Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3761418 A
Publication typeGrant
Publication dateSep 25, 1973
Filing dateMar 11, 1971
Priority dateSep 27, 1967
Publication numberUS 3761418 A, US 3761418A, US-A-3761418, US3761418 A, US3761418A
InventorsJ Parran
Original AssigneeProcter & Gamble
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Detergent compositions containing particle deposition enhancing agents
US 3761418 A
Images(12)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent US. Cl. 252-106 5 Claims ABSTRACT OF THE DISCLOSURE Detergent compositions containing water-insoluble particulate substances, such as antimicrobial agents, and certain cationic polymers which serves to enhance the deposition and retention of such particulate substances on surfaces washed with the detergent composition.

CROSS-REFERENCE TO RELATED APPLICATIONS This application is related to the earlier-filed copending application of John I. Parran, Ir., Ser. No. 476,175, filed July 30, 1965, now abandoned, and is a divisional application of applicants copending application Ser. No. 671,117, filed Sept. 27, 1967, now Pat. No. 3,580,853.

BACKGROUND OF THE INVENTION The field of this invention is detergent compositions including shampoos (liquid and cream), laundering, hardsurface and dishwashing detergents (granular and liquid), and personal use toilet detergents bars.

Various water-insoluble particulate substances have been incorporated in detergent products for the purpose of imparting some residual property or characteristic on surfaces washed with the products. For example, shampoo compositions containing particulate antidandrulf agents have been developed which function by deposition and retention of the particulate agent on the hair and scalp during shampooing. Suflicient quantities of the deposited particulate agents are retained after rinsing to impart some degree of residual antimicrobial activity to the washed hair and scalp. Such antidandruff shampoo compositions are disclosed, for example, by Karsten, Taylor and Parran in US. Pat. 3,236,733, granted Feb. 22, 1966.

Particulate antimicrobial substances have also been used in various laundry detergents and personal use toilet detergent bars to impart residual antimicrobial activity on the fabrics or skin surfaces washed with same. Such products are disclosed by Reller and Jordan in US. Pats. 3,134,711, granted May 26, 1964, and 3,256,200, granted June 14, 1966.

Various other water-insoluble or sparingly soluble particulate materials such as sunscreens, fabric brighteners, and Whiteners have been employed in detergent compositions and depend for their activity on particle deposition and retention on Washed surfaces.

It is apparent that an effective detergent composition, properly used, will by its very nature tend to minimize retention of particulate matter on washed surfaces. Thus, only a relatively small proportion of particles present in such detergent compositions are actually retained after rinsing of the washed surface. Since the activity of antimicrobial and other particulate agents is in part a function of the quantity of particles deposited and retained on the involved surfaces, measures which enhance deposition and/or promote retention of such particles serve to re duce the quantity of the substance in the composition required to attain a given level of activity or increase the activity attainable with a given concentration of such particles.

Patented Sept. 25, 1973 SUMMARY OF THE INVENTION It has now been discovered that water-soluble cationic nitrogen-containing polymers having a molecular Weight Within the range from about 2,000 to about 3,000,000, and having a cationic charge density (as defined hereinafter) greater than .001 in aqueous solution, enhance the deposition and retention of water-insoluble or sparingly soluble particulate substances containined in detergent compositions on surfaces washed therewith.

Although the mechanism whereby this phenomenon occurs is not fully understood, it is believed that the polymer coats or attaches itself in some way on the involved particles imparting a net positive charge thereto which increases the afiinity of the particle for the generally negatively charged washed surfaces.

It is therefore an object of this invention to provide detergent compositions which have improved capacities to impart residual activity or properties to surfaces Washed therewith.

It is a further object of this invention to provide improved detergent compositions containing water-insoluble or sparingly soluble particulate substances which are deposited and retained on washed surfaces.

It is yet another object of this invention to provide a method for enhancing the deposition of particulate substances from detergent compositions and the retention of such substances on surfaces washed therewith.

These and other objects will become apparent from the following detailed description of the invention.

DETAILED DESCRIPTION OF THE INVENTION The detergent compositions of this invention are comprised of (1) an organic surface active agent (surfactant, i.e., detergent compound); (2) at least one water-soluble cationic nitrogen-containing polymer having a molecular weight within the range from about 2,000 to about 3,000,- 000 and having a cationic charge density greater than .001 in aqueous solution; and (3) a water-insoluble or sparingly soluble particulate substance capable of imparting a desired residual property to a surface to which it becomes aflixed.

In its process aspect, this invention is a method for enhancing the deposition and retention of particulate substances upon surfaces washed with a detergent composition containing same, comprising uniformly admixing said particulate substances with a water-soluble cationic nitrogen-containing polymer having a molecular weight within the range from about 2,000 to about 3,000,000, and having a cationic charge density greater than .001 in aqueous solution, and incorporating said mixture in a detergent base.

The cationic charge density of a polymer as that term is used herein refers to the ratio of the number of positive charges on a monomeric unit of which the polymer is comprised to the molecular weight of said monomeric unit, 1.e.,

cationic charge density number of positive charges monomeric unit molecular weight lat structure an alkyl group containing from about 8 to about 20 carbon atoms and a sulfonic acid or sulfuric acid ester radical. Such surfactants include the sodium, potassium, and triethanolamine alkyl sulfates, especially those derived by sulfation of higher alcohols produced by reduction of tallow or coconut oil glycerides, sodium or potassium alkyl benzene sulfonates, especially those of the types described by Gunther et al. in U.S. Pat. 2,477,383, granted July 26, 1949, in which the alkyl group contains from about 9 to about 15 carbon atoms; sodium alkyl glyceryl ether sulfonates, especially those ethers of higher alcohols obtained from tallow and coconut oil; sodium coconut oil fatty acid monoglyceride sulfates and sulfonates; sodium salts of sulfuric acid esters of the reaction product of one mole of a higher alcohol (i.e., tallow or coconut oil alcohols) and about 3 moles of ethylene oxide; and the water-soluble salts of condensation products of fatty acids with sarcosine, e.g., triethanolamine N-acyl sarcosinate, the acyl radicals being derived from coconut oil fatty acids.

