having been selected from classes which tned to have high intermolecular attraction, will tend to remain in the high energy, stretched stateuntil heated above a temperature at which these intermolecular attractions are melted or released. The memory or tendency to recover back to the unstretched state is encouraged by the cross-linkage which was introduced by the earlier radiation treatment.
  • Polymeric membranes preferably are cross-linked prior to stretching and using to form the inner wall.
  • the chemical cross-linking of these polymers can be achieved by incorporation of various cross-linking agents such as peroxides, sulfur, metallic oxides, selenium, tellerium, diamines, diisocyanates, alkyl phenol disulfides, p-quinone dioxime, tetra-chloro-pbenzoquinone, tetra alkyl thiuram disulfides, 4,4- dithiomorpholine, sulfur dichloride, and the like, into the polymer followed by a period of heating.
  • cross-linking or vulcanization can be achieved by use of high energy electron-beam radiation such as is provided by a van de Graaff generator or other types of electron accelerators, or by gamma ray emitters, or
  • pre-oriented shrinkable materials suitable for forming the chamber and housing the self sealing bung by engaging the bung when the film is exposed to heat comprise oriented film of vinyl chloride polymer which has a Youngs modulus of elasticity in both directions of at least 200,000 p.s.i. l4,000 kglcm at 23C, a shrinkage of at most 35 per cent at p.s.i. (l0.5 kglcm at any temperature.
  • the films preferably have shrink tensions not exceeding 100 p.s.i. (7 kglcm at any temperature.
  • the most preferred film is a rigid (i.e.
  • unplasticized polyvinyl chloride film which is 0.01 to 0.95 mm thick and has been bi-axially oriented so that it has a shrinkage in both directions of at most about 20 percent, especially 15 to 20 percent, e.g. about 20 percent.
  • Films having low degrees of orientation or shrink in one direction only can be used in accordance with the invention, but require the use of rather high film temperatures, near the melting point of the polymer, in order sufficiently to shrink the film. Accordingly it is preferred to use films which have been bi-axially oriented so that they have percent shrinkages at 100C in both directions of to 35 percent, especially to 25 percent, particularly 15 to percent, and have shrink tensions not exceeding 150 p.s.i.
  • the vinyl chloride polymer shrinkable materials used herein include homopolymers and copolymers such as vinyl chloride and vinyl acetate, styrene, acrylonitrite, dialkyl fu'marate or maleate, or alkyl acrylate or methacrylate, vinyl acetate and vinylidene chloride, blends of polyvinyl chloride with chlorinated polyethylene or terpolymer, and the like.
  • Other heat shrinkable materials include vinylidene chloride, copolymers of vinylidene chloride of 20 to 80 percent vinylidene chloride, copolymers of vinylidene chloride and vinyl chloride and the like. Heat shrinkable materials are set forth in US. Pat. Nos. 3,022,543; 3,419,421; 3,459,582; 3,614,852; 3,627,116; and the like.
  • osmotically effective solutes including organic and inorganic compounds are advantageously used for coating on the exterior surface of the inner wall to act as a means for generating osmotic pressure.
  • Suitable solutes exhibit an osmotic pressure gradient against an external fluid across the semi-permeable membrane which membrane is substantially impermeable to the passage of the osmotically effective solute to prevent loss thereof through the membrane.
  • osmotically effective solutes include compounds such as magnesium sulfate, magnesium chloride, sodium chloride, lithium chloride, potassium sulfate, sodium carbonate, sodium sulfite, lithium sulfate, calcium bicarbonate, sodium sulfate, calcium sulfate, potassium acid phosphate, calcium lactate, magnesium succinate, tartaric acid, soluble carbohydrates such as raffinose, glucose, mixtures thereof and the like.
  • the solute can be used in a mixed form by mixing the compound with a binder.
  • The'solute in powdered, granular, piece and the like form is homogenously or heterogenously dispersed in the binder which binder is soluble or insoluble but will release the solute on contact with wall material.
  • Typical binders include polyethylene glycol, gelatin, agar, carboxycellulose, ethylmethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, soluble starch derivatives and the like.
  • Typical binders that can comprise about 1 to 50 percent of the composition include cellulose acetate, polyurethane, epoxides, and other binders that permit the free movement of fluid into the solute of the layered structure to permit the solute to increase in volume and generate osmotic pressure.
  • the stopper or bung as confined in the filling passageway, is comprised of naturally occurring or synthetic material that possesses self closing or self sealing properties following the withdrawal therefrom of a piercing instrument.
  • These materials are generally known to the art as elastomers, and they include the commercially available carboxylated butadiene acrylonitrile copolymers, butadiene vinylpyridine copolymers, polychloroprene, isoprene, copolymerized with piperylene, polyisoprene, poly(butadiene-co-styrene), poly(butadiene-co-acrylonitrile), natural rubber, poly- (isobutylene-co-isoprene), silicones, fluroelastomers, butyl rubber, halogenated butyl rubber, poly(butadiene-styrene-vinylpyridine) acrylic rubbers, butadiene:acrylonitrite /20, 73/27, 68/32, 61
  • active agent and the term agents comprises any compound, or mixture of compounds, composition of matter or mixture thereof that can be dispensed from the device to produce a predetermined beneficial and useful result.
  • the active agents include pesticides, germicides, biocides, algicides, rodenticides, fungicides, insecticides, antioxidants, plant growth promoters, plant growth inhibitors, preservating agents, surfactants, disinfectants, sterilization agents, catalysts, chemical reactants, fermentation agents, cosmetics, foods, nutrients, food supplements, drugs, vitamins, sex sterilants, fertility inhibitors, fertility promotors, air purifiers, microorganism attenuators, and other like agents that benefit the environment, surroundings, and habitat including animals, mammals, man, valuable farm animals, household animals, sport animals, and the like.
  • the active agent is a drug that will produce a local or systemic physiologic or pharmacologic response when administered to animals, including humans, avians, and the like.
  • Suitable drugs that are dispensed in conventional, standard dosage amounts as known to the art comprise desensitizing agents such as ragweed pollen antigens, hay fever pollen antigens, dust antigen and milk antigen; vaccines such as small pox, yellow fever, distemper, hog cholera, fowl pox, antivenom, scarlet fever, diphtheria toxoid, tetanus toxoid, pigeon pox, whooping cough, influen' zae, rabies, mumps, measles, poliomyelitis, Newcastle disease, etc; anti-infectives, such as antibiotics, including penicillin, tetracycline, chlortetracycline, bacitracin, nystatin, streptomycin, n
  • prednisolone prednisolone 2 1 -phosphate, and prednisolone acetate
  • decongestants such as phenylephrine, naphazoline, and tetrahydrozoline
  • miotics and anticholinesterases such as pilocarpine, eserine salicylate, carbachol, di-isopropyl fluorophosphate, phospholine iodide, and demecarium bromide
  • mydriatics such as atropine sulfate, cyclopentolate, homatropine, scopolamine, tropicamide, eucatropine, and hydroxyamphetamine
  • sympathomimetics such as epinephrine
  • sedatimes and hypnotics such as pentobarbital sodium, phenobarbital, secobarbital sodium, codeine, (a-bromo-isovaleryl) urea, carbromal
  • the agent can be in various forms, such as unchanged molecules, components of molecular complexes, or non-irritating pharmacologically acceptable salts such as hydrochloride, hydrobromide, sulphate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, and the like.
  • pharmacologically acceptable salts such as hydrochloride, hydrobromide, sulphate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, and the like.
  • salts of metals, amines, or organic cations for example, quaternary ammonium can be employed.
  • simple derivatives of the drugs such as ethers, esters, amides, and the like which have desirable retention and release characteristics but which are easily hydrolyzed by body pH, enzymes and the like can be employed.
  • the amount of agent incorporated in the osmotic dispenser varies widely depending on the particular agent, the desired therapeutic effect, and the time span for which it takes the agent to be released. Since a variety of dispensers in a variety of sizes and shapes are intended to provide complete dosage regimens for therapy for a variety of maladies, there is no critical upper limit on the amount of drug incorporated in the dispenser. The lower limit too will depend on the activity of the drug and the time span of its release from the dispenser. Thus it is not practical to define a range for the therapeutically effective amount of drug to be released by the dispenser.
  • the amount dispensed for active agents such as drug will be the standard amount as described in Pharmacology in Medicine, edited by DiPalma, J.R.., 1965, McGraw-l-lill Book Company, New York; The Pharmacological Basis of Therapeutics, Fourth Edition, by Goodman, LS. and Gilman, A.,
  • the drug can be charged into the device in known forms such as solution, dispersion, cream, emulsion, suspensions, fine powders, and the like.
  • the device will contain about 0.01 to percent or higher of an agent or a mixture of agent and carriers based on the weight of the agent or agent carriers composition solute to the volume of the device, and the like.
  • the device can be of such size and shape to release 0.01 cc to 5 cc or higher of agent, usually contained in a pharmaceutical carrier, per hour, day or longer, such as 1 cc to 10 cc of agent composition for l to 10 days, and the like.
  • passageway and passageway communicating with are comprised of those means and methods suitable for releasing the product from the device under the pumping rate of the device.
  • the expression includes an aperture, orifice, bore, stainless steel needles, hollow cellulose acetate tubes, polyolefin tubes, capillary tubes suitable for passing the agent, tubes and conduits of various inside diameters, closed passageways containing a bioerodible material that erodes in the environment of use to produce an open passageway.
  • Typical bioerodible materials include erodible polyglycolic and polylactic fibers, erodible gelatinous filaments, polyvinyl alcohol, and the like.
  • An osmotic dispensing device for the continuous release of active agent and having a diameter volume of microliters was manufactured as follows: first, a section of commerically available heat shrinkable poly- (olefine) such as poly(vinylidene chloride) having an internal diameter three thirty-seconds inches was cut into a 5 cm section. Next, a plug of commerically available Silastic silicone rubber was cut from a rod, with the plug having the following dimensions 3 mm long X 3 mm O.D. wherein 0D. is outside diameter. Then, the plug was inserted into the heat shrinkable tubing and held in position between two solid steel rods. One rod entered the tubing from each of its entrances. The unit was heated at 100C in water and pulled longitudinally until the gap between the plug and the rod was 2 mm longer than a mold cavity used for the pulling step. The mold cavity was 7 mm long,
  • the tubing containing the plug was cooled to room temperature and clamped into ajsecond mold with a milled cavity and a clamping means for confining the encapsulated silicone rubber.-
  • the mold was closed and heated at 100C in water with pressure applied for 30 seconds through one opening of the tubing to expand the tubing to the dimensions of the cavity.
  • the mold was next cooled and tubing housing the plug and having a cavity was removed from the mold.
  • an osmotic solute slurry was prepared by mixing 500 grams of analytical reagent grade K 80 powder with 200 ml of 2 wt percent ethyl cellulose in ethanol in a Waring blender at the highest speed for about 2 minutes.
  • the appropriate amount of solute was deposited on 15 chambers by dips in the cooled solute slurry with minute intervals between dips.
  • the slurry coated chambers were placed in a near zero humidity dry box to prevent water absorption during evaporation of solvent. A few of the chambers were optionally dipped in gelatin to smooth any pores and add strength to the solute deposit.
  • the gelatine dip was 15 g in 100 ml of distilled water at 60C. All the coated chambers were dried at least 2 hours. The total solute coat thickness was measured at about 0.27 mm.
  • the dry solute coated chambers were placed in a dipping box containing an acetone atmosphere for dipping in a freshly prepared cellulose acetate membrane solution comprised of IS wt percent cellulose acetate and 85 wt percent acetone.
  • the chambers were dippsed 14 times with 15 minute intervals between dips to deposit a membrane about 14 mils thick.
  • FIGS. 4, 5, 6 and 7. Four osmotic dispensing devices manufactured according to the above description were changed with a blue dye solution and the dye release rate measured and charted in accompanying FIGS. 4, 5, 6 and 7.
  • the osmotic pumps were placed in an environment of water which was an external fluid.
  • the dispensed blue dye is measured volumetrically or by using standard otpical laboratory measuring instruments.
  • the results obtained show that after a short start-up period, the osmotic devices uniformly dispense about 0.6 p.l/hr.
  • the prolonged and constant pumping rate is obtained to exhaustion of the chamber, or for about 150 hours, and the total volume dispensed from the devices was about 92 ,LLl.
  • the results for the devices measured as shown in FIGS. 4 7 are seen as evidencing the useful operability of the device for its application in industry and commence.
  • novel, osmotic product delivery device of this invention employs a unique means which facilitates the obtainment of precisely conducted agent release rates in the environment of use. While there has been described and pointed out the fundamental novel features of the invention as applied to the presently preferred embodiments, those skilled in the art will appreciate that various modifications changes and omisslons in the osmotic agent devices illustrated and described can be made without departing from the spirit of the invention.
  • An osmotic dispenser for dispensing an active agent comprising:
  • an outer wall surrounding the layer of solute said outer wall formed of a material having shape retaining properties and at least a part of the wall is permeable to external fluid and impermeable to solute,
  • a dispensing passageway communicating with the compartment and the exterior of the device for dispensing an agent from the device
  • An improved osmoticdispenser for dispensing an active agent according to claim 1 wherein the inner wall material is a heat shrinkable polymeric material.
  • An improved osmotic dispenser for dispensing an active agent according to claim 1 wherein the automatic closing material is an elastomeric material.
  • An improved osmotic dispenser for dispensing an active agent according to claim 1 wherein in operation in the environment of use, agent is dispensed from the dispensor by external fluid permeating from the exterior through the permeable outer wall continuously dissolving the solute in a tendency toward osmotic equilibrium with the environment to continually increase the volume between the outer wall and the compartment generating a mechanical or hydrostatic force to cause the compartment to continuously collapse and dispense agent from the device at a controlled rate over a prolonged period of time through the dispensing passageway with essentially no agent dispensed through the filling passageway.