Preferably, anionic organic surfactants of the high sudsing type are used for the shampoo embodiments of this invention. Thus, alkyl glyceryl ether sulfonates, N- acyl sarcosinates, and alkyl ether ethylene oxide sulfates as described above are used to special advantage. These and the foregoing surfactants can be used in the form of their sodium, potassium or lower alkanolamine (e.g., mono-, di-, and triethanolamine) salts.

Conventional soaps are also operable anionic surfactants for the purposes of this invention. Suitable soaps include the water-soluble salts, e.g., sodium, potassium, and lower alkanol-amine salts of fatty acids occurring in coconut oil, soybean oil, castor oil or tallow, or synthetically produced fatty acids may be used.

Polar nonionic surfactants can be used herein, either alone or in admixture with anionic and/or ampholytic surfactants. Surfactants of this class can serve to enhance lathering and cleaning properties of anionic detergents. By polar nonionic surfactant is meant a surfactant in which the hydrophilic group contains a semi-polar bond directly between two atoms, e.g., N O, P- O, As O, and S O. (The arrow is the conventional representation of a semi-polar bond.) There is charge separation between the two directly bonded atoms, but the surfactant molecule bears no net charge and does not dissociate into ions.

A preferred polar nonionic surfactant for use in the present compositions is amine oxide of the general formula R R R N 0, wherein R is an alkyl, alkenyl, or monohydroxyalkyl radical having from about to 16 carbon atoms, and R and R are each methyl, ethyl, propyl, ethanol or propanol radicals. An especially preferred amine oxide is dodecyldimethylamine oxide.

Other operable polar nonionic surfactants are the phosphine oxides having the general formula R R R P O, wherein R is an alkyl, alkenyl or monohydroxyalkyl radical ranging in chain length from 10 to 18 carbon atoms, and R and R are each alkyl or monohydroxyalkyl radicals containing from 1 to 3 carbon atoms. A preferred phosphine oxide is dodecyldimethyl phosphine oxide.

Suitable amphoteric surfactants include the alkyl betaiminodipropionates, RN(C H COOM) alkyl beta-aminopropionates, RN(H)C H COOM; and long chain imidazole derivatives having the general formula:

In each of the above formulae, R is an acyclic h'ydrophobic group containing from about 8 to about 18 carbon atoms and M is a cation to neutralize the charge of the anion, e.g., alkali metal such as sodium and potassium and ammonium and substituted ammonium cations. Specific operable amphoteric surfa ta ts include the diso- '4 dium salt of lauroyl-cycloimidinium 1 ethoxy-ethionic acid-Z-ethionic acid, dodecyl beta-alanine, and the inner salt of Z-trimethylamino lauric acid. As zwitterionics, the substituted betaines such as alkyl dimethyl ammonio acetates wherein the alkyl radical contains from about 12 to about 18 carbon atoms can also be used. Several examples of this class of zwitterionic surfactants are set forth in Canadian Pat. 696,355, granted Oct. 20, 1964.

Especially preferred shampoo compositions in accordance with this invention will contain a non-soap anionic organic surfactant at a concentration of from about 8% to about 30% by weight of the total composition.

Although nonionic and cationic surfactants are not preferred for the purposes of this invention they can nevertheless be used without substantial loss of the advantageous effects of the cationic polymers on deposition and retention of particulate matter on washed surfaces. Nonionic surfactants may be described as compounds produced by the condensation of alkylene oxide groups (hydrophilic in nature) with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic in nature. As those skilled in the art are well aware, the length of the hydrophilic or polyoxyalkylene radical required for condensation with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.

For example, a well known class of nonionics is made available on the market under the trade name of Plu- Ionic. These compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol. The hydrophobic portion of the molecule, of course, exhibits water insolubility. The molecular weight of this portion is of the order of 950 to 4,000. The addition of polyoxyethylene radicals to this hydrophobic portion tends to increase the water solubility of the molecule as a whole. Liquid products are obtained up to the point where polyoxyethylene content is about 50% of the total weight of the condensation product.

Suitable nonionics also include the polyethylene oxide condensates of alkyl phenols, e.g., the condensation products of alkyl phenols having about 6 to 12 carbon atoms, either straight chain or branch chain, in the alkyl group with ethylene oxide in amounts equal to 10 to 25 moles of ethylene oxide per mole of alkyl phenol. The alkyl substituent in such compounds may be derived from polymerized propylene, diisobutylene, octane, or nonane, for example.

Other suitable nonionics may be derived by the condensation of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylene diamine. Here again, a series of compounds may be produced, depending on the desired balance between hydrophobic and hydrophilic elements. For example, compounds (molecular weight from about 5,000 to about 11,000) of about 40% to polyoxyethylene content and resulting from the reaction of ethylene oxide groups with a hydrophobic base constituted of the reaction product of ethylene diamine and excess propylene oxide, said base having a molecular weight of the order of 2,500 to 3,000, are satisfactory.

Further satisfactory nonionics include the condensation product of aliphatic alcohols having from 8 to 18 carbon atoms, either straight chain or branch chain, with ethylene oxide, an example being a coconut alcohol/ ethylene oxide condensate having from 10 to 30 moles of ethylene oxide per mole of coconut alcohol, the coconut alcohol fraction having from 10 to 14 carbon atoms.

Cationic surfactants which can be used in the compositions of this invention include distearyl dimethyl ammonium chloride, stearyl dimethyl benzyl ammonium chloride, coconut alkyl dimethyl benzyl ammonium chloride, dicoconut alkyl dimethyl ammonium chloride, cetyl pyridinium chloride, and cetyl trimethyl ammonium bromide.

As hereinbefore indicated, the compositions of this invention contain as an essential component a watersoluble cationic nitrogen-containing polymer having a molecular weight within the range from about 2,000 to about 3,000,000 a cationic charge density greater than .001 in aqueous solution.