Abstract

A device is disclosed comprised of a wall formed of a material collapsable in response to mechanical force and surrounding a closed compartment for containing an agent, a dispensing passageway communicates with the compartment and the exterior of the device for dispensing agent therefrom, a filling passageway communicates with the exterior of the device and the compartment for filling the device, a layer of an osmotically effective solute is deposited on the collapsable wall''s outer surface, said solute capable of exhibiting an osmotic pressure gradient against an external fluid and increasing its volume as fluid diffuses by osmosis into the solute, an outer wall surrounding the layer of solute formed of a material having shape retaining properties, permeable to the fluid and substantially impermeable to solute, and wherein the filling passageway houses a material penetrable to a means for filling the compartment which material self closes on removal of the means to maintain the compartment in closed condition for subsequent collapsing thereof in response to mechanical or hydrostatic force generated by osmotic pressure arising in the solute layer, as fluid diffuses therein to increase its volume and generate forces that are exerted between the collapsable wall of the agent containing chamber and the more rigid outer semi-permeable wall, which collapsing force in turn dispenses an agent through the dispensing passageway when the compartment is charged with drug and the device is positioned in the environment of use.

Description

United States Patent 91 Theeuwes [451 Sept. 25, 1973 OSMOTICALLY POWERED AGENT DISPENSING DEVICE WITH FILLING MEANS Felix Theeuwes, Los Altos, Calif.
[52] US. Cl. 222/95, 128/260, 222/386.5,
222/389 [51] Int. Cl B65d 35/28 [58] Field of Search 222/94, 95, 190,
ZZZ/386.5, 389, 394; 129/213, 214 R, 218 R, 218 A, 260, 272; l41/3, 30
[56] References Cited UNITED STATES PATENTS 3,604,417 9/l97l Stolzeaberg 128/260 X OTHER PUBLICATIONS Australian Journal Experimental Biology (1955), 33, pp. 415-420.
Primary ExaminerRobert B. Reeves Assistant Examiner- -Larry Martin Att0meyPaul L. Sabatine et al.
[57] ABSTRACT A device is disclosed comprised of a wall formed of a material collapsable in response to mechanical force and surrounding a closed compartment for containing an agent, a dispensing passageway communicates with the compartment and the exterior of the device for dispensing agent therefrom, a filling passageway communicates with the exterior of the device and the compartment for filling the device, a layer of an osmotically effective solute is despoited on the collapsable walls outer surface, said solute capable of exhibiting an osmotic pressure gradient against an external fluid and increasing its volume as fluid diffuses by osmosis into the solute, an outer wall surrounding the layer of solute formed of a material having shape retaining properties, permeable to the fluid and substantially impermeable to solute, and wherein the filling passageway houses a material penetrable to a means for filling the compartment which material self closes on removal of the means to maintain the compartment in closed condition for subsequent collapsing thereof in response to mechanical or hydrostatic force generated by osmotic pressure arising in the solute layer, as fluid diffuses therein to increase its volume and generate forces that are exerted between the collapsable wall of the agent containing chamber and the more rigid outer semipermeable wall, which collapsing force in turn dispenses an agent through the dispensing passageway when the compartment is charged with drug and the device is positioned in the environment of use.
5 Claims, 7 Drawing Figures OSMOTICALLY POWERED AGENT DISPENSING DEVICE WITH FILLING MEANS AREA OF THE INVENTION This invention pertains to both a novel and useful device for dispensing a useful agent. More particularly, the invention relates to a dispensing device for the controlled and continuous dispensing of an agent over a prolonged period of time to produce a desired result. Specifically, the invention concerns an osmotic dispenser manufactured with a minimum number of com-' ponents wherein one of the components is a filling port with a means for self-closing the port to maintain the sterility and operability of the device after the device is charged with agent.
BACKGROUND OF THE INVENTION Osmotic dispensing devices for the delivery of active agent are well known to the prior art. These devices are of assorted designs and generally have a plurality of similar structural components. For example, the devices usually have anexternal wall or housing for containing an internal collapsable chamber for containing an agent. The chamber in the device is surrounded by an osmotically effective solute that is capable of exhibiting a pressure gradient against an extem'al fluid and increasing its volume as external fluid diffuses into the solute to generate a force that is exerted against-the chamber causing it to collapse. As the chamber collapses, it ejects agent through a passageway that lead to the exterior of the device.
While these osmotic devices are useful for dispensing agent, they have certain disadvantages that restrict or tend to defeat their use for many applications. For example, the presently available devices are prefilled with a drug which often looses its sterility prior to use of the drug. Also, some drugs have a short shelf life and these drugs tend to deteriorate during storage and diminish the usefulness of the drug. Additionally, the prior art devices lacked a port for filling the chamber, and if they were filled by puncturing with a hollow needle, the device failed to function either because of osmotic pressure leakage at the puncture site or the device hecame contaminated resulting from mixing of solute and agent arising at the site the inner wall was pierced. Thus, it will be appreciated by those skilled in the art that while the prior art devices made a valuable contribution to the art, the above mentioned disadvantages tended to restrict their use to a few environments.
OBJECTS OF THE INVENTION Accordingly, it is an immediate object of this invention to provide a novel dispensing device for the dispensing of agent to produce a beneficial effect, which device overcomes the aforesaid disadvantages associated with the prior art devices. v
Still another object of the invention is to provide a novel osmotic dispensing device for dispensing an agent at a controlled rate for a prolonged period of time.
Yet still another object of this invention is to provide a novel and useful osmotic dispensing device that is simple in construction, designed with a minimum number of parts, easy to use, and in operation is practical and useful for the controlled, continuous, long-term administration of an agent.
Still another object of the invention is to provide an osmotic dispensing device that has a separate port for filling the device which is self closing to maintain the integrity of the device.
Yet still another object of the invention is to provide an osmotic dispensing device that can be filled with agent when needed from a separate source through a self closing port integral in the device.
Still a further object of the invention is to provide an osmotic dispensing device that is empty until charged and then can administer a complete pharmaceutical dosage regimen for a period of time, the use of which requires intervention only for initiation and termination of the regimen.
Yet another immediate object of this invention is to provide a dispensing device that can be filled with drug at the time of use for administering a drug to produce a locally acting or systemically acting drug to produce a physiologic or pharmacologic effect which device can release the drug at a rate that does not vary with time.
Other objects, features, and advantages of the invention will be apparent to those skilled in the art, from the detailed description of this specification, taken in conjunction with the drawings and the accompanying claims.
SUMMARY OF THE INVENTION The invention concerns a device comprised of an outer wall surrounding an inner wall that defines a compartment as a means for containing an agent. A layer of an osmotically effective solute capable of exhibiting an osmotic pressure gradient against an external fluid is housed between th outer and inner'wall. A dispensing passageway leads from the compartment to the exterior of the device for releasing agent from the device. A filling passageway leads from the exterior of the device to the compartment and'it houses a means for closing the passageway. The outer wall of the device isformed of a material having shape retaining properties and it is permeable to an external fluid and substantially impermeable to solute. The inner wall is formed of a material essentially impermeable to external fluid and solute and collapsable when force is exerted thereon. In operation, external fluid permeates at a rate controlled by the wall permeability, wall dimensions, and osmotic pressure gradient into the solute causing it to increase in volume. The increased volume generatesa mechanical or hydrostatic compressing or deflating pressure on the collapsable wall, which pressure, negligible to the equilibrium in osmotic pressure of the fluid, in turn ejects the active agent out of the chamber at an osmotic-permeation controlled rate over a prolonged and continuous period of time.
BRIEF DESCRIPTION OF THE DRAWINGS In the drawings, which are not drawn to scale, but rather are set forth to illustrate various embodiments of the invention, the drawings are as follows:
FIG. 1 is an elevated illustration of an osmotic dispenser of the invention.
FIG. 2 is a cross-sectional view of FIG. 1 through 2-2 illustrating the structure of the device of FIG. 1.
FIG. 3 is a perspective, top view of a dispensing device of the invention illustrating another embodiment of the invention.
FIGS. 4 through 7 represent a graphic illustration of osmotic pumps showing their release rate from the devices over a prolonged period of time.
In the drawings and specification, like parts in related figures are identified by like numbers. The terms appearing earlier in the specification and in the description of the drawings, as well as embodiments thereof, are further described elsewhere in the disclosure.
DETAILED DESCRIPTION OF THE DRAWINGS Turning now to the drawings in detail, which are examples of various delivery devices of the invention, and which examples are not to be construed as limiting, one embodiment of a novel osmotic delivery device is indicated in FIG. 1 by the number 10. Delivery device 10 is comprised of a body portion 11, a discharge passageway 12 and a filling passageway 13 integrally formed with device 10. A means 14 for self closing filling passageway 13 is seen in broken lines in passageway 13.
Device 10 of FIG. 1 is seen in FIG. 2 in open section through 2-2 of FIG. 1. In FIG. 2, device 10 is comprised of a body 11 formed of an inner wall 15 formed of a flexible material collapsable in response to pressure and relatively impervious to fluid as osmotic solute, the wall surrounds and forms a compartment 16 defined by wall 15s inner surface. Compartment 16 is a means for containing an active agent and it is pro- Vided with a means 17 for dispensing the agent to the 1 exterior of device 10. Compartment 16 is further provided with a means 18 for filling compartment 16. Means 18, also referred to as filling port or filling passageway is Provided with a means 14 for self closing passageway 18. Closing means 14 is made from a material that is essentially impermeable and inert to agent form properties across all its dimensions, that is, it is substantially imperforate or substantially homogenous, or wall 20 can be formed of a material that is microporous.
In FIG. 2, positioned between wall 20 and wall 15 is I a layer 21 of an osmotically effective solute that exhibits an osmotic pressure gradient against an external fluid, when the device is positioned in the environment of use. In operation, these solutes osmotically attract fluid through the semi-permeable membrane 20 to pro duce a solution of the solute which increases in volume while simultaneously generating mechanical or hydrostatic force that is exerted against wall 15 to cause it to correspondingly collapse. As wall 15 collapses it ejects active agent out of chamber 16 through dispensing passageway 17 to the exterior of device. 10 at an osmotically membrane controlled rate over a prolonged period of time.
FIG. 3 illustrates another embodiment of the invention. In FIG. 3, device 10 is illustrated comprised of a body 11 having a pair of ports 22 each distant from the other. Ports 22 can be optionally used as filling ports or discharge ports and each houses a material 14 for closing the port after penetrated by a needle. Additionally,
either port can be equipped with a needle for discharging agent from device 10.
DETAILED DESCRIPTION OF THE INVENTION In accordance with the practice of the present invention, it has now been found that the osmotic delivery device of the invention provides many important advantages over previously known osmotically operated delivery devices. One advantage of the device is the ease of construction of the drug delivery device by standard manufacturing techniques into devices of various shapes and forms for delivering agent to recipient or environment. A more important advantage of the claimed delivery device is that it can be manufactured comprised of a minimum number of parts.
Another important advantage for osmotic delivery device 10 is the device and its agent can be separately stored and the device charged with agent at the time of use. This feature prevents or substantially reduces deterioration of the agent since agents susceptible to deterioration can be stored in glass containers and charged into the device at the time of use. Yet another important advantage for the devices of this invention resides in the users option to formulate special agents or compositions of agents that can be charged into the compartment at the time of use and at the environment of use. Another important advantage for the device resides in the device entering the commerical stream uncharged with agent in a simple sterile package. The feature enhances the utility of the device and simultaneously makes it possible to design special devices for special application that can be charged with agent at the environment of use. These features and other advantages are made available to the art by the invention providing the device with a filling port generally positioned distant from the discharge port. The filling port is equipped with a self sealing or self closing stopper or bung that fills the internal space of the filling port and can be repeatedly penetrated and closed following withdrawal by a penetrating instrument. The filling port housing the bung is constructed with the wall in intimate contact with the bung by shrinking the wall to the bung during fabrication of the device. This unique feature of the device also makes it possible to fill the device with agent without developing air pockets in the compartment and without penetrating the devices walls which could lead to a loss of osmotic pressure and leakage. Additionally, another advantage for the novel osmotic pump is that pumps made with along and narrow catheter which could not be filled heretofore can now be filled by entering the chamber through filling port equipped with the bung.
Wall 20 of the device is a material that is semipermeable, for example a material that is permeable to an external fluid such as water and the like while essentially impermeable to a selected product or to other compounds in the device. The material forming the wall can be non-erodible or bioerodible after a predetermined period of time and in each instance it is semipermeable to external fluid but not to solute and is suitable through its shape retaining properties during its useful life for construction of the osmotic powered device. Typical materials for forming the wall include membranes known to the art as osmosis and reverse osmosis membranes such as commercially available unplasticized cellulose acetate, plasticized cellulose acetate, reinforced cellulose acetate, cellulose nitrate with 1 1 percent nitrogen, cellulose diacetate, cellulose triacetate, agar acetate, amylose triacetate, beta glucan acetate, beta glucan triacetate, celluloseacetate, acetaldehyde dimethyl acetate, cellulose acetate ethyl carbamate, cellulose acetate phthalate, cellulose acetate methyl carbamate, cellulose acetate succinate, cellulose acetate dimethaminoacetate, cellulose acetate ethyl carbonate, cellulose acetate chloroacetate, cellulose acetate ethyl oxalate, cellulose acetate methyl sulfonate, cellulose acetate butyl sulfonate, cellulose acetate propionate, cellulose acetate p-toluene sulfonate, triacetate of locust gum bean, cellulose acetate with acetylated hydroxyethyl cellulose, hydroxylated ethylene-vinylacetate, cellulose acetate butyrate having a viscosity of from about seconds to about 50 seconds, cellulose acetate butyrate containing about 17 percent of combined butyryl and about 29.5 percent acetyl permselective, aromatic nitrogen-containing polymeric membranes that exhibit water permeability and essentially no solute passage, osmosis membranes made from polymeric epoxides, osmosis membranes made from copolymers of an alkylene oxide and alkyl glycidyl ether, semi-permeable polyurethanes, semi-permeable polyglycolic or polylactic acid and derivatives thereof, thin film membranes as disclosed by Loeb and Sourirajan in U. S. Pat. No. 3,133,132, the membranes of ionically associated polyelectrolytes, the polymers formed by the coprecipitation of polycation and a polyanion as described in U. S. Pat. Nos. 3,276,586; 3,541,005; 3,541,006; 3,546,142; 3,173,876; derivatives of polystyrene such as poly(sodium styrenesulfonate) and poly(vinylbenzyltrimethylammonium chloride), and the like. Generally, membranes having a fluid permeability of 0.01 to 10 cclcm /hour or day or higher at atmosphere pressure against a saturated product solution or saturated solute solution to a changing concentration at the temperature of use while simultaneously possessing a high degree of impermeability to the product or solute are useful and within the spirit of the invention.
Wall 15, or the inner wall of the device that defines the compartment and is in intimate contact with bung 14 is a heat shrinkable, polymeric material that collapses on the application of force thereto and simultaneously maintains the self sealing bung in the filling port. The polymeric membrane is selected from the class of heat shrinkable polymeric films in the form of tubes, spheres, ellipsoids, envelopes, films, laminates, and other geometric shapes and fabricated structures is in one embodiment a material that has been prepared by inducing strong molecular orientation by uni-axially or bi-axially stretching of the film, which operation, preferably, can be preceded by the introduction of inter-molecular primary valence cross-linkage by chemical or radiation processes. The degree of cross-linking, when employed, should be sufficient to impart to the film a thermoset character, which can be'conveniently defined as the ability to exhibit a minimum tensile strength of about 50 lbs./in. at a temperature of 300F. By heat shrinkable" is meant in'this embodiment that the film can contract by at least 10 percent and typically from about 25 percent .tO 75 percent of its stretched dimension in one or more directions upon heating. The material is expanded or stretched mechanically, hydraulically, or pneumatically, either uniaxially or bi-axially, at room temperature or elevated temperatures, and then is set or fixed, or frozen, into this expanded, high energy state. Procedures for accomplishing this are well known in the polymer fabrication art. For example, in the manufacture of bi-axially oriented, heat" shrinkable flim, the film is prepared by extrusion through a shaping die with a long, narrow horizontal slit of such width as to give the desired film thickness. As the hot ribbon of polymeric material issues from the die, it is gripped along its two edges by tenter hooks which tend to stretch the film along its width and to stretch it in a forward direction at the same time. This operation imparts bi-axial orientation and yields a film with equal shrinkage along both axes. Typically, such a film will have a potential shrinkage of 50 percent in both directions. Not only is the rate of stretching important in achieving this result, but the rate of cooling and the temperature profile during the stretching are important. As described here, this operation is done in-line with extrusion, but it can also be done on preformed film by heating and stretching the film.