Operable cationic polymers for the purpose of this invention include polyethylenimine or alkoxylated polyethylenimine polymers. It is believed that the structural formula of the backbone of polyethylenimine is:

wherein an represents a whole number of sufl'lcient magnitude to yield a polymer of molecular weight greater than about 2,000. Branch chains occur along the polymeric backbone and the relative proportions of primary,

secondary and tertiary amino groups present in the polymer will vary, depending on the manner of preparation. The distribution of amino groups in a typical polyethylenimine is approximately as follows:

Percent CH CH NH 30 -CH -CH;,NH-- 40 CH -CH N-- 30 The polyethylenimine is characterized herein in terms of molecular weight. Such polymers can be prepared, for example, by polymerizing ethylenimine in the presence of a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc. Specific methods are described in US. Pat. Nos. 2,182,306, Ulrich et al., granted Dec. 5, 1939; 3,033,746, Mayle et al., granted May 8, 1962; 2,208,095, Esselmann et al., granted July 16, 1940; 2,806,839, Crowther, granted Sept. 17, 1957; and 2,553,696, Wilson, granted May 21, 1951. Polyethylenimine has a cationic charge density of .004 in aqueous solution at pH 7.0.

Similarly, alkoxylated polyethylenimine can be prepared, for example, by reacting one part by weight ethylene oxide or propylene oxide with one part by weight of polyethylenimine prepared as described above and having a molecular weight greater than about 2,000. Preferably, the weight ratio of polyethylenimine to alkylene oxide is at least about 1: 1. If this ratio is less than about 1:1 the cationic charge density of the polymer in aqueous solution will not be greater than .001 as is required for the purpose of this invention. A preferred ethoxylated polyethylenimine has a molecular weight of about 80,000 to 120,000 and a cationic charge density of .004 in aqueous solution at pH 7.0.

Yet another class of water-soluble cationic nitrogencontaining polymers which can be used in the practice of this invention are those in which at least 30 mole percent of the molecular structure is composed of monomeric units containing one or more quaternary ammonium groups and any balance of which is comprised of nonquaternized polymeric units derived from monoethylby reacting a hydroxyethylcellulose (having a degree of substitution with hydroxyethyl groups of 1.3) with the reaction product of 0.7 mole of epichloroh'ydrin and 0.7 mole of trimethylamine, per substituted anhydroglucose unit hereof, said polymer having a cationic charge density of .002 and a molecular weight within the range from about 200,000 to 230,000. This polymer has the structural formula:

*Hydroxyethylcellulose.

Hydroxyethylcellulose is, of course, comprised of hydroxyethyl-substituted anhydroglucose units with varying degrees of hydroxyethyl substitution. This material is prepared by reacting alkaline cellulose with ethylene oxide as is more fully described by Gloor et al., Ind. Eng. Chem., 42:2150 (1950). The extent of substitution With the quaternary nitrogen-containing group must be suflicient to provide a cationic charge density greater than .001, and the molecular weight of the substituted hydroxyethylcellulose polymer must be Within the range from about 2,000 to 3,000,000.

The preferred cellulose ether derivative from which the quaternary ammonium-substituted polymers described above are prepared include those which are watersoluble nonionic lower alkyl or hydroxyalkyl substituted. Such derivatives include methylcellulose, ethylcellulose, and hydroxyethylcellulose.

A particuarly efiicacious quaternary ammonium-substituted cellulose ether derivative for the purpose of this invention is available from Union Carbide under the code name JR-lL. This polymer has a molecular weight within the range from 100,000 to 1,000,000 and a cationic charge density of .005.

(2) Water-soluble linear polyamines available from The Rohm & Haas Company under the tradename Primafioc C-3. This polymer has a molecular weight within the range from about 30,000 to 80,000 and a cationic charge density in aqueous solution at pH 7.0 greater than .001, and contains at least 50 mole percent of units of the formula wherein A is a (C -C )-alky1ene group having at least 2 carbon atoms extending in a chain between the adjoined N atoms, and R and R are each hydrogen or methyl. This and related polymers operable herein as well as a method for their preparation are fully described in US. Pat. 3,288,707, granted Nov. 29, 1966.

(3) The water-soluble polymers of tetraethylene pentamine and epichlorohydrin commercially available from the Nalco Chemical Company under the trade names Nalco 600 and Nalcolyte 605. Such polymers have the formula:

L Hi.

wherein x is an integer of suflicient magnitude to yield a polymer having a viscosity at 74 F. of 21 to 42 centipoise. These polymers have a molecular weight within the range from about 2,000 to 3,000,000 and a cationic charge density greater than .001 in aqueous solution at pH 7.0.

(4) Coagulant Aid #225 commercially available from The Calgon Company. Coagulant Aid #225 is the condensation polyethyleneamine extended with epichlorohydrin described in US. Pat. 3,391,090, Example I. I.e., A l-liter flask was fitted with a stirrer, reflux condenser, thermometer, and an addition funnel, and 232 g. of

Amine E-lOO was introduced. This is a product of Dow Chemical Company containing about 10% tetraethylenepentamine, about 40%\ pentaethylenehexamine, about 20% cyclized polyalkylene, polyamines, and about 10% polyalkylene polyamines having chains greater than pentaethylene (mostly hexaethyleneheptamine and heptaethyleneoctamine) 250 g. of water was added and the solution heated to reflux. To the solution was added, at a suitable rate, 60 g., 0.6 mole, of ethylene dichloride. The addition rate of the EDC was carefully controlled so that a minimum of unreacted EDC excess was maintained. On completion of EDC addition the reaction mixture was held at 100- 110 for one hour. The reaction product at this point was a prepolymer as above described.

The prepolymer formed as above was heated to 80 C. and the dropwise addition of 37 g., 0.4 mole, of epichlorohydrin (ECH) was begun. The temperature was allowed to rise no higher than 90 during the addition. On completion of the addition the reaction mixture was held at 100 for 30 minutes. The resulting polymer was a 57.5% active solution with a viscosity of 2,000 cps.

If unreacted EDC accumulated in the reaction vessel during preparation of the prepolymer, it refiuxes thus lowering the reaction temperature below the optimum value. Also, there is a chance of dehydrochlorinating the excess EDC to form volatile vinyl chloride, which would be lost. If addition is properly controlled, the heat source can be removed from the flask when EDC addition is started. The heat of reaction is sufficient to maintain reflux. In later states of reaction, heat from an external source is again necessary. This product is a water-soluble nitrogen-containing polymer having a molecular weight within the range from about 30,000 to 3,000,000 and a cationic charge density greater than .001 in aqueous solution at pH 7.0.