In the manufacture of one type of heat shrinkable tubing for use in the present invention, the polymer is first prepared in tubular shape, preferably by extrusion through a die of the desired cross-sectional configuration. The tubing can then be subjected to ionizing radiation consisting of a stream of high energy electrons as delivered by a van de Graaff generator or other electron accelerating equipment. Or the tubing can be treated with gamma rays as emanating from cobalt-60. The dosage delivered can vary, depending upon the polymer system, from 0.5 to megarads to achieve the desired degree of intermolecular cross-linkage. The tubing is then subjected to uni-axial molecular orientation by drawing it, optimally in a warm or heated condition, over an appropriately shaped mandrel, which increases the cross-sectional area by a factor of 2 to 16. The polymer, having been selected from classes which tned to have high intermolecular attraction, will tend to remain in the high energy, stretched stateuntil heated above a temperature at which these intermolecular attractions are melted or released. The memory or tendency to recover back to the unstretched state is encouraged by the cross-linkage which was introduced by the earlier radiation treatment.
- Polymeric membranes preferably are cross-linked prior to stretching and using to form the inner wall. The chemical cross-linking of these polymers can be achieved by incorporation of various cross-linking agents such as peroxides, sulfur, metallic oxides, selenium, tellerium, diamines, diisocyanates, alkyl phenol disulfides, p-quinone dioxime, tetra-chloro-pbenzoquinone, tetra alkyl thiuram disulfides, 4,4- dithiomorpholine, sulfur dichloride, and the like, into the polymer followed by a period of heating. Alternatively, cross-linking or vulcanization can be achieved by use of high energy electron-beam radiation such as is provided by a van de Graaff generator or other types of electron accelerators, or by gamma ray emitters, or
by X-ray generators.
In another embodiment pre-oriented shrinkable materials suitable for forming the chamber and housing the self sealing bung by engaging the bung when the film is exposed to heat comprise oriented film of vinyl chloride polymer which has a Youngs modulus of elasticity in both directions of at least 200,000 p.s.i. l4,000 kglcm at 23C, a shrinkage of at most 35 per cent at p.s.i. (l0.5 kglcm at any temperature. The films preferably have shrink tensions not exceeding 100 p.s.i. (7 kglcm at any temperature. The most preferred film is a rigid (i.e. unplasticized) polyvinyl chloride filmwhich is 0.01 to 0.95 mm thick and has been bi-axially oriented so that it has a shrinkage in both directions of at most about 20 percent, especially 15 to 20 percent, e.g. about 20 percent. Films having low degrees of orientation or shrink in one direction only, such as are produced directly by some extrusion methods, can be used in accordance with the invention, but require the use of rather high film temperatures, near the melting point of the polymer, in order sufficiently to shrink the film. Accordingly it is preferred to use films which have been bi-axially oriented so that they have percent shrinkages at 100C in both directions of to 35 percent, especially to 25 percent, particularly 15 to percent, and have shrink tensions not exceeding 150 p.s.i. (10.5 kglcm and preferably not exceeding 100 psi. (7.0 kglcm at any temperature; such films are believed to be novel. They can be very satisfactorily used in shrink packaging procedures in which the film only has to reach a maximum temperature of 120C and for regular objects 100C or even less.
The vinyl chloride polymer shrinkable materials used herein include homopolymers and copolymers such as vinyl chloride and vinyl acetate, styrene, acrylonitrite, dialkyl fu'marate or maleate, or alkyl acrylate or methacrylate, vinyl acetate and vinylidene chloride, blends of polyvinyl chloride with chlorinated polyethylene or terpolymer, and the like. Other heat shrinkable materials include vinylidene chloride, copolymers of vinylidene chloride of 20 to 80 percent vinylidene chloride, copolymers of vinylidene chloride and vinyl chloride and the like. Heat shrinkable materials are set forth in US. Pat. Nos. 3,022,543; 3,419,421; 3,459,582; 3,614,852; 3,627,116; and the like.
Various osmotically effective solutes including organic and inorganic compounds are advantageously used for coating on the exterior surface of the inner wall to act as a means for generating osmotic pressure. Suitable solutes exhibit an osmotic pressure gradient against an external fluid across the semi-permeable membrane which membrane is substantially impermeable to the passage of the osmotically effective solute to prevent loss thereof through the membrane. Various osmotically effective solutes include compounds such as magnesium sulfate, magnesium chloride, sodium chloride, lithium chloride, potassium sulfate, sodium carbonate, sodium sulfite, lithium sulfate, calcium bicarbonate, sodium sulfate, calcium sulfate, potassium acid phosphate, calcium lactate, magnesium succinate, tartaric acid, soluble carbohydrates such as raffinose, glucose, mixtures thereof and the like.
Additionally, the solute can be used in a mixed form by mixing the compound with a binder. The'solute in powdered, granular, piece and the like form, is homogenously or heterogenously dispersed in the binder which binder is soluble or insoluble but will release the solute on contact with wall material. Typical binders include polyethylene glycol, gelatin, agar, carboxycellulose, ethylmethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, soluble starch derivatives and the like. Typical binders that can comprise about 1 to 50 percent of the composition include cellulose acetate, polyurethane, epoxides, and other binders that permit the free movement of fluid into the solute of the layered structure to permit the solute to increase in volume and generate osmotic pressure.
The stopper or bung, as confined in the filling passageway, is comprised of naturally occurring or synthetic material that possesses self closing or self sealing properties following the withdrawal therefrom of a piercing instrument. These materials are generally known to the art as elastomers, and they include the commercially available carboxylated butadiene acrylonitrile copolymers, butadiene vinylpyridine copolymers, polychloroprene, isoprene, copolymerized with piperylene, polyisoprene, poly(butadiene-co-styrene), poly(butadiene-co-acrylonitrile), natural rubber, poly- (isobutylene-co-isoprene), silicones, fluroelastomers, butyl rubber, halogenated butyl rubber, poly(butadiene-styrene-vinylpyridine) acrylic rubbers, butadiene:acrylonitrite /20, 73/27, 68/32, 61/39, free radical cross-linked silicone elastomers, and the like.
The phrase active agent and the term agents" as used throughout the specification and the accompanying claims comprises any compound, or mixture of compounds, composition of matter or mixture thereof that can be dispensed from the device to produce a predetermined beneficial and useful result. The active agents include pesticides, germicides, biocides, algicides, rodenticides, fungicides, insecticides, antioxidants, plant growth promoters, plant growth inhibitors, preservating agents, surfactants, disinfectants, sterilization agents, catalysts, chemical reactants, fermentation agents, cosmetics, foods, nutrients, food supplements, drugs, vitamins, sex sterilants, fertility inhibitors, fertility promotors, air purifiers, microorganism attenuators, and other like agents that benefit the environment, surroundings, and habitat including animals, mammals, man, valuable farm animals, household animals, sport animals, and the like.
ln a presently preferred embodiment the active agent is a drug that will produce a local or systemic physiologic or pharmacologic response when administered to animals, including humans, avians, and the like. Suitable drugs that are dispensed in conventional, standard dosage amounts as known to the art comprise desensitizing agents such as ragweed pollen antigens, hay fever pollen antigens, dust antigen and milk antigen; vaccines such as small pox, yellow fever, distemper, hog cholera, fowl pox, antivenom, scarlet fever, diphtheria toxoid, tetanus toxoid, pigeon pox, whooping cough, influen' zae, rabies, mumps, measles, poliomyelitis, Newcastle disease, etc; anti-infectives, such as antibiotics, including penicillin, tetracycline, chlortetracycline, bacitracin, nystatin, streptomycin, neomycin, polymyxin, gramicidin, oxytetracycline, chloramphenicol, and erythromycin; sulfonamides, including sulfacetamide, sulfamethizole, sulfamethazine, sulfadiazine, sulfamerazine, and sulfisoxazole; anti-virals including idoxuridine; and other anti-infectivesincluding nitrofurazone and sodium propionate; anti-allergenics such as antazoline, methapyrilene, chlorpheniramine, pyrilamine and prophenpyridamine; anti-inflammatories such as hydrocortisone, cortisone, hydrocortisone acetate, dexamethasone, dexamethasone 2 1 phosphate,fluocinolone, triamcinolone, medrysone,
prednisolone, prednisolone 2 1 -phosphate, and prednisolone acetate; decongestants such as phenylephrine, naphazoline, and tetrahydrozoline; miotics and anticholinesterases such as pilocarpine, eserine salicylate, carbachol, di-isopropyl fluorophosphate, phospholine iodide, and demecarium bromide; mydriatics such as atropine sulfate, cyclopentolate, homatropine, scopolamine, tropicamide, eucatropine, and hydroxyamphetamine; sympathomimetics such as epinephrine; sedatimes and hypnotics such as pentobarbital sodium, phenobarbital, secobarbital sodium, codeine, (a-bromo-isovaleryl) urea, carbromal; psychic energizers such as 3-( 2-aminopropyl) indole acetate and 3-( 2- aminobutyl) indole acetate; tranquilizers such as reserpine, chlorpromazine, and thiopropazate; androgenic steroids such as methyltestosterone and fluoxymesterone; estrogens such as estrone, 17 B-estradiol, ethinyl estradiol, and diethyl stilbesterol; progestational agents such as progesterone, megestrol, melengestrol, chlormadinone, ethisterone, norethynodrel, l9-norprogesterone, norethindrone, medroxyprogesterone and 17 a-hydroxyprogesterone; humoral agents such as the prostaglandins, for example POE PGE and PFD antipyretics such as aspirin, sodium salicylate, and salicylamide; anti-spasmodics such as atropine, methantheline, papaverine, and methscopolamine bromide; anti-malarials such as the 4-aminoquinolines, 8- aminoquinolines, chloroquine, and pyrimethamine; antihistamines such as diphenhydramine, dimehydrinate, tripelennamine, perphenazine, and carphenazine; cardioactive agents such as hydrochlorothiazide, flumethiazide, chlorothiazide, and trolnitrate; nutritional agents such as vitamins, essential amino acids and essential fats; anti-Parkinsonism agents such as L-dopa, (L-3,4-dihydroxyphenylalanine); investigative antihypotensive agents such as dopamine, 4-(2- aminoethyl) pyrocatechol. Other agents having the same or different physiological activity as those recited above can be employed in osmotic dispensers within the scope of the present invention. Suitable mixtures of drugs can, of course, be explained with equal facility as with single component systems.
The agent can be in various forms, such as unchanged molecules, components of molecular complexes, or non-irritating pharmacologically acceptable salts such as hydrochloride, hydrobromide, sulphate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, and the like. For acidic drugs, salts of metals, amines, or organic cations, for example, quaternary ammonium can be employed. Furthermore, simple derivatives of the drugs such as ethers, esters, amides, and the like which have desirable retention and release characteristics but which are easily hydrolyzed by body pH, enzymes and the like can be employed. The amount of agent incorporated in the osmotic dispenser varies widely depending on the particular agent, the desired therapeutic effect, and the time span for which it takes the agent to be released. Since a variety of dispensers in a variety of sizes and shapes are intended to provide complete dosage regimens for therapy for a variety of maladies, there is no critical upper limit on the amount of drug incorporated in the dispenser. The lower limit too will depend on the activity of the drug and the time span of its release from the dispenser. Thus it is not practical to define a range for the therapeutically effective amount of drug to be released by the dispenser. Thus, the amount dispensed for active agents such as drug will be the standard amount as described in Pharmacology in Medicine, edited by DiPalma, J.R.., 1965, McGraw-l-lill Book Company, New York; The Pharmacological Basis of Therapeutics, Fourth Edition, by Goodman, LS. and Gilman, A.,
Pharmaceutical Sciences, Fourteenth Edition, i970, Mack Publishing Company, Easton, Penn; and the like. Additionally, the drug can be charged into the device in known forms such as solution, dispersion, cream, emulsion, suspensions, fine powders, and the like. Generally, the device will contain about 0.01 to percent or higher of an agent or a mixture of agent and carriers based on the weight of the agent or agent carriers composition solute to the volume of the device, and the like. Typically, the device can be of such size and shape to release 0.01 cc to 5 cc or higher of agent, usually contained in a pharmaceutical carrier, per hour, day or longer, such as 1 cc to 10 cc of agent composition for l to 10 days, and the like.
The expressions passageway and passageway communicating with" as used herein are comprised of those means and methods suitable for releasing the product from the device under the pumping rate of the device. The expression includes an aperture, orifice, bore, stainless steel needles, hollow cellulose acetate tubes, polyolefin tubes, capillary tubes suitable for passing the agent, tubes and conduits of various inside diameters, closed passageways containing a bioerodible material that erodes in the environment of use to produce an open passageway. Typical bioerodible materials include erodible polyglycolic and polylactic fibers, erodible gelatinous filaments, polyvinyl alcohol, and the like.
The following examples are merely illustrative of the present invention and they should not be considered as limiting the scope of the invention in any way, as these examples and other equivalents thereof will become apparent to those versed in the art in the light of the present disclosure, drawings, and the accompanying claims.
An osmotic dispensing device for the continuous release of active agent and having a diameter volume of microliters was manufactured as follows: first, a section of commerically available heat shrinkable poly- (olefine) such as poly(vinylidene chloride) having an internal diameter three thirty-seconds inches was cut into a 5 cm section. Next, a plug of commerically available Silastic silicone rubber was cut from a rod, with the plug having the following dimensions 3 mm long X 3 mm O.D. wherein 0D. is outside diameter. Then, the plug was inserted into the heat shrinkable tubing and held in position between two solid steel rods. One rod entered the tubing from each of its entrances. The unit was heated at 100C in water and pulled longitudinally until the gap between the plug and the rod was 2 mm longer than a mold cavity used for the pulling step. The mold cavity was 7 mm long,
The tubing containing the plug was cooled to room temperature and clamped into ajsecond mold with a milled cavity and a clamping means for confining the encapsulated silicone rubber.- The mold was closed and heated at 100C in water with pressure applied for 30 seconds through one opening of the tubing to expand the tubing to the dimensions of the cavity. The mold was next cooled and tubing housing the plug and having a cavity was removed from the mold.
Next, an osmotic solute slurry was prepared by mixing 500 grams of analytical reagent grade K 80 powder with 200 ml of 2 wt percent ethyl cellulose in ethanol in a Waring blender at the highest speed for about 2 minutes. The appropriate amount of solute was deposited on 15 chambers by dips in the cooled solute slurry with minute intervals between dips. The slurry coated chambers were placed in a near zero humidity dry box to prevent water absorption during evaporation of solvent. A few of the chambers were optionally dipped in gelatin to smooth any pores and add strength to the solute deposit. When gelatin was applied, the gelatine dip was 15 g in 100 ml of distilled water at 60C. All the coated chambers were dried at least 2 hours. The total solute coat thickness was measured at about 0.27 mm.
Next, the dry solute coated chambers were placed in a dipping box containing an acetone atmosphere for dipping in a freshly prepared cellulose acetate membrane solution comprised of IS wt percent cellulose acetate and 85 wt percent acetone. The chambers were dippsed 14 times with 15 minute intervals between dips to deposit a membrane about 14 mils thick.
Four osmotic dispensing devices manufactured according to the above description were changed with a blue dye solution and the dye release rate measured and charted in accompanying FIGS. 4, 5, 6 and 7. The osmotic pumps were placed in an environment of water which was an external fluid. The dispensed blue dye is measured volumetrically or by using standard otpical laboratory measuring instruments. The results obtained show that after a short start-up period, the osmotic devices uniformly dispense about 0.6 p.l/hr. The prolonged and constant pumping rate is obtained to exhaustion of the chamber, or for about 150 hours, and the total volume dispensed from the devices was about 92 ,LLl. The results for the devices measured as shown in FIGS. 4 7 are seen as evidencing the useful operability of the device for its application in industry and commence.
The novel, osmotic product delivery device of this invention employs a unique means which facilitates the obtainment of precisely conducted agent release rates in the environment of use. While there has been described and pointed out the fundamental novel features of the invention as applied to the presently preferred embodiments, those skilled in the art will appreciate that various modifications changes and omisslons in the osmotic agent devices illustrated and described can be made without departing from the spirit of the invention.
What is claimed is:
1. An osmotic dispenser for dispensing an active agent, wherein said dispenser comprises:
a. an inner wall formed of a fexible material essentially impermeable to solute and external fluid, the
wall surrounding and forming,
b. a compartment defined by the inner surface of the wall as a means for housing an active agent,
c. a layer of an osmotically efi'ective solute deposited on the inner walls outer surface, said solute capable of exhibiting an oxmotic pressure gradient against an external fluid when the dispenser is positioned in the environment of use,
d. an outer wall surrounding the layer of solute, said outer wall formed of a material having shape retaining properties and at least a part of the wall is permeable to external fluid and impermeable to solute,
e. a dispensing passageway communicating with the compartment and the exterior of the device for dispensing an agent from the device,
f. a filling passageway communicating with the exterior of the device and the compartment as a means for charging agent into the compartment,
g. a means positioned in the filling passageway for closing the passageway, said means formed of a material that automatically closes after agent is charged into the compartment through the filling passageway.
2. An improved osmoticdispenser for dispensing an active agent according to claim 1 wherein the inner wall material is a heat shrinkable polymeric material.
3. An improved osmotic dispenser for dispensing an active agent according to claim 1 wherein the automatic closing material is an elastomeric material.
4. An improved osmotic dispenser for dispensing an active agent'according to claim 1 wherein the filling passageway is formed of a heat shrinkable polymer in intimate contact with the automatic closing material formed of an elastomeric material.
5. An improved osmotic dispenser for dispensing an active agent according to claim 1 wherein in operation in the environment of use, agent is dispensed from the dispensor by external fluid permeating from the exterior through the permeable outer wall continuously dissolving the solute in a tendency toward osmotic equilibrium with the environment to continually increase the volume between the outer wall and the compartment generating a mechanical or hydrostatic force to cause the compartment to continuously collapse and dispense agent from the device at a controlled rate over a prolonged period of time through the dispensing passageway with essentially no agent dispensed through the filling passageway.
IF k