Conductive Polymer #261 commercially available from The Calgon Company. This product is a watersoluble nitrogen-containing polymer having a molecular weight within the range from about 30,000 to 3,000,000 and a cationic charge density greater than .001 in aqueous solution at pH 7.0.

If the molecular weight of the cationic polymers employed herein is less than about 2,000, no substantial enhancement of particle deposition occurs. Best results are obtained with polymers having a molecular weight within the range from about 30,000 to about 1,000,000.

The cationic polymer can be employed herein at a concentration within the range from about 0.1% to about 10.0% by weight, preferably from about 0.25% to about 4.0% by weight.

Particulate substances which can be used in the detergent compositions of this invention preferably have an average particle diameter within the range from about 0.2 to about 50 microns and include water-insoluble or sparingly soluble anti-microbial agents, sunscreens, fabric brighteners, and various substances which create a favorable skin feel after washing. These particulate substances depend on deposition and retention on washed surfaces to produce their intended effect.

Particulate antimicrobial substances, the deposition and retention of which is enhanced by the cationic polymers described herein include, for example, (a) substituted salicylanilides having the general formula:

Y OH Y Y X Y wherein X is hydrogen or halogen, and Y is hydrogen, halogen or trifluoromethyl; (b) substituted carbanilides having the general structural formula:

Y (n) Y wherein Y is hydrogen, halogen, or trifiuoromethyl, X is halogen or ethoxy, X is hydrogen or halogen; (c) substituted bisphenols having the general structural formula:

OH OH wherein X is a halogen and n is an integer from 1 to 3, R is an alkylene radical having from 1 to 4 carbon atoms or divalent sulfur; and (d) mixtures of (a), (b), and (c).

The salicylanilides encompassed by (a) above include 3 ,4',S-tribromosalicylanilide;

5 -bromosalicyl-3,5 di trifiuoromethyl) anilide; 5-chlorosalicyl-3,5-di (trifiuoromethyl anilide; 3,5-dichlorosalicyl-3,4-dichloroanilide; and 5-chlorosalicyl-3-trifluoromethyl-4-chloranilide.

These and other salicylanilides useful herein are disclosed by Bindler and Model in US. Pat. 2,703,332, granted Mar. 1, 1955.

The preferred carbanilides of (b) above include 3,4,4'-trichlorocarbanilide;

3-trifluoromethyl-4,4'-dichlorocarbanilide;

3-trifiuoromethyl-3 ',4,4-trichlorocarbanilide;

3,3'-bis (trifluoromethyl-4-ethoxy-4'-chlorocarbanilide;

and

3,5 -bis (trifluoromethyl)-4-chlorocarbanilide.

The compounds in (c) above in which R represents an alkylene radical are more fully described in US. Letters Patent 2,555,077, granted Dec. 26, 1950. The preferred compounds of the general class of (c) above are those which are symmetrical in structural configuration, such as his 5-chloro-2-hydroxyphenyl) methane,

bis( 3 ,S-dichloro-2-hydroxyphenyl methane, bis 3,5 ,6-trichloro-2-hydroxyphenyl) methane, bis 3,S-dichloro-2-hydroxyphenyl sulfide,

bis (3,5,6-trichloro-2-hydroxyphenyl sulfide,

and mixtures thereof.

Additional antimicrobial compounds suitable for use in this invention are N-trichloromethylmercapto-4-cyclohexene-1,3-dicarboximide and N-(1,1,2,2-tetrachloroethylsulfenyl -cis-A-4-cyclohexene-1,2-dicarboximide.

Preferred antibicaterial agents employed herein are salts of 2-pyridinethiol-l-oxide which has the following structural formula in tautomeric form, the sulfur being attached to the number 2 position of the pyridine rings:

on 0 I Z-pyrldinethiol-l-oxide l-hydroxy-Q-pyrldinethione Heavy metal salts of the above compounds are sparingly soluble and have a high degree of antibacterial activity. Preferred salts include zinc, cadmium, tin and zirconium Z-pyridinethiol-l-oxide.

Combinations of the above-described antibacterial substances can also be used to advantage. Such combinations are66illustrated in US. Pat. 3,281,366, granted Oct. 25, 19

These antimicrobial compounds are used in particulate form, with average particle sizes ranging from about 0.2 to about 30 microns. The quantity of antimicrobial agent employed can range from about 0.1% to about 10% and preferably from about 0.5 to about 2.0% by weight.

Preferred antimicrobial detergent compositions in accordance with this invention especially adapted to washing hair and scalp are comprised of from about 10% to about 35% by weight of at least one non-soap anionic, polar nonionic, ampholytic or zwitterionic surfactant; from about 0.25% to about 2.0% by weight of a water-soluble cationic nitrogen-containing polymer having a cationic charge density greater than about .001 and having an average molecular weight within the range from about 30,000 to about 1,000,000; from about 0.5% to about 2.0% by weight of a water-soluble or sparingly soluble antimicrobial substance in particulate form; and the balance substantially water.

Detergent compositions in accordance with this invention can be prepared by methods well known in the art; however, as hereinbefore indicated, it has been found that especially good results are obtained when the cationic polymer and particulate substances are uniformly admixed in an initial step, with the mixture then being added to an aqueous solution or slurry of the surfactant. If the polymeric component and particulate substance are added to the surfactant separately, the degree of deposition and retention enhancement effected by the polymer will be somewhat less.

Each of the aforementioned components can be incorporated in an aqueous vehicle which may, in addition, include such materials as organic solvents, such as ethanol; thickeners, such as carboxymethylcellulose, magnesiumaluminum silicate, hydroxyethylcellulose or methylcellulose; perfumes; sequestering agents, such as tetrasodium ethylenediaminetetraacetate; and opacifiers, such as zinc stearate or magnesium stearate, which are useful in enhancing the appearance or cosmetic properties of the product.

Coconut acyl monoor diethanol amides as suds boosters, and strongly ionizing salts such as sodium chloride and sodium sulfate may be used to advantage.