Claims (5)

1. An osmotic dispenser for dispensing an active agent, wherein said dispenser comprises: a. an inner wall formed of a flexible material essentially impermeable to solute and external fluid, the wall surrounding and forming, b. a compartment defined by the inner surface of the wall as a means for housing an active agent, c. a layer of an osmotically effective solute deposited on the inner wall''s outer surface, said solute capable of exhibiting an osmotic pressure gradient against an external fluid when the dispenser is positioned in the environment of use, d. an outer wall surrounding the layer of solute, said outer wall formed of a material having shape retaining properties and at least a part of the wall is permeable to external fluid and impermeable to solute, e. a dispensing passageway communicating with the compartment and the exterior of the device for dispensing an agent from the device, f. a filling passageway communicating with the exterior of the device and the compartment as a means for charging agent into the compartment, g. a means positioned in the filling passageway for closing the passageway, said means formed of a material that automatically closes after agent is charged into the compartment through the filling passageway.
2. An improved osmotic dispenser for dispensing an active agent according to claim 1 wherein the inner wall material is a heat shrinkable polymeric material.
3. An improved osmotic dispenser for dispensing an active agent according to claim 1 wherein the automatic closing material is an elastomeric material.
4. An improved osmotic dispenser for dispensing an active agent according to claim 1 wherein the filling passageway is formed of a heat shrinkable polymer in intimate contact with the automatic closing material formed of an elastomeric material.
5. An improved osmotic dispenser for dispensing an active agent according to claim 1 wherein in operation in the environment of use, agent is dispensed from the dispensor by external fluid permeating from the exterior through the permeable outer wall continuously dissolving the solute in a tendency toward osmotic equilibrium with the environment to continually increase the volume between the outer wall and the compartment generating a mechanical or hydrostatic force to cause the compartment to continuously collapse and dispense agent from the device at a controlled rate over a prolonged period of time through the dispensing passageway with essentially no agent dispensed through the filling passageway.
US00293551A 1971-09-29 1971-09-29 Osmotically powered agent dispensing device with filling means Expired - Lifetime US3760984A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US29355171A 1971-09-29 1971-09-29

Publications (1)

Publication Number Publication Date
US3760984A true US3760984A (en) 1973-09-25

Family

ID=23129540

Family Applications (1)

Application Number Title Priority Date Filing Date
US00293551A Expired - Lifetime US3760984A (en) 1971-09-29 1971-09-29 Osmotically powered agent dispensing device with filling means

Country Status (1)

Country Link
US (1) US3760984A (en)

Cited By (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865108A (en) * 1971-05-17 1975-02-11 Ortho Pharma Corp Expandable drug delivery device
US3880164A (en) * 1972-05-22 1975-04-29 Alza Corp Osmotic wound drain
US3894538A (en) * 1972-08-10 1975-07-15 Siemens Ag Device for supplying medicines
US3952741A (en) * 1975-01-09 1976-04-27 Bend Research Inc. Controlled release delivery system by an osmotic bursting mechanism
US3987790A (en) * 1975-10-01 1976-10-26 Alza Corporation Osmotically driven fluid dispenser
US3995631A (en) * 1971-01-13 1976-12-07 Alza Corporation Osmotic dispenser with means for dispensing active agent responsive to osmotic gradient
DE2640904A1 (en) * 1975-09-11 1977-03-24 Alza Corp DEVICE FOR DELIVERING ACTIVE INGREDIENTS BY OSMOSIS AND PROCESS FOR THE PREPARATION
US4031202A (en) * 1975-12-08 1977-06-21 The Procter & Gamble Company Controlled release contraceptive article
US4034756A (en) * 1971-01-13 1977-07-12 Alza Corporation Osmotically driven fluid dispenser
US4054138A (en) * 1974-12-30 1977-10-18 Louis Bucalo Implants for acting on living beings
US4073833A (en) * 1975-12-08 1978-02-14 The Procter & Gamble Company Encapsulation process
US4111202A (en) * 1976-11-22 1978-09-05 Alza Corporation Osmotic system for the controlled and delivery of agent over time
US4111203A (en) * 1976-11-22 1978-09-05 Alza Corporation Osmotic system with means for improving delivery kinetics of system
US4111201A (en) * 1976-11-22 1978-09-05 Alza Corporation Osmotic system for delivering selected beneficial agents having varying degrees of solubility
US4177256A (en) * 1973-04-25 1979-12-04 Alza Corporation Osmotic bursting drug delivery device
US4180073A (en) * 1977-08-29 1979-12-25 Alza Corporation Device for delivering drug to biological environment
US4203442A (en) * 1977-08-29 1980-05-20 Alza Corporation Device for delivering drug to a fluid environment
US4203440A (en) * 1978-10-23 1980-05-20 Alza Corporation Device having variable volume chamber for dispensing useful agent
US4207893A (en) * 1977-08-29 1980-06-17 Alza Corporation Device using hydrophilic polymer for delivering drug to biological environment
US4223061A (en) * 1977-10-25 1980-09-16 Alza Corporation Hydrophilic laminate useful for making dispensing device
FR2452918A1 (en) * 1979-04-02 1980-10-31 Alza Corp Liq. dispensing device - contains hydrophilic, water-insol. water-swellable polymer layer between compressible container and rigid casing
US4237893A (en) * 1979-11-28 1980-12-09 Alza Corporation Cervical dilator
US4304232A (en) * 1979-03-14 1981-12-08 Alza Corporation Unit system having multiplicity of means for dispensing useful agent
EP0048541A1 (en) * 1980-07-18 1982-03-31 Alza Corporation Osmotically driven fluid dispenser
DE3228595A1 (en) * 1981-07-31 1983-02-17 Alza Corp., 94304 Palo Alto, Calif. SYSTEM FOR PARENTERAL ADMINISTRATION OF AN ACTIVE SUBSTANCE
US4432756A (en) * 1981-11-27 1984-02-21 Alza Corporation Parenteral controlled therapy
US4473370A (en) * 1981-09-14 1984-09-25 Weiss Jeffrey N Protective eye shield
US4479793A (en) * 1981-11-27 1984-10-30 Alza Corporation Parenteral administration using drug delivery device
US4479794A (en) * 1981-11-27 1984-10-30 Alza Corporation System for intravenous therapy
US4484909A (en) * 1981-11-27 1984-11-27 Alza Corporation Parenteral therapy using solid drug
US4493702A (en) * 1981-11-27 1985-01-15 Alza Corporation Parenteral administration using osmotically motivated delivery system
US4511353A (en) * 1981-07-13 1985-04-16 Alza Corporation Intravenous system for delivering a beneficial agent
US4511351A (en) * 1984-05-14 1985-04-16 Alza Corporation Parenteral delivery system utilizing a hollow fiber cellular unit
US4511352A (en) * 1984-05-14 1985-04-16 Alza Corporation Parenteral delivery system with in-line container
US4515585A (en) * 1982-05-24 1985-05-07 Alza Corporation System for parenteral administration of agent
US4525162A (en) * 1981-07-31 1985-06-25 Alza Corporation Parenteral controlled delivery
US4548599A (en) * 1981-11-27 1985-10-22 Alza Corporation Parenteral controlled therapy
US4552556A (en) * 1981-11-27 1985-11-12 Alza Corporation Parenteral controlled therapy
US4579553A (en) * 1981-11-27 1986-04-01 Alza Corporation Parenteral controlled therapy
US4583981A (en) * 1981-11-27 1986-04-22 Alza Corporation Parenteral controlled therapy, using a porous matrix with parenteral agent
US4586922A (en) * 1981-10-09 1986-05-06 Alza Corporation Intravenous system for delivering a beneficial agent
US4596555A (en) * 1984-05-14 1986-06-24 Alza Corporation Parenteral delivery system utilizing a hollow fiber cellular unit
US4663149A (en) * 1984-03-21 1987-05-05 Alza Corporation Dispenser comprising inner and outer walls functioning as cooperative unit
US4663148A (en) * 1984-03-21 1987-05-05 Alza Corporation Dispenser comprising telescopically engaging members
US4664650A (en) * 1982-05-24 1987-05-12 Alza Corporation Apparatus for parenteral infusion of fluid containing beneficial agent
US4692326A (en) * 1984-03-21 1987-09-08 Alza Corporation Dispenser comprising inner positioned soft or hard capsule
US4716031A (en) * 1984-03-21 1987-12-29 Alza Corporation Drug dispenser comprising a multiplicity of members acting together for successfully dispensing drug
EP0259013A1 (en) 1986-08-04 1988-03-09 Pharmetrix Corporation Portable controlled release osmotic infusion device
DE3634864A1 (en) * 1983-11-02 1988-04-14 Alza Corp DELIVERY DEVICE FOR RELEASING A TEMPERATURE-RELEVANT MEASURE
US4740200A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4740199A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4740197A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent via polymer delivery
US4740198A (en) * 1981-10-09 1988-04-26 Alza Corporation Method of administering intravenous drug using rate-controlled dosage form
US4740201A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4740103A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4741735A (en) * 1981-10-09 1988-05-03 Alza Corporation Intravenous system for delivering a beneficial agent
US4741734A (en) * 1981-10-09 1988-05-03 Alza Corporation Releasing means for adding agent using releasing means to IV fluid
US4790820A (en) * 1981-07-13 1988-12-13 Alza Corporation Parenteral agent dispensing equipment with drug releasing member
US4800056A (en) * 1984-03-21 1989-01-24 Alza Corporation Process for making dispenser with cooperating elements
US4814180A (en) * 1984-03-21 1989-03-21 Alza Corporation Agent dispenser comprising a semipermeable wall surrounding single-piece or two-piece container
US4857052A (en) * 1981-07-13 1989-08-15 Alza Corporation Intravenous system for delivering a beneficial agent
US4865845A (en) * 1986-03-21 1989-09-12 Alza Corporation Release rate adjustment of osmotic or diffusional delivery devices
US4871360A (en) * 1981-07-31 1989-10-03 Alza Corporation System for intravenous delivery of a beneficial drug at a regulated rates
US4908019A (en) * 1982-05-24 1990-03-13 Alza Corporation Apparatus comprising dual reservoirs for parenteral infusion of fluid containing beneficial agent
US4929233A (en) * 1988-08-26 1990-05-29 Alza Corporation Implantable fluid imbibing pump with improved closure
US4946456A (en) * 1988-08-26 1990-08-07 Alza Corp. Fluid imbibing pump activated by capillary action of a fabric or polymeric sleeve
US4969872A (en) * 1989-03-08 1990-11-13 Alza Corporation Intravenous system for delivering a beneficial agent with delivery rate control via permeable surface area variance
US4969884A (en) * 1988-12-28 1990-11-13 Alza Corporation Osmotically driven syringe
US4973307A (en) * 1981-07-13 1990-11-27 Alza Corporation Method for administering drugs to a patient
US4976966A (en) * 1988-12-29 1990-12-11 Alza Corporation Delayed release osmotically driven fluid dispenser
US4985017A (en) * 1981-07-13 1991-01-15 Alza Corporation Parenteral therapeutical system comprising drug cell
US4994031A (en) * 1981-07-13 1991-02-19 Alza Corporation Intravenous system for delivering a beneficial agent
US5024657A (en) * 1984-12-03 1991-06-18 Baxter International Inc. Drug delivery apparatus and method preventing local and systemic toxicity
US5024663A (en) * 1990-02-21 1991-06-18 Alza Corporation Self-contained suction pump
US5030216A (en) * 1989-12-15 1991-07-09 Alza Corporation Osmotically driven syringe
US5030203A (en) * 1987-11-16 1991-07-09 Baxter International Inc. Ampule for controlled administration of beneficial agent
US5069671A (en) * 1981-07-13 1991-12-03 Alza Corporation Intravenous medication
US5151093A (en) * 1990-10-29 1992-09-29 Alza Corporation Osmotically driven syringe with programmable agent delivery
USRE34365E (en) * 1981-07-13 1993-08-31 Intravenous system for delivering a beneficial agent
US5279608A (en) * 1990-12-18 1994-01-18 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Osmotic pumps
US5540665A (en) * 1994-01-31 1996-07-30 Alza Corporation Gas driven dispensing device and gas generating engine therefor
WO1998043611A1 (en) * 1997-03-31 1998-10-08 Alza Corporation Diffusional implantable delivery system
US6180129B1 (en) * 1988-12-13 2001-01-30 Alza Corporation Polyurethane-containing delivery systems
WO2001026714A1 (en) 1999-10-12 2001-04-19 Durect Corporation Regulation of drug delivery through flow diversion
US6251432B1 (en) 1999-07-01 2001-06-26 Abbott Laboratories Sustained release dosage form unit having latex coating and method of making the same
US20010047161A1 (en) * 2000-02-04 2001-11-29 Wong Patrick S.L. Osmotically-driven fluid dispenser and composition
US20020007173A1 (en) * 1997-07-10 2002-01-17 Kundig Thomas M. Method of inducing a CTL response
US6347934B1 (en) 2000-05-10 2002-02-19 E. Khashoggi Industries, Llc. System for metering and delivering a moldable composition into a mold
WO2002043800A2 (en) 2000-11-29 2002-06-06 Durect Corporation Devices and methods for controlled delivery from a drug delivery device
US6464688B1 (en) 2000-02-15 2002-10-15 Microsolutions, Inc. Osmotic pump delivery system with flexible drug compartment
US20020151876A1 (en) * 2001-02-07 2002-10-17 Tai-Wah Chan Devices and methods for management of bone density
US6471688B1 (en) 2000-02-15 2002-10-29 Microsolutions, Inc. Osmotic pump drug delivery systems and methods
US20020177839A1 (en) * 2001-04-20 2002-11-28 Cormier Michel J. N. Microprojection array having a beneficial agent containing coating
US6541021B1 (en) 1999-03-18 2003-04-01 Durect Corporation Devices and methods for pain management
EP1304105A2 (en) * 1997-03-31 2003-04-23 Alza Corporation Diffusional implantable delivery system
US20030088204A1 (en) * 2001-11-02 2003-05-08 Joshi Ashok V Novel iontophoretic drug delivery systems
US20030088236A1 (en) * 1999-03-18 2003-05-08 Johnson Randolph Mellus Implantable devices and methods for treatment of pain by delivery of fentanyl and fentanyl congeners
US20030135202A1 (en) * 2001-04-19 2003-07-17 Microsolutions, Inc. Implantable osmotic pump
US6616652B1 (en) 2000-02-15 2003-09-09 Microsolutions, Inc. Osmotic pump delivery system with pre-hydrated membrane(s) and/or primable catheter
US6627631B1 (en) * 1999-02-19 2003-09-30 Lts Lohmann Therapie-Systeme Ag Pharmaceutical composition containing desoxypeganine for the treatment of alcoholism
WO2004022069A1 (en) 2002-09-06 2004-03-18 Durect Corporation Delivery of modulators of glutamate-mediated neurotransmission to the inner ear
US20040102476A1 (en) * 2002-11-25 2004-05-27 Chan Tai Wah High concentration formulations of opioids and opioid derivatives
US6775570B2 (en) 2002-02-04 2004-08-10 Ceramatec, Inc. Iontophoretic treatment device
US20040230183A1 (en) * 2003-02-18 2004-11-18 Wisam Breegi Drug delivery device and syringe for filling the same
US20050118246A1 (en) * 2003-10-31 2005-06-02 Wong Patrick S. Dosage forms and layered deposition processes for fabricating dosage forms
US20050143789A1 (en) * 2001-01-30 2005-06-30 Whitehurst Todd K. Methods and systems for stimulating a peripheral nerve to treat chronic pain
US20050154419A1 (en) * 2001-01-30 2005-07-14 Whitehurst Todd K. Methods and systems for stimulating a nerve originating in an upper cervical spine area to treat a medical condition
US20050187530A1 (en) * 2000-06-01 2005-08-25 Davidson Roderick I. Super absorbent driven dispenser
US20050228451A1 (en) * 1998-07-06 2005-10-13 Jaax Kristen N Methods and systems for treating chronic pelvic pain
US20060020253A1 (en) * 2004-07-26 2006-01-26 Prescott Anthony D Implantable device having reservoir with controlled release of medication and method of manufacturing the same
US20060020248A1 (en) * 2004-07-26 2006-01-26 Prescott Anthony D Lacrimal insert having reservoir with controlled release of medication and method of manufacturing the same
US6994851B1 (en) 1997-07-10 2006-02-07 Mannkind Corporation Method of inducing a CTL response
US20060036293A1 (en) * 2004-08-16 2006-02-16 Whitehurst Todd K Methods for treating gastrointestinal disorders
US20060064140A1 (en) * 2001-01-30 2006-03-23 Whitehurst Todd K Methods and systems for stimulating a trigeminal nerve to treat a psychiatric disorder
US7047069B2 (en) 2002-02-04 2006-05-16 Ceramatec, Inc. Iontophoretic fluid delivery device
US20060129201A1 (en) * 2004-12-06 2006-06-15 Lee Philip H J Stimulation of the stomach in response to sensed parameters to treat obesity
US20060149340A1 (en) * 2002-07-31 2006-07-06 Karunasiri Rankiri T Systems and methods for providing power to one or more implantable devices
US20060153844A1 (en) * 2004-12-29 2006-07-13 Thomas Kundig Methods to trigger, maintain and manipulate immune responses by targeted administration of biological response modifiers into lymphoid organs
US20060161217A1 (en) * 2004-12-21 2006-07-20 Jaax Kristen N Methods and systems for treating obesity
US20060185665A1 (en) * 2005-02-22 2006-08-24 Bachinski Thomas J Sauna fireplace
US20060194724A1 (en) * 2005-02-25 2006-08-31 Whitehurst Todd K Methods and systems for nerve regeneration
US20060206165A1 (en) * 2005-03-14 2006-09-14 Jaax Kristen N Occipital nerve stimulation to treat headaches and other conditions
US20060235484A1 (en) * 2005-03-14 2006-10-19 Jaax Kristen N Stimulation of a stimulation site within the neck or head
US20060247728A1 (en) * 2004-12-21 2006-11-02 Foster Allison M Methods and systems for treating autism by decreasing neural activity within the brain
US20060264913A1 (en) * 2002-09-06 2006-11-23 Poutiatine Andrew I Implantable flow regulator with failsafe mode and reserve drug supply
US20070014820A1 (en) * 2003-01-23 2007-01-18 Dana Litmanovitz Opioid formulations
US20070049988A1 (en) * 2005-03-14 2007-03-01 Rafael Carbunaru Optimal electrode contact polarity configurations for implantable stimulation systems
US20070066997A1 (en) * 2005-09-21 2007-03-22 He Tom X Methods and systems for placing an implanted stimulator for stimulating tissue
US20070083240A1 (en) * 2003-05-08 2007-04-12 Peterson David K L Methods and systems for applying stimulation and sensing one or more indicators of cardiac activity with an implantable stimulator
US20070100393A1 (en) * 2002-05-24 2007-05-03 Whitehurst Todd K Treatment of movement disorders by brain stimulation
US20070117841A1 (en) * 2003-10-24 2007-05-24 Ozes Osman N Use of pirfenidone in therapeutic regimens
WO2007059010A2 (en) 2005-11-14 2007-05-24 Enterprise Partners Venture Capital Stem cell factor therapy for tissue injury
US20070156180A1 (en) * 2005-12-30 2007-07-05 Jaax Kristen N Methods and systems for treating osteoarthritis
US20070219595A1 (en) * 2006-03-14 2007-09-20 Advanced Bionics Corporation Stimulator system with electrode array and the method of making the same
US20070250136A1 (en) * 2006-03-29 2007-10-25 Karunasiri Rankiri T Systems and methods of facilitating communication between a first and second device
US20080027513A1 (en) * 2004-07-09 2008-01-31 Advanced Bionics Corporation Systems And Methods For Using A Butterfly Coil To Communicate With Or Transfer Power To An Implantable Medical Device
US7347746B1 (en) 2006-10-27 2008-03-25 Boston Scientific Neuromodulation Corporation Receptacle connector assembly
US20080102119A1 (en) * 2006-11-01 2008-05-01 Medtronic, Inc. Osmotic pump apparatus and associated methods
US20080131398A1 (en) * 2006-08-21 2008-06-05 United Therapeutics Corporation Combination therapy for treatment of viral infections
US20080177219A1 (en) * 2007-01-23 2008-07-24 Joshi Ashok V Method for Iontophoretic Fluid Delivery
US7445528B1 (en) 2006-09-29 2008-11-04 Boston Scientific Neuromodulation Corporation Connector assemblies
US20090281605A1 (en) * 2004-05-28 2009-11-12 Boston Scientific Neuromodulation Corporation Engagement tool for implantable medical devices
US20100030287A1 (en) * 2004-12-21 2010-02-04 Boston Scientific Neuromodulation Corporation Methods for treating autism
US7729758B2 (en) 2005-11-30 2010-06-01 Boston Scientific Neuromodulation Corporation Magnetically coupled microstimulators
US7769461B2 (en) 2003-12-19 2010-08-03 Boston Scientific Neuromodulation Corporation Skull-mounted electrical stimulation system and method for treating patients
US7799037B1 (en) 2000-02-24 2010-09-21 Boston Scientific Neuromodulation Corporation Surgical insertion tool
WO2010107739A2 (en) 2009-03-18 2010-09-23 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions of treating a flaviviridae family viral infection
US7835803B1 (en) 2006-01-17 2010-11-16 Boston Scientific Neuromodulation Corporation Lead assemblies with one or more switching networks
US7848803B1 (en) 2005-03-14 2010-12-07 Boston Scientific Neuromodulation Corporation Methods and systems for facilitating stimulation of one or more stimulation sites
US7846332B1 (en) * 2006-06-23 2010-12-07 Mainstream Engineering Corporation Apparatus and method for self-heating and self-hydrating foods and beverages
EP2390262A1 (en) 2003-05-16 2011-11-30 Intermune, Inc. Synthetic chemokine receptor ligands and methods of use thereof
US8197844B2 (en) 2007-06-08 2012-06-12 Activatek, Inc. Active electrode for transdermal medicament administration
US20120237353A1 (en) * 2009-09-22 2012-09-20 Ecp Entwicklungsgesellschaft Mbh Compressible rotor for a fluid pump
WO2012175698A1 (en) 2011-06-23 2012-12-27 Université Libre de Bruxelles Therapeutic use of all-trans retinoic acid (atra) in patients suffering from alcoholic liver disease
WO2013033636A2 (en) 2011-09-01 2013-03-07 University Of Southern California Methods for preparing high throughput peptidomimetics, orally bioavailable drugs and compositions containing same
US8401654B1 (en) 2006-06-30 2013-03-19 Boston Scientific Neuromodulation Corporation Methods and systems for treating one or more effects of deafferentation
US8423155B1 (en) 2005-03-14 2013-04-16 Boston Scientific Neuromodulation Corporation Methods and systems for facilitating stimulation of one or more stimulation sites
US8504163B1 (en) 2006-06-30 2013-08-06 Boston Scientific Neuromodulation Corporation Cranially mounted stimulation systems and methods
US8515541B1 (en) 2004-12-22 2013-08-20 Boston Scientific Neuromodulation Corporation Methods and systems for treating post-stroke disorders
US8862223B2 (en) 2008-01-18 2014-10-14 Activatek, Inc. Active transdermal medicament patch and circuit board for same
WO2015085312A1 (en) 2013-12-06 2015-06-11 Durect Corporation Compositions comprising antioxidant, fluid dispensers, and methods involving the same
US9138569B2 (en) 2012-02-29 2015-09-22 SinuSys Corporation Devices and methods for dilating a paranasal sinus opening and for treating sinusitis
US9327069B2 (en) 2004-12-21 2016-05-03 Boston Scientific Neuromodulation Corporation Methods and systems for treating a medical condition by promoting neural remodeling within the brain
US9352145B2 (en) 2004-12-22 2016-05-31 Boston Scientific Neuromodulation Corporation Methods and systems for treating a psychotic disorder
EP3025727A1 (en) 2008-10-02 2016-06-01 The J. David Gladstone Institutes Methods of treating liver disease
US9358393B1 (en) 2004-11-09 2016-06-07 Andres M. Lozano Stimulation methods and systems for treating an auditory dysfunction
US9364484B2 (en) 2011-12-06 2016-06-14 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for treating viral diseases
US9498239B2 (en) 2010-08-30 2016-11-22 SinuSys Corporation Devices and methods for inserting a sinus dilator
WO2016196840A1 (en) 2015-06-03 2016-12-08 Principia Biopharma Inc. Tyrosine kinase inhibitors
WO2016210165A1 (en) 2015-06-24 2016-12-29 Principia Biopharma Inc. Tyrosine kinase inhibitors
WO2017023863A1 (en) 2015-07-31 2017-02-09 Research Institute At Nationwide Children's Hospital Peptides and antibodies for the removal of biofilms
WO2017066719A2 (en) 2015-10-14 2017-04-20 Research Institute At Nationwide Children's Hospital Hu specific interfering agents
US9687263B2 (en) 2013-05-30 2017-06-27 SinuSys Corporation Devices and methods for inserting a sinus dilator
WO2017168174A1 (en) 2016-04-02 2017-10-05 N4 Pharma Uk Limited New pharmaceutical forms of sildenafil
WO2018002673A1 (en) 2016-07-01 2018-01-04 N4 Pharma Uk Limited Novel formulations of angiotensin ii receptor antagonists
WO2018115888A1 (en) 2016-12-21 2018-06-28 N4 Pharma Uk Limited Novel formulations of aprepitant
WO2018129092A1 (en) 2017-01-04 2018-07-12 Research Institute At Nationwide Children's Hospital Antibody fragments for the treatment of biofilm-related disorders
WO2018129078A1 (en) 2017-01-04 2018-07-12 Research Institute At Nationwide Children's Hospital Dnabii vaccines and antibodies with enhanced activity
US10549030B2 (en) * 2016-09-08 2020-02-04 Eoflow Co., Ltd. Liquid medicine injection device
WO2021007260A2 (en) 2019-07-08 2021-01-14 Research Institute At Nationwide Children's Hospital Antibody compositions for disrupting biofilms
WO2021150476A1 (en) 2020-01-20 2021-07-29 Genzyme Corporation Therapeutic tyrosine kinase inhibitors for relapsing multiple sclerosis (rms)
WO2021211919A1 (en) 2020-04-17 2021-10-21 Genzyme Corporation Eclitasertib for use in treating conditions involving systemic hyperinflammatory response
WO2024006406A1 (en) 2022-06-30 2024-01-04 Genzyme Corporation Therapeutic tyrosine kinase inhibitors for multiple sclerosis and myasthenia gravis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604417A (en) * 1970-03-31 1971-09-14 Wayne Henry Linkenheimer Osmotic fluid reservoir for osmotically activated long-term continuous injector device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604417A (en) * 1970-03-31 1971-09-14 Wayne Henry Linkenheimer Osmotic fluid reservoir for osmotically activated long-term continuous injector device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Australian Journal Experimental Biology (1955), 33, pp. 415 420. *