Toilet detergent or soap bars containing a cationic polymer and particulate substance according to this invention can be based on soap or non-soap synthetic detergents and can also contain a variety of adjuvants to improve product performance or appearance. Examples of such adjuvants include free fatty acids or cold cream to improve cosmetic properties, perfumes, inorganic salts to improve bar firmness, insoluble soap to improve bar texture, coloring matter and the like.

In the case of heavy-duty laundering detergents containing the cationic polymers and particulate substances in accordance with this invention, such detergents can be in granular, flake, liquid or tablet form and can contain, in addition to detergent and inorganic or organic builder compounds (such as those disclosed by Diehl in US. Pat. 3,159,581, granted Dec. 1, 1964), minor amounts of adjuvant materials which make the product more effective or more attractive. The following are mentioned by way of example. A tarnish inhibitor such as benzotriazole or ethylenethiourea may also be added in amounts up to about 2% Fluorescers, perfume and color while not essential in the compositions of the invention, can be added in amounts up to about 1%. An alkaline material or alkali, such as sodium hydroxide or potassium hydroxide, can be added in minor amounts as supplementary pH adjusters when needed. There can also be mentioned as suitable additives, brightening agents, sodium sulfate, and sodium carbonate.

Corrosion inhibitors generally are also added. Soluble silicates are highly effective inhibitors and can be added to certain formulas of this invention at levels of from about 3% to about 8%. Alkali metal, preferably potassium or sodium, silicates having a weight ratio of SiO :M of from 1.0:1 to 2.8:1 can advantageously be used. M in this ratio refers to sodium or potassium. A sodium silicate having a ratio of SiO :Na O of about 1.6:1 to 2.45:1 is especially preferred for economy and effectiveness.

In the embodiment of this invention which provides for a built liquid detergent, a hydrotropic agent at times is found desirable. Suitable hydrotropes are water-soluble alkali metal salts of toluenesulfonate, benzenesulfonate, and xylenesulfonate. The preferred hydrotropes are the potassium or sodium toluenesulfonates. The hydrotrope salt can be added, if desired, at levels of 1% to about 12%. While a hydrotrope will not ordinarily be found necessary, it can be added if so desired, for any reason including the preparation of a product which retains its homogeneity at a low temperature.

The term coconut alkyl as used herein and in the following examples refers to alkyl groups which are derived from the middle cut of coconut alcohol having the following approximate chain length distribution: 2%C 66%C 23%C and 9%C Other compounds designated as coconut oil derived are based on unfractionated coconut oil or its fatty acids.

The following examples are illustrative of several detergent compositions of this invention.

Example I Sodium sulfate 3. Sodium N-lauroyl sarcosinate 3 N-coconut acyl sarcosine 1.2 Diethanolamide of coconut fatty acids 2.0 Acetylated lanolin 1.0 Perfume 0.4 Color 0.04 Zinc Z-pyridinethiol-l-oxide 1 2.0 Polyethylenimine /ethylene oxide reaction product (weight ratio 1:1, molecular weight 80,000- 120,000 and cationic charge density of .004 in aqueous solution at pH 7.0) 0.5 Water Balance 1 Average particle size 2 microns. 2 Molecular Weight 40,00060,000.

The zinc pyridinethione and ethoxylated polyethylenimine were uniformly admixed and added to and uniformly mixed with the balance of the components. The resulting product was a stable cream having excellent cosmetic and antidandruff properties. The degree of deposition of zinc pyridinethione from this composition was much greater than the degree of deposition attained with a similarly formulated product which contained no cationic polymer. Residual antimicrobial activity of surfaces washed with this composition is markedly greater as compared to surfaces washed with a control product without polymer.

Compositions identical to the composition of Example I, but containing 5 micron diameter particles of 3,4,4'-trichlorocarbanilide; 3,4',5-tribromosalicylanilide; 4,4'-dichloro-3-(trifluoromethyl)carbanilide; and bis(2-hydroxy- 3,5,6-trichlorophenyl)methane, and 6.5 micron particles of N trichloromethylmercapto-4-cyclohexene-1,2-dicarboximide and N-(1,1,2,Z-tetrachlorethylsulfenyl)-cis-A-4- cyclohexene-1,2-dicarboximide, respectively, in place of zinc Z-pyridinethiol-l-oxide are prepared and compared with control compositions containing these same compounds without cationic polymer. The degree of deposition and retention of these compounds in the presence of the cationic polymer is found to be substantially greater than is attached with the control compositions,

1 l 1 2 and a corresponding increase in residual antimicrobial of sodium dodecyl benzene sulfonate without loss of the activity is observed on surfaces washed therewith. improved deposition and retention of zirconium 2-pyr Example H tIlrilgitehwl-l-oxide particles effected by the polyethyleni Another antimicrobial detergent formulation in 210- 5 In Example IV, sodium coconut alkyl (ethoxy) sulfate cordance With this inv t is formulated as follows! can be replaced with the condensation product of ethylene Parts y Weight oxide with a hydrophobic base formed by the condensation Triethanolamine 60601 111. alkyl Sulfate of propylene oxide with propylene glycol and having a Coconut alkyl dime hyl amine OXide molecular weight of 1600 or the condensation product of Monoethanol amide o coconut fatty acids octyl phenol and ethylene oxide using a mole ratio of Ethanol 1: 15, with substantially equivalent results. Polyethylenimine 1 0175 The enhanced deposition and retention of pyridinethione Cadmium 2-pyfidinethiol-l-oXide (average Pillrticle salts was demonstrated as follows: A control composition size 3.0 microns) was formulated as in Example I, but omitting the poly- Water, NaOH to adjust t P 8- Balance ethylenimine/ ethylene oxide reaction product. A composi- 1 I havin a molecular tion similar in formulation but containing 0.5% of polyweiatztttattrestat start; a .00. h imm me a charge n i f 1004111 in aqueous solution at H 7.0, and a viscosity of 2.5 centipolse aqueous solution at pH 7.0 and a molecular weight of iabsflqte viswsity) a f fii solutlon meas 50,000 was prepared and designated test composition A. urea will an 3 Viscos me er a A test composition designated B which differed from the This compostlon has excglent 99 control composition in containing 0.5% of the polyethyland in usage imparts Sim/tamed ant1.m1cml?1al actwlty to enimine of composition A and 1.0% of zinc 2-pyridine- Surfaces washed therizwlth' amme oxlde b thiol-l-oxide having an average particle size of 2 microns, Placed in h m part 9 beta'lmmodl' rather than 2.0% of this latter component as in the conpropionate, disodium laur oylcyclo midmium l ethoxy H01 composition, was also preparedethionic acid-'2-eth1on cac1d, d1sod1um;ordodecylam1no- The hair of 16 female Subjects was Shampooed by acetate with substifllmany equivalent reslilts' experienced beauty shop operators who washed half of the Further compositions in accordance with this invention hair and Scalp of each Subject with the control composi are are followstion. The other half of the subjects hair and scalp was Example In washed in the assinged test composition. The test and con- A liquid detergent composition suitable for use as an tr0 l composition were used ad libitum, in quantities sufantidandrulf shampoo is formulated as follows: ficient to provlde a good lather. After lathering for 45 seconds, the hair was rinsed and the composition were re- Parts by Weight applied, lathered for 45 seconds and rinsed again. The

Tl'lethanolamme P alkyl sulfate hair was then dried. A sample of cornified epithelium Mofloeiilanol amide of FQ fatty acld from both the control and test halves of each subjects Magn s alu-mmum slllcate scal was obtained by applying cellulose adhesive tape lvlethyklenulose6 against the scalp. The tape was then placed on a glass slide y 0008 with the adhesive in contact with the glass. The slide was Pfiffume 40 examined with a polarizing microscope at approximately Z111c 'PY 1 400 diameters with polaroids crossed. While the cornified 'POIYethYIQmmmQMethylene oxlde realctlon Prod" epithelium exhibited some degree of birefringence the u f g i i Welght 50,000; highly anisotropic properties of the particulate zinc 2- 03001116 Charge denslty m aqueous Solu pyridinethiol-l-oxide made is readly visible under such tl at P viewing conditions. The relative quantity of particulate Water Balance i zyridinethiol-l-oxide was then graded on a 0 to 4 1 Average particle size 1.5 microns. scale, with a grade of 4 indicating heavy deposition, and I01e u1ar Weight 10,000- 0 indicating substantially no deposition. This composition provides a substantial degree of anti- The following results were obtained. drandrutf effect when used in the customary fashion. The TABLE 1 degree of deposition and retention of particulate zinc Average degree pyridinethione on the hair and scalp after shampooing Composition; of deposition with this product is substantially greater than is attained Control 2,3 with a similar composition without the polyethylenimine/ A 3.4 ethylene oxide reaction product. B 2.6

"Ex-ample IV V VI VII VIII IX X XI Sodium coconut alkyl (ethoxy)a sulfate- 20 7. 5

Sodium lauroyl sarcosinate Sodium dodeeyl benzene sullonate-.. ZtrimethyIamine lam-lo acid.-. Triethanolamine coconut alkyl monoglyceride sulionate Potassium coconut soap- Ethanol Polyethylenimine 1 2.0 Polyethylenimine [propylene oxide reaction product 1 1. 5 Tin Z-pyridinethiol-l-oxide (average parricle size 7 microns) 1. 0 0. 5 Zirconium 2-pyridinethiol-1-oxide (average particle size 4 -microns) 1.0 0.6 2

ater Balance 1 Molecular weight 10,000; cationic charge density .004 in aqueous solution at pH 7.0. i Wraight ratio 2:1; molecular weight 30,000; cationic charge density greater than .001 in aqueous solution at Each of the above compositions impart a residual anti- It can be seen from the above results that deposition microbial activity to surfaces washed therein which is suband retention of zinc 2-pyridinethiol-l-oxide was substanstantially greater than is attainable with similar compositially greater from a detergent composition which contions without the polymeric component. tained 0.5% of polyethylenimine as compared to the In Example XI, distearyl dimethylammonium chloride, control composition which contained the same amount of stearyl dimethyl benzyl ammonium chloride, or dicoconut zinc Z-pyridinethiol-l-oxide without polymer. Similarly,

alkyl dimethyl ammonium chloride can be used in place composition B which contained only 1.0% of zinc 2-pyridinethiol-l-oxide yielded a somewhat higher degree of deposition and retention than the control composition which contained twice as much of this salt, but no polymer.

In like manner the relative deposition of zinc 2-pyridinethiol-l-oxide from a detergent composition containing various concentrations of ethoxylated polyethylenimine was demonstrated as follows: The following compositions were prepared.

TABLE 2 Parts by weight Composition Control C D E F Sodium coconut alkyl glyceryl ether.

sulfonate 25. 25. 0 25.0 25. 0 25.0

111 3. 0 3.0 3. 0 3. 0 3.0 6. 6. 5 6. 5 6. 5 6. 5 Sodium sulfate. 3. 1 3.1 3.1. 3. 1 3.1 Sodium N-lauroyl sarcosinate- 3. 8 3. 8 3. 8 3.8 3. 8 N -coconut acyl sarconsinatc. 1. 2 1. 2 1. 2 1. 2 1. 2 Coconut acyl diethanolamide 2. 0 2. 0 2. 0 2. 0 2. 0 Acetylated lanolin. 1. 0 1. 0 1. 0 1. 0 1. 0 Perfume 0. 4 0. 4 0. 4 0. 4 0. 4 Color 0. 04 0. 04 0.04 0. 04 0. 04 Zinc 2-pyridinethiol-1-oxide (averageparticle size 2 microns) 2. 0 1. 0 0.5 1. 0 0 5 Polyethylenimine/ethylene oxide reaction product 0 1. 0 1. 0 2 0 2. 0 Water Balan e 1 Same as Example I.

Each of the compositions was tested in the manner described supra, using a test composition and control composition on each of the test subjects. The results attained were as follows:

Average degree of deposition It can be seen that the degree of deposition attained with composition C containing only half as much zinc 2- pyridinethiol-l-oxide as the control was yet greater than the control. Composition D, which contains 1.0% polymer and only A as much zinc Z-pyridinethiol-l-oxide as the control, displayed only moderately less deposition than the control. Composition E, which contains 2% polymer and only half as much zinc Z-pyridinethiol-loxide as the control, provides somewhat greater deposition than the control. Composition F, containing 2.0% polymer and only A as much zinc Z-pyridinethioll-oxide as the control, provides a degree of deposition approximately equal to the control.