Cited By (257)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995631A (en) * 1971-01-13 1976-12-07 Alza Corporation Osmotic dispenser with means for dispensing active agent responsive to osmotic gradient
US4034756A (en) * 1971-01-13 1977-07-12 Alza Corporation Osmotically driven fluid dispenser
US3865108A (en) * 1971-05-17 1975-02-11 Ortho Pharma Corp Expandable drug delivery device
US3880164A (en) * 1972-05-22 1975-04-29 Alza Corp Osmotic wound drain
US3894538A (en) * 1972-08-10 1975-07-15 Siemens Ag Device for supplying medicines
US4177256A (en) * 1973-04-25 1979-12-04 Alza Corporation Osmotic bursting drug delivery device
US4054138A (en) * 1974-12-30 1977-10-18 Louis Bucalo Implants for acting on living beings
US3952741A (en) * 1975-01-09 1976-04-27 Bend Research Inc. Controlled release delivery system by an osmotic bursting mechanism
DE2640904A1 (en) * 1975-09-11 1977-03-24 Alza Corp DEVICE FOR DELIVERING ACTIVE INGREDIENTS BY OSMOSIS AND PROCESS FOR THE PREPARATION
US3987790A (en) * 1975-10-01 1976-10-26 Alza Corporation Osmotically driven fluid dispenser
DE2644267A1 (en) * 1975-10-01 1977-04-14 Alza Corp DEVICE FOR DISPENSING A LIQUID BY OSMOSIS
DK156243B (en) * 1975-10-01 1989-07-17 Alza Corp OSMOTIC DRIVE FLUIDUM DISPENSER
US4031202A (en) * 1975-12-08 1977-06-21 The Procter & Gamble Company Controlled release contraceptive article
US4073833A (en) * 1975-12-08 1978-02-14 The Procter & Gamble Company Encapsulation process
US4111202A (en) * 1976-11-22 1978-09-05 Alza Corporation Osmotic system for the controlled and delivery of agent over time
US4111203A (en) * 1976-11-22 1978-09-05 Alza Corporation Osmotic system with means for improving delivery kinetics of system
US4111201A (en) * 1976-11-22 1978-09-05 Alza Corporation Osmotic system for delivering selected beneficial agents having varying degrees of solubility
US4180073A (en) * 1977-08-29 1979-12-25 Alza Corporation Device for delivering drug to biological environment
US4203442A (en) * 1977-08-29 1980-05-20 Alza Corporation Device for delivering drug to a fluid environment
US4207893A (en) * 1977-08-29 1980-06-17 Alza Corporation Device using hydrophilic polymer for delivering drug to biological environment
US4223061A (en) * 1977-10-25 1980-09-16 Alza Corporation Hydrophilic laminate useful for making dispensing device
US4203440A (en) * 1978-10-23 1980-05-20 Alza Corporation Device having variable volume chamber for dispensing useful agent
US4304232A (en) * 1979-03-14 1981-12-08 Alza Corporation Unit system having multiplicity of means for dispensing useful agent
FR2452918A1 (en) * 1979-04-02 1980-10-31 Alza Corp Liq. dispensing device - contains hydrophilic, water-insol. water-swellable polymer layer between compressible container and rigid casing
US4237893A (en) * 1979-11-28 1980-12-09 Alza Corporation Cervical dilator
EP0048541A1 (en) * 1980-07-18 1982-03-31 Alza Corporation Osmotically driven fluid dispenser
USRE34365E (en) * 1981-07-13 1993-08-31 Intravenous system for delivering a beneficial agent
US4973307A (en) * 1981-07-13 1990-11-27 Alza Corporation Method for administering drugs to a patient
US5069671A (en) * 1981-07-13 1991-12-03 Alza Corporation Intravenous medication
US4985017A (en) * 1981-07-13 1991-01-15 Alza Corporation Parenteral therapeutical system comprising drug cell
US4511353A (en) * 1981-07-13 1985-04-16 Alza Corporation Intravenous system for delivering a beneficial agent
US4857052A (en) * 1981-07-13 1989-08-15 Alza Corporation Intravenous system for delivering a beneficial agent
US4994031A (en) * 1981-07-13 1991-02-19 Alza Corporation Intravenous system for delivering a beneficial agent
US4790820A (en) * 1981-07-13 1988-12-13 Alza Corporation Parenteral agent dispensing equipment with drug releasing member
DE3228595A1 (en) * 1981-07-31 1983-02-17 Alza Corp., 94304 Palo Alto, Calif. SYSTEM FOR PARENTERAL ADMINISTRATION OF AN ACTIVE SUBSTANCE
US4871360A (en) * 1981-07-31 1989-10-03 Alza Corporation System for intravenous delivery of a beneficial drug at a regulated rates
US4525162A (en) * 1981-07-31 1985-06-25 Alza Corporation Parenteral controlled delivery
US4473370A (en) * 1981-09-14 1984-09-25 Weiss Jeffrey N Protective eye shield
US4740201A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4740200A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4741734A (en) * 1981-10-09 1988-05-03 Alza Corporation Releasing means for adding agent using releasing means to IV fluid
US4586922A (en) * 1981-10-09 1986-05-06 Alza Corporation Intravenous system for delivering a beneficial agent
US4741735A (en) * 1981-10-09 1988-05-03 Alza Corporation Intravenous system for delivering a beneficial agent
US4740103A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4740198A (en) * 1981-10-09 1988-04-26 Alza Corporation Method of administering intravenous drug using rate-controlled dosage form
US4740197A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent via polymer delivery
US4740199A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4552556A (en) * 1981-11-27 1985-11-12 Alza Corporation Parenteral controlled therapy
US4493702A (en) * 1981-11-27 1985-01-15 Alza Corporation Parenteral administration using osmotically motivated delivery system
US4579553A (en) * 1981-11-27 1986-04-01 Alza Corporation Parenteral controlled therapy
US4484909A (en) * 1981-11-27 1984-11-27 Alza Corporation Parenteral therapy using solid drug
US4479794A (en) * 1981-11-27 1984-10-30 Alza Corporation System for intravenous therapy
US4479793A (en) * 1981-11-27 1984-10-30 Alza Corporation Parenteral administration using drug delivery device
US4432756A (en) * 1981-11-27 1984-02-21 Alza Corporation Parenteral controlled therapy
US4583981A (en) * 1981-11-27 1986-04-22 Alza Corporation Parenteral controlled therapy, using a porous matrix with parenteral agent
US4548599A (en) * 1981-11-27 1985-10-22 Alza Corporation Parenteral controlled therapy
US4664650A (en) * 1982-05-24 1987-05-12 Alza Corporation Apparatus for parenteral infusion of fluid containing beneficial agent
US4515585A (en) * 1982-05-24 1985-05-07 Alza Corporation System for parenteral administration of agent
US4908019A (en) * 1982-05-24 1990-03-13 Alza Corporation Apparatus comprising dual reservoirs for parenteral infusion of fluid containing beneficial agent
DE3634864A1 (en) * 1983-11-02 1988-04-14 Alza Corp DELIVERY DEVICE FOR RELEASING A TEMPERATURE-RELEVANT MEASURE
US4716031A (en) * 1984-03-21 1987-12-29 Alza Corporation Drug dispenser comprising a multiplicity of members acting together for successfully dispensing drug
US4814180A (en) * 1984-03-21 1989-03-21 Alza Corporation Agent dispenser comprising a semipermeable wall surrounding single-piece or two-piece container
US4800056A (en) * 1984-03-21 1989-01-24 Alza Corporation Process for making dispenser with cooperating elements
US4692326A (en) * 1984-03-21 1987-09-08 Alza Corporation Dispenser comprising inner positioned soft or hard capsule
US4663148A (en) * 1984-03-21 1987-05-05 Alza Corporation Dispenser comprising telescopically engaging members
US4663149A (en) * 1984-03-21 1987-05-05 Alza Corporation Dispenser comprising inner and outer walls functioning as cooperative unit
US4511352A (en) * 1984-05-14 1985-04-16 Alza Corporation Parenteral delivery system with in-line container
US4511351A (en) * 1984-05-14 1985-04-16 Alza Corporation Parenteral delivery system utilizing a hollow fiber cellular unit
US4596555A (en) * 1984-05-14 1986-06-24 Alza Corporation Parenteral delivery system utilizing a hollow fiber cellular unit
US5024657A (en) * 1984-12-03 1991-06-18 Baxter International Inc. Drug delivery apparatus and method preventing local and systemic toxicity
US4865845A (en) * 1986-03-21 1989-09-12 Alza Corporation Release rate adjustment of osmotic or diffusional delivery devices
EP0259013A1 (en) 1986-08-04 1988-03-09 Pharmetrix Corporation Portable controlled release osmotic infusion device
US5030203A (en) * 1987-11-16 1991-07-09 Baxter International Inc. Ampule for controlled administration of beneficial agent
US4929233A (en) * 1988-08-26 1990-05-29 Alza Corporation Implantable fluid imbibing pump with improved closure
US4946456A (en) * 1988-08-26 1990-08-07 Alza Corp. Fluid imbibing pump activated by capillary action of a fabric or polymeric sleeve
US6180129B1 (en) * 1988-12-13 2001-01-30 Alza Corporation Polyurethane-containing delivery systems
US4969884A (en) * 1988-12-28 1990-11-13 Alza Corporation Osmotically driven syringe
US4976966A (en) * 1988-12-29 1990-12-11 Alza Corporation Delayed release osmotically driven fluid dispenser
US4969872A (en) * 1989-03-08 1990-11-13 Alza Corporation Intravenous system for delivering a beneficial agent with delivery rate control via permeable surface area variance
US5030216A (en) * 1989-12-15 1991-07-09 Alza Corporation Osmotically driven syringe
US5024663A (en) * 1990-02-21 1991-06-18 Alza Corporation Self-contained suction pump
US5151093A (en) * 1990-10-29 1992-09-29 Alza Corporation Osmotically driven syringe with programmable agent delivery
US5312389A (en) * 1990-10-29 1994-05-17 Felix Theeuwes Osmotically driven syringe with programmable agent delivery
US5279608A (en) * 1990-12-18 1994-01-18 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Osmotic pumps
US5540665A (en) * 1994-01-31 1996-07-30 Alza Corporation Gas driven dispensing device and gas generating engine therefor
EP1304105A3 (en) * 1997-03-31 2003-06-11 Alza Corporation Diffusional implantable delivery system
US5972369A (en) * 1997-03-31 1999-10-26 Alza Corporation Diffusional implantable delivery system
WO1998043611A1 (en) * 1997-03-31 1998-10-08 Alza Corporation Diffusional implantable delivery system
EP1304105A2 (en) * 1997-03-31 2003-04-23 Alza Corporation Diffusional implantable delivery system
US20060153858A1 (en) * 1997-07-10 2006-07-13 Kundig Thomas M Method of inducing a CTL response
US6977074B2 (en) 1997-07-10 2005-12-20 Mannkind Corporation Method of inducing a CTL response
US8372393B2 (en) 1997-07-10 2013-02-12 Mannkind Corporation Method of inducing a CTL response
US7364729B2 (en) 1997-07-10 2008-04-29 Mannkind Corporation Method of inducing a CTL response
US6994851B1 (en) 1997-07-10 2006-02-07 Mannkind Corporation Method of inducing a CTL response
US20090035252A1 (en) * 1997-07-10 2009-02-05 Kundig Thomas M Method of inducing a CTL response
US20020007173A1 (en) * 1997-07-10 2002-01-17 Kundig Thomas M. Method of inducing a CTL response
US7890176B2 (en) 1998-07-06 2011-02-15 Boston Scientific Neuromodulation Corporation Methods and systems for treating chronic pelvic pain
US20050228451A1 (en) * 1998-07-06 2005-10-13 Jaax Kristen N Methods and systems for treating chronic pelvic pain
US6627631B1 (en) * 1999-02-19 2003-09-30 Lts Lohmann Therapie-Systeme Ag Pharmaceutical composition containing desoxypeganine for the treatment of alcoholism
US20030088236A1 (en) * 1999-03-18 2003-05-08 Johnson Randolph Mellus Implantable devices and methods for treatment of pain by delivery of fentanyl and fentanyl congeners
US6835194B2 (en) 1999-03-18 2004-12-28 Durect Corporation Implantable devices and methods for treatment of pain by delivery of fentanyl and fentanyl congeners
US6541021B1 (en) 1999-03-18 2003-04-01 Durect Corporation Devices and methods for pain management
US20050129737A1 (en) * 1999-03-18 2005-06-16 Johnson Randolph M. Devices and methods for pain management
US6689373B2 (en) 1999-03-18 2004-02-10 Durect Corporation Devices and methods for pain management
US20050106205A1 (en) * 1999-03-18 2005-05-19 Gillis Edward M. Implantable devices and methods for treatment of pain by delivery of fentanyl and fentanyl congeners
US20040157884A1 (en) * 1999-03-18 2004-08-12 Johnson Randolph Mellus Devices and methods for pain management
US6251432B1 (en) 1999-07-01 2001-06-26 Abbott Laboratories Sustained release dosage form unit having latex coating and method of making the same
US6620434B2 (en) 1999-07-01 2003-09-16 Abbott Laboratories Sustained release dosage form unit having latex coating and method of making the same
WO2001026714A1 (en) 1999-10-12 2001-04-19 Durect Corporation Regulation of drug delivery through flow diversion
US20080249497A1 (en) * 2000-02-04 2008-10-09 Wong Patrick S L Osmotically-driven fluid dispenser
US20010047161A1 (en) * 2000-02-04 2001-11-29 Wong Patrick S.L. Osmotically-driven fluid dispenser and composition
US7335193B2 (en) 2000-02-04 2008-02-26 Durect Corporation Osmotically-driven fluid dispenser
US6616652B1 (en) 2000-02-15 2003-09-09 Microsolutions, Inc. Osmotic pump delivery system with pre-hydrated membrane(s) and/or primable catheter
US6471688B1 (en) 2000-02-15 2002-10-29 Microsolutions, Inc. Osmotic pump drug delivery systems and methods
US6464688B1 (en) 2000-02-15 2002-10-15 Microsolutions, Inc. Osmotic pump delivery system with flexible drug compartment
US7799037B1 (en) 2000-02-24 2010-09-21 Boston Scientific Neuromodulation Corporation Surgical insertion tool
US6347934B1 (en) 2000-05-10 2002-02-19 E. Khashoggi Industries, Llc. System for metering and delivering a moldable composition into a mold
US20050187530A1 (en) * 2000-06-01 2005-08-25 Davidson Roderick I. Super absorbent driven dispenser
US20050070883A1 (en) * 2000-11-29 2005-03-31 Brown James E Devices and methods for controlled delivery from a drug delivery device
WO2002043800A2 (en) 2000-11-29 2002-06-06 Durect Corporation Devices and methods for controlled delivery from a drug delivery device
US20060064140A1 (en) * 2001-01-30 2006-03-23 Whitehurst Todd K Methods and systems for stimulating a trigeminal nerve to treat a psychiatric disorder
US20050143789A1 (en) * 2001-01-30 2005-06-30 Whitehurst Todd K. Methods and systems for stimulating a peripheral nerve to treat chronic pain
US20050154419A1 (en) * 2001-01-30 2005-07-14 Whitehurst Todd K. Methods and systems for stimulating a nerve originating in an upper cervical spine area to treat a medical condition
US7493172B2 (en) 2001-01-30 2009-02-17 Boston Scientific Neuromodulation Corp. Methods and systems for stimulating a nerve originating in an upper cervical spine area to treat a medical condition
US20020151876A1 (en) * 2001-02-07 2002-10-17 Tai-Wah Chan Devices and methods for management of bone density
US20040249365A1 (en) * 2001-04-19 2004-12-09 Microsolutions, Inc. Implantable osmotic pump
US20030135202A1 (en) * 2001-04-19 2003-07-17 Microsolutions, Inc. Implantable osmotic pump
US6632217B2 (en) 2001-04-19 2003-10-14 Microsolutions, Inc. Implantable osmotic pump
US20020177839A1 (en) * 2001-04-20 2002-11-28 Cormier Michel J. N. Microprojection array having a beneficial agent containing coating
US7963935B2 (en) * 2001-04-20 2011-06-21 Alza Corporation Microprojection array having a beneficial agent containing coating
US7349733B2 (en) 2001-11-02 2008-03-25 Ceramatel, Inc. Iontophoretic drug delivery systems
US20030088204A1 (en) * 2001-11-02 2003-05-08 Joshi Ashok V Novel iontophoretic drug delivery systems
US7047069B2 (en) 2002-02-04 2006-05-16 Ceramatec, Inc. Iontophoretic fluid delivery device
US6775570B2 (en) 2002-02-04 2004-08-10 Ceramatec, Inc. Iontophoretic treatment device
US8401634B2 (en) 2002-05-24 2013-03-19 Boston Scientific Neuromodulation Corporation Treatment of movement disorders by brain stimulation
US20070100393A1 (en) * 2002-05-24 2007-05-03 Whitehurst Todd K Treatment of movement disorders by brain stimulation
US20100331807A1 (en) * 2002-05-24 2010-12-30 Boston Scientific Neuromodulation Corporation Treatment of movement disorders by brain stimulation
US7254449B2 (en) 2002-07-31 2007-08-07 Advanced Bionics Corp Systems and methods for providing power to one or more implantable devices
US20060149340A1 (en) * 2002-07-31 2006-07-06 Karunasiri Rankiri T Systems and methods for providing power to one or more implantable devices