The degree of enhancement of particle deposition and retention in the presence of cationic polymer is also demonstrated by the Slide Particle Deposition test conducted. as follows:

Dandruff sclaes are collected from the scalps of afilicted individuals and mounted on glass slides with a clear acrylic adhesive. The dandruff slides are covered with a clean white polyester/cotton cloth, wetted with water, and washed with a test detergent composition by brushing the cloth-covered slide with a soft toothbrush and using 20 grams of the detergent composition for 50 strokes. The slides are then rinsed for one minute with cloth in place and then for two minutes with cloth removed. The rinse water used is tap water at 37 C. with a flow rate of 4 liters per minute. The slides are then allowed to dry.

The washed slides are examined microscopically at 400 diameters magnification using cross polarized filters. Deposition is graded on a 04 scale, no deposition being given a 0 grade, while maximum expected deposition is given a 4 grade. Grades in between vary approximately linearly with the density of deposited particles. Several areas of each slide are given whole number grades before the average for that slide is taken to the nearest A of a deposition grade. In each test three slides for each test material are treated in random order. All grading and Washing is done on a blind basis.

Detergent compositions substantially corresponding to the composition of Example I but containing 0.5% by weight of zinc 2-pyridinethiol-l-oxide and 2.0% by weight of various cationic polymers of this invention were tested against a control composition without polymer using the method described above. The following results were obtained.

l Ethoxylated polyethylenimine as in Example I.

Polyvinylimiadzole substantially completelyquaternized with dimethyl sulfate, having a molecular weight of from 5 to 20x10", and a cationic charge density of .009.

Poly (dimethylaminoethylrnethaorylate) substantially completely quaternized with methyl phosphate, having a molecular weight between 1,000 and 5,000,000 and a cationic charge density of .006.

4 Poly(diethylaminoethylmethacrylate) substantially completely quaternzied with dimethyl sulfate, having a molecular Weight within tgg ange from about 1,000 and 5,000,000 and a cationic charge density of l D- It can be seen that substantial enhancement of particle deposition and retention is effected by the inclusion of representative cationic polymers in detergent formulations containing same.

Example XII An antimicrobial milled toilet detergent bar which also constitutes a preferred embodiment of this invention is prepared in accordance with methods Well known in the art and having the following composition;

Parts by weight Sodium alkyl glyceryl ether sulfonate 1 8.0

Potassium alkyl sulfate 1 20.0 Magnesium soap of :20 tallowzcoconut fatty acids 16.7

Sodium soap of 80:20 tallow: coconut fatty acids 32.4 Inorganic salts (sodium and potassium chlorides and sulfates) 9.2 3,4,S-tribromosalicylanilide (average particle size 5 microns) 1.0 Cationic polymer 2 2.0 Water and miscellaneous 10.7

1 Alkyl groups derived from middle cut of alcohols Obtained by catalytic reduction of coconut alcohol which has a chain length distribution substantially as follows: 2%C1o, 66%- C12, 23%C1-1, and 9%C1o.

2 Quaternary ammonium-substituted hydroxyethyleellulose ether formed by reacting a hydroxyethylcellulose ether (having a degree of substitution with hydroxyethyl groups of 1.3) wtih a reaction product of 0.7 mole epichlorohydrin and 0.7 mole of trimethylamine per substituted anhydroglucose unit thereof, said polymer having a cationic charge density of .002 aindzgyoogcular weight Within the range of from about 200,000

The deposition and retention of the particulate antimicrobial agent 3,4',S-tribromosalicylanilide upon skin washed with the above composition is substantially greater than occurs with a control composition without cationic polymer.

Toilet detergent bars identical in composition to the bar described above are prepared, replacing the 3,4',5- tribromosalicylanilide with 4 micron particles of the antimicrobial agents 3,4,4'-trichlorocarbanilide; 4,4'-dichloro- 3-(trifluoromethyl) carbanilide; bis(2-hydroxy-3,5,6-trichlorophenyl)methane; and a 1:1 mixture of 4,4-dichloro-3-(trifluoromethyl)carbanilide and 3,4',5-tribromosalicylanilide, respectively, with improved deposition and retention of the antimicrobal particles being attained in each case relative to control compositions without cationic polymer.

Additional toilet detergent bars are prepared as in Example XII each containing one of the following cationic polymers in place of the quaternary ammonium-substituted cellulose ether polymer employed therein:

Each of these toilet detergent bars provides a degree of 3,4,5-tribromosalicylanilide particle deposition and re tention on skin washed therewith which is substantially greater than is attained with toilet detergent control bars without such polymers.

Example XIII An antimicrobial granular built laundry detergent product is prepared by conventional means, having the following composition:

Parts by weight Sodium alkyl benzene sulfonate (the alkyl group averaging about 12 carbon atoms and being derived from polypropylene 17.5 Sodium tripolyphosphate 49.7 Sodium sulfate 13.3 Silicate solids 7.0 3,4,4'-trichlorocarbanilide (particle size averaging 3 microns) no 0.5 Quaternized polyvinylimidazole 1.5

Polyviuylimidazole in which 80% of the vinylimidazole units are quaternized with dimethyl sulfate, having a molecular weight of 250,000 and a cationic charge density of .007.

Fabrics laundered in this product retain a substantially greater quantity of 3,4,4'-trichlorocarbanilide particles than do fabrics washed in a control product formulated as above, but without the cationic polymer.

Each of the foregoing examples describe embodiments of this invention which involve antimicrobial particulate substances. As hereinbefore disclosed, the deposition and retention of other particulate substances are also enhanced by the cationic polymers. The following examples are illustrative of detergent compositions in accordance with this invention containing representative particulate substances which function through deposition and retention on washed surfaces.

Toilet detergent bars desirably contain a sunscreen of ultraviolet absorber which will deposit on the skin in the course of washing therewith to provide protection against harmful sun rays. Suitable particulate ultraviolet absorbers which can be incorporated in detergent bars for this purpose include, for example, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-methoxy 2 carboxybenzophenone, and 2-hydroxy-4- methoxybenzophenone. These materials are insoluble particulate solids which are employed in bar soap formulations in concentrations ranging from about 1% to about 5% by weight.