US20060264913A1 (en) * 2002-09-06 2006-11-23 Poutiatine Andrew I Implantable flow regulator with failsafe mode and reserve drug supply
WO2004022069A1 (en) 2002-09-06 2004-03-18 Durect Corporation Delivery of modulators of glutamate-mediated neurotransmission to the inner ear
US20110136847A1 (en) * 2002-11-25 2011-06-09 Tai Wah Chan High Concentration Formulations of Opioids and Opioid Derivatives
US20040102476A1 (en) * 2002-11-25 2004-05-27 Chan Tai Wah High concentration formulations of opioids and opioid derivatives
US20070014820A1 (en) * 2003-01-23 2007-01-18 Dana Litmanovitz Opioid formulations
US20040230183A1 (en) * 2003-02-18 2004-11-18 Wisam Breegi Drug delivery device and syringe for filling the same
US20070083240A1 (en) * 2003-05-08 2007-04-12 Peterson David K L Methods and systems for applying stimulation and sensing one or more indicators of cardiac activity with an implantable stimulator
EP2390262A1 (en) 2003-05-16 2011-11-30 Intermune, Inc. Synthetic chemokine receptor ligands and methods of use thereof
US20070117841A1 (en) * 2003-10-24 2007-05-24 Ozes Osman N Use of pirfenidone in therapeutic regimens
US7407973B2 (en) 2003-10-24 2008-08-05 Intermune, Inc. Use of pirfenidone in therapeutic regimens
US20050118246A1 (en) * 2003-10-31 2005-06-02 Wong Patrick S. Dosage forms and layered deposition processes for fabricating dosage forms
US7769461B2 (en) 2003-12-19 2010-08-03 Boston Scientific Neuromodulation Corporation Skull-mounted electrical stimulation system and method for treating patients
US20110009920A1 (en) * 2003-12-19 2011-01-13 Boston Scientific Neuromodulation Corporation Skull-mounted electrical stimulation system and method for treating patients
US20090281605A1 (en) * 2004-05-28 2009-11-12 Boston Scientific Neuromodulation Corporation Engagement tool for implantable medical devices
US8364280B2 (en) 2004-05-28 2013-01-29 Boston Scientific Neuromodulation Corporation Engagement tool for implantable medical devices
US20080027513A1 (en) * 2004-07-09 2008-01-31 Advanced Bionics Corporation Systems And Methods For Using A Butterfly Coil To Communicate With Or Transfer Power To An Implantable Medical Device
US20060020253A1 (en) * 2004-07-26 2006-01-26 Prescott Anthony D Implantable device having reservoir with controlled release of medication and method of manufacturing the same
US7117870B2 (en) * 2004-07-26 2006-10-10 Clarity Corporation Lacrimal insert having reservoir with controlled release of medication and method of manufacturing the same
US20060020248A1 (en) * 2004-07-26 2006-01-26 Prescott Anthony D Lacrimal insert having reservoir with controlled release of medication and method of manufacturing the same
US20060036293A1 (en) * 2004-08-16 2006-02-16 Whitehurst Todd K Methods for treating gastrointestinal disorders
US8452407B2 (en) 2004-08-16 2013-05-28 Boston Scientific Neuromodulation Corporation Methods for treating gastrointestinal disorders
US9358393B1 (en) 2004-11-09 2016-06-07 Andres M. Lozano Stimulation methods and systems for treating an auditory dysfunction
US7483746B2 (en) 2004-12-06 2009-01-27 Boston Scientific Neuromodulation Corp. Stimulation of the stomach in response to sensed parameters to treat obesity
US20060129201A1 (en) * 2004-12-06 2006-06-15 Lee Philip H J Stimulation of the stomach in response to sensed parameters to treat obesity
US8095219B2 (en) 2004-12-06 2012-01-10 Boston Scientific Neuromodulation Corporation Stimulation of the stomach in response to sensed parameters to treat obesity
US20090192565A1 (en) * 2004-12-06 2009-07-30 Boston Scientific Neuromodulation Corporation Stimulation of the stomach in response to sensed parameters to treat obesity
US20060161217A1 (en) * 2004-12-21 2006-07-20 Jaax Kristen N Methods and systems for treating obesity
US9095713B2 (en) 2004-12-21 2015-08-04 Allison M. Foster Methods and systems for treating autism by decreasing neural activity within the brain
US20100030287A1 (en) * 2004-12-21 2010-02-04 Boston Scientific Neuromodulation Corporation Methods for treating autism
US20060247728A1 (en) * 2004-12-21 2006-11-02 Foster Allison M Methods and systems for treating autism by decreasing neural activity within the brain
US9327069B2 (en) 2004-12-21 2016-05-03 Boston Scientific Neuromodulation Corporation Methods and systems for treating a medical condition by promoting neural remodeling within the brain
US8515541B1 (en) 2004-12-22 2013-08-20 Boston Scientific Neuromodulation Corporation Methods and systems for treating post-stroke disorders
US9352145B2 (en) 2004-12-22 2016-05-31 Boston Scientific Neuromodulation Corporation Methods and systems for treating a psychotic disorder
US20060153844A1 (en) * 2004-12-29 2006-07-13 Thomas Kundig Methods to trigger, maintain and manipulate immune responses by targeted administration of biological response modifiers into lymphoid organs
US20060185665A1 (en) * 2005-02-22 2006-08-24 Bachinski Thomas J Sauna fireplace
US20060194724A1 (en) * 2005-02-25 2006-08-31 Whitehurst Todd K Methods and systems for nerve regeneration
US8423155B1 (en) 2005-03-14 2013-04-16 Boston Scientific Neuromodulation Corporation Methods and systems for facilitating stimulation of one or more stimulation sites
US7853321B2 (en) 2005-03-14 2010-12-14 Boston Scientific Neuromodulation Corporation Stimulation of a stimulation site within the neck or head
US20110060382A1 (en) * 2005-03-14 2011-03-10 Boston Scientific Neuromodulation Corporation Stimulation of a stimulation site within the neck or head
US8315704B2 (en) 2005-03-14 2012-11-20 Boston Scientific Neuromodulation Corporation Stimulation of a stimulation site within the neck or head
US8644954B2 (en) 2005-03-14 2014-02-04 Boston Scientific Neuromodulation Corporation Methods and systems for facilitating stimulation of one or more stimulation sites
US7848803B1 (en) 2005-03-14 2010-12-07 Boston Scientific Neuromodulation Corporation Methods and systems for facilitating stimulation of one or more stimulation sites
US8224451B2 (en) 2005-03-14 2012-07-17 Boston Scientific Neuromodulation Corporation Methods and systems for facilitating stimulation of one or more stimulation sites
US20060206165A1 (en) * 2005-03-14 2006-09-14 Jaax Kristen N Occipital nerve stimulation to treat headaches and other conditions
US20070049988A1 (en) * 2005-03-14 2007-03-01 Rafael Carbunaru Optimal electrode contact polarity configurations for implantable stimulation systems
US20060235484A1 (en) * 2005-03-14 2006-10-19 Jaax Kristen N Stimulation of a stimulation site within the neck or head
US7684858B2 (en) 2005-09-21 2010-03-23 Boston Scientific Neuromodulation Corporation Methods and systems for placing an implanted stimulator for stimulating tissue
US20070066997A1 (en) * 2005-09-21 2007-03-22 He Tom X Methods and systems for placing an implanted stimulator for stimulating tissue
WO2007059010A2 (en) 2005-11-14 2007-05-24 Enterprise Partners Venture Capital Stem cell factor therapy for tissue injury
US8404653B2 (en) 2005-11-14 2013-03-26 Enterprise Partners Venture Capital Membrane bound stem cell factor therapy for ischemic heart
US20090304636A1 (en) * 2005-11-14 2009-12-10 Enterprise Partners Venture Capital Stem Cell Factor Therapy for Tissue Injury
US7920915B2 (en) 2005-11-16 2011-04-05 Boston Scientific Neuromodulation Corporation Implantable stimulator
US20110172739A1 (en) * 2005-11-16 2011-07-14 Boston Scientific Neuromodulation Corporation Implantable stimulator
US20070112404A1 (en) * 2005-11-16 2007-05-17 Mann Alfred E Implantable stimulator
US8630705B2 (en) 2005-11-16 2014-01-14 Boston Scientific Neuromodulation Corporation Implantable stimulator
US7729758B2 (en) 2005-11-30 2010-06-01 Boston Scientific Neuromodulation Corporation Magnetically coupled microstimulators
US7610100B2 (en) 2005-12-30 2009-10-27 Boston Scientific Neuromodulation Corporation Methods and systems for treating osteoarthritis
US20070156180A1 (en) * 2005-12-30 2007-07-05 Jaax Kristen N Methods and systems for treating osteoarthritis
US20110029042A1 (en) * 2006-01-17 2011-02-03 Boston Scientific Neuromodulation Corporation Lead assemblies with one or more switching networks
US8214058B2 (en) 2006-01-17 2012-07-03 Boston Scientific Neuromodulation Corporation Lead assemblies with one or more switching networks
US8423154B2 (en) 2006-01-17 2013-04-16 Boston Scientific Neuromodulation Corporation Lead assemblies with one or more switching networks
US7835803B1 (en) 2006-01-17 2010-11-16 Boston Scientific Neuromodulation Corporation Lead assemblies with one or more switching networks
US8175710B2 (en) 2006-03-14 2012-05-08 Boston Scientific Neuromodulation Corporation Stimulator system with electrode array and the method of making the same
US20070219595A1 (en) * 2006-03-14 2007-09-20 Advanced Bionics Corporation Stimulator system with electrode array and the method of making the same
US7777641B2 (en) 2006-03-29 2010-08-17 Advanced Bionics, Llc Systems and methods of facilitating communication between a first and second device
US20070250136A1 (en) * 2006-03-29 2007-10-25 Karunasiri Rankiri T Systems and methods of facilitating communication between a first and second device
US7846332B1 (en) * 2006-06-23 2010-12-07 Mainstream Engineering Corporation Apparatus and method for self-heating and self-hydrating foods and beverages
US8401654B1 (en) 2006-06-30 2013-03-19 Boston Scientific Neuromodulation Corporation Methods and systems for treating one or more effects of deafferentation
US8504163B1 (en) 2006-06-30 2013-08-06 Boston Scientific Neuromodulation Corporation Cranially mounted stimulation systems and methods
US20080131398A1 (en) * 2006-08-21 2008-06-05 United Therapeutics Corporation Combination therapy for treatment of viral infections
US7445528B1 (en) 2006-09-29 2008-11-04 Boston Scientific Neuromodulation Corporation Connector assemblies
US7347746B1 (en) 2006-10-27 2008-03-25 Boston Scientific Neuromodulation Corporation Receptacle connector assembly
US20110184389A1 (en) * 2006-11-01 2011-07-28 Medtronic, Inc. Osmotic pump apparatus and associated methods
US20080102119A1 (en) * 2006-11-01 2008-05-01 Medtronic, Inc. Osmotic pump apparatus and associated methods
US20080177219A1 (en) * 2007-01-23 2008-07-24 Joshi Ashok V Method for Iontophoretic Fluid Delivery
US8197844B2 (en) 2007-06-08 2012-06-12 Activatek, Inc. Active electrode for transdermal medicament administration
US8862223B2 (en) 2008-01-18 2014-10-14 Activatek, Inc. Active transdermal medicament patch and circuit board for same
EP3025727A1 (en) 2008-10-02 2016-06-01 The J. David Gladstone Institutes Methods of treating liver disease
WO2010107739A2 (en) 2009-03-18 2010-09-23 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions of treating a flaviviridae family viral infection
US20120237353A1 (en) * 2009-09-22 2012-09-20 Ecp Entwicklungsgesellschaft Mbh Compressible rotor for a fluid pump
US11773861B2 (en) 2009-09-22 2023-10-03 Ecp Entwicklungsgesellschaft Mbh Compressible rotor for a fluid pump
US9416783B2 (en) * 2009-09-22 2016-08-16 Ecp Entwicklungsgellschaft Mbh Compressible rotor for a fluid pump
US11421701B2 (en) 2009-09-22 2022-08-23 Ecp Entwicklungsgesellschaft Mbh Compressible rotor for a fluid pump
US9629644B2 (en) 2010-08-30 2017-04-25 SinuSys Corporation Devices and methods for dilating a paranasal sinus opening and for treating sinusitis
US9498239B2 (en) 2010-08-30 2016-11-22 SinuSys Corporation Devices and methods for inserting a sinus dilator
WO2012175698A1 (en) 2011-06-23 2012-12-27 Université Libre de Bruxelles Therapeutic use of all-trans retinoic acid (atra) in patients suffering from alcoholic liver disease
WO2013033636A2 (en) 2011-09-01 2013-03-07 University Of Southern California Methods for preparing high throughput peptidomimetics, orally bioavailable drugs and compositions containing same
EP3222720A1 (en) 2011-09-01 2017-09-27 University of Southern California Methods for preparing high throughput peptidomimetics, orally bioavailable drugs and compositions containing same
US10869873B2 (en) 2011-12-06 2020-12-22 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for treating viral diseases
US9364484B2 (en) 2011-12-06 2016-06-14 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for treating viral diseases
US9138569B2 (en) 2012-02-29 2015-09-22 SinuSys Corporation Devices and methods for dilating a paranasal sinus opening and for treating sinusitis
US9597485B2 (en) 2012-02-29 2017-03-21 SinuSys Corporation Devices and methods for dilating a paranasal sinus opening and for treating sinusitis
US9504812B2 (en) 2012-02-29 2016-11-29 SinuSys Corporation Devices and methods for dilating a paranasal sinus opening and for treating sinusitis
US9149616B2 (en) 2012-02-29 2015-10-06 SinuSys Corporation Devices and methods for dilating a paranasal sinus opening and for treating sinusitis
US9687263B2 (en) 2013-05-30 2017-06-27 SinuSys Corporation Devices and methods for inserting a sinus dilator
JP7139396B2 (en) 2013-12-06 2022-09-20 デュレクト コーポレーション COMPOSITIONS, FLUID DISPENSERS, AND METHODS RELATED THEREOF
JP2017506211A (en) * 2013-12-06 2017-03-02 デュレクト コーポレーション Compositions containing antioxidants, fluid dispensers, and methods related thereto
WO2015085312A1 (en) 2013-12-06 2015-06-11 Durect Corporation Compositions comprising antioxidant, fluid dispensers, and methods involving the same
JP7064285B2 (en) 2013-12-06 2022-05-10 デュレクト コーポレーション Compositions containing antioxidants, fluid dispensers, and methods associated with them.
JP2021038234A (en) * 2013-12-06 2021-03-11 デュレクト コーポレーション Composition comprising antioxidant, fluid dispenser, and methods involving the same
WO2016196840A1 (en) 2015-06-03 2016-12-08 Principia Biopharma Inc. Tyrosine kinase inhibitors
EP4112618A1 (en) 2015-06-03 2023-01-04 Principia Biopharma Inc. Tyrosine kinase inhibitors
EP3912979A1 (en) 2015-06-03 2021-11-24 Principia Biopharma Inc. Tyrosine kinase inhibitors
WO2016210165A1 (en) 2015-06-24 2016-12-29 Principia Biopharma Inc. Tyrosine kinase inhibitors
WO2017023863A1 (en) 2015-07-31 2017-02-09 Research Institute At Nationwide Children's Hospital Peptides and antibodies for the removal of biofilms
WO2017066719A2 (en) 2015-10-14 2017-04-20 Research Institute At Nationwide Children's Hospital Hu specific interfering agents
WO2017168174A1 (en) 2016-04-02 2017-10-05 N4 Pharma Uk Limited New pharmaceutical forms of sildenafil
WO2018002673A1 (en) 2016-07-01 2018-01-04 N4 Pharma Uk Limited Novel formulations of angiotensin ii receptor antagonists
US10549030B2 (en) * 2016-09-08 2020-02-04 Eoflow Co., Ltd. Liquid medicine injection device
US20200129692A1 (en) * 2016-09-08 2020-04-30 Eoflow Co., Ltd. Liquid medicine injection device
US11738137B2 (en) * 2016-09-08 2023-08-29 Eoflow Co., Ltd. Liquid medicine injection device
WO2018115888A1 (en) 2016-12-21 2018-06-28 N4 Pharma Uk Limited Novel formulations of aprepitant
WO2018129092A1 (en) 2017-01-04 2018-07-12 Research Institute At Nationwide Children's Hospital Antibody fragments for the treatment of biofilm-related disorders
WO2018129078A1 (en) 2017-01-04 2018-07-12 Research Institute At Nationwide Children's Hospital Dnabii vaccines and antibodies with enhanced activity
WO2021007260A2 (en) 2019-07-08 2021-01-14 Research Institute At Nationwide Children's Hospital Antibody compositions for disrupting biofilms
WO2021150476A1 (en) 2020-01-20 2021-07-29 Genzyme Corporation Therapeutic tyrosine kinase inhibitors for relapsing multiple sclerosis (rms)
WO2021211919A1 (en) 2020-04-17 2021-10-21 Genzyme Corporation Eclitasertib for use in treating conditions involving systemic hyperinflammatory response
WO2024006406A1 (en) 2022-06-30 2024-01-04 Genzyme Corporation Therapeutic tyrosine kinase inhibitors for multiple sclerosis and myasthenia gravis