Example XIV A toilet soap bar containing an ultraviolet absorber is formulated in accordance with this invention as follows:

Percent by weight Sodium soap of 50:50 tallow:coconut fatty acids 73.19

1 Same as Example XII.

When used in the customary fashion, the toilet soap bar of this example effects a substantially greater degree of deposition and retention of the particulate ultraviolet absorber (2-hydroxy-4-n octoxybenzophenone) on the washed skin surfaces than does an identical composition without polymer.

Additional toilet soap bars are prepared as above but containing 2-hydroxy-4-methoxy-Z-carboxybenzophenone and 2-hydroxy-4-methoxybenzophenone, respectively, in place of 2-hydroxy-4-n-octoxybenzophenone, with substantially equivalent results.

Toilet soap bars formulated in accordance with Example XIV are prepared containing polyvinylimidazole substantially completely quaternized with dimethyl sulfate, having a molecular weight of 200,000 and a cationic charge density of .009; quaternized poly(p-dimethylaminomethylstyrene) having a molecular weight of 250,- 000 and a cationic charge density of .006; and JR-lL, a quaternary ammonium-substituted cellulose derivative supplied by Union Carbide, having a molecular weight within the range from 100,000 to 1,000,000, and a cationic charge density of .004; respectively, in place of the cationic polymer employed in that example. The resulting products are substantially equivalent to the product of Example XIV in terms of particle deposition and retention.

Other insoluble particulate substances which are desirably incorporated in toilet soap or detergent bars include the so-called skin feel enhancers. Such materials are deposited as particles on the skin in the course of washing and create a favorable skin feel after washing. Such materials include, for example, nicotinic acid, talc and silicones, such as Dow-Corning Silicone 1 -157. These materials are desirably incorporated in a toilet bar formula at levels of about 10% by weight.

Example XV A bar soap formulation as set forth in Example XIV is prepared substituting 10.2% by weight of nicotinic acid particles (average particle size 5 microns) for the 2-hydroxy-4-n-octoxybenzophenone and coconut fatty acid. The resulting composition yields a substantially greater degree of deposition and retention of nicotinic acid particles on skin washed with the bar than is attained with a bar similarly formulated but without cationic polymer. Similar results are obtained when Dow-Corning Silicon F- 157 is used in place of nicotinic acid.

Various insoluble fabric whiteners or brighteners, such as fluorescent dyes and bluings, e.g., ultramarine blue, deposit as particles on fabrics washed with laundry detergent products containing same. Such materials can be used in heavy-duty laundry detergent products in concentrations up to about 1% by weight.

7 Example XVI A built liquid detergent formulation containing a particulate bluing material and a cationic polymer in accordance with this invention is formulated as follows:

Percent by weight 3 (N,N-dimethyl-N-coconutammonio)-2 hydroxypropane-l-sulfonate 9.00 Tergitol 12-P-12 (condensation product of 12 moles of ethylene oxide and one mole of dodecylphenol 3.00 Tripotassium methylene disphosphonate 26.00 Sodium silicate (Si* :Na O=1.6:1) 3.00 Potassium toluenesulfonate 8.50 Sodium carboxymethylhydroxyethylcellulose 0.30 Ultramarine blue (particle size 1.8 microns) 0.15 Cationic polymer 1 3.5 Water Balance Parts by weight Example XVII XVIII XIX Sodium coconut alkyl glyceryl ether sulionate Sodium gallow alkyl glyceryl ther sul oxoozooeea lo o ONOONQO I:

fonate Sodium sulfate"..- Sodium N-lauroyl sarcosinate..- N-coconut acyl sarcosine Diethanolarnide of coconut fatty acids Acetylated 1anolin Zinc Z-pyridinethiol-l-oxide 1 N-triehloromethylmercaptMr cyclohexene-1,2-dicarboximide 1 N-(l,1,2,2-tetrach1oro-ethylsulfenyl)- imide Polymer (l; l. 0 Polymer (2 1.0 Polymer (3g 2. 5 Polymer (4 4. 0 Water Balance 1 About 23% diglyceryl and the balance substantially monoglyceryl.

2 About 23% diglyceryl and the balance substantially monoglyceryl; the tallow alkyls correspond to those of substantially saturated tallow alcohols and contain approximately 2% C 4, 32% C", and 66% 01a.

8 Average particle size 2 microns.

4 Average particle size 6.5 microns.

Average particle size 10.0 microns.

No'rns:

Polymer (l) in the above example is poly(diethylaml noethylmethacrylate) substantially comp etely quaternized with d}- methylsultate, having a molecular weight of 2,000,000 and a cationic charge density of .005.

Polymer (2) is JR-lL.

Polymer (3) is polyethylenimine/ethylene oxide reaction prty duct (weight ratio 1:1, molecular weight 80,000120,000 and cationic charge density of .004 in aqueous solution at pH 7.0.

Polymer (4) is Primafloo C-3.

Each of the above compositions provides a substantially greater degree of deposition and retention of the particulate antimicrobial agents contained therein than similar composition formulated without these polymers.

It will be obvious to those skilled in the art that the concept of this invention is applicable to a wide variety of insoluble or sparingly soluble particulate substances in addition to those specifically described in the foregoing specification. For example, perfumes which have been adsorbed on insoluble particulate resinous substances can be deposited on skin, fabrics and other surfaces washed with detergent compositions containing same to a substantially greater degree, through the inclusion in said compositions of a cationic polymer as herein defined.

What is claimed is:

1. A detergent composition consisting essentially of:

(I) from about 2% to about of an organic surfactant selected from the group consisting of anionic, ampholytic, polar nonionic, nonionic, and zwitterionic surfactants and cationic surfactants selected from the group consisting of distearyldimethylammonium chloride, stearyldimethylbenzylammonium chloride, coconutalkyldimethylbenzylammonium chloride, dicoconutalkyldimethylammonium chloride, cetylpyridinium chloride, and cetyltrimethylammonium bromide;

(II) from about 0.25% to about 4% of a water-soluble cationic polymer having a molecular