Similar Documents

Publication Publication Date Title
US3760984A (en) Osmotically powered agent dispensing device with filling means
US3732865A (en) Osmotic dispenser
US3760804A (en) Improved osmotic dispenser employing magnesium sulphate and magnesium chloride
US3760806A (en) Helical osmotic dispenser with non-planar membrane
US3995631A (en) Osmotic dispenser with means for dispensing active agent responsive to osmotic gradient
US3760805A (en) Osmotic dispenser with collapsible supply container
US4304232A (en) Unit system having multiplicity of means for dispensing useful agent
US3845770A (en) Osmatic dispensing device for releasing beneficial agent
US4034756A (en) Osmotically driven fluid dispenser
US4340054A (en) Dispenser for delivering fluids and solids
US3977404A (en) Osmotic device having microporous reservoir
US3916899A (en) Osmotic dispensing device with maximum and minimum sizes for the passageway
US4439196A (en) Osmotic drug delivery system
US4203441A (en) Osmotically triggered device with gas generating means
US4326525A (en) Osmotic device that improves delivery properties of agent in situ
US3995632A (en) Osmotic dispenser
US3929132A (en) Osmotic dispenser
CA1238543A (en) Osmotic capsule
US4235236A (en) Device for dispensing drug by combined diffusional and osmotic operations
US4309996A (en) System with microporous releasing diffusor
CA1078734A (en) Controlled release article
US4142526A (en) Osmotic releasing system with means for changing release therefrom
US4786500A (en) Programmable agent delivery system
US5266325A (en) Preparation of homogeneous hydrogel copolymers
US4693886A (en) Osmotic device with inert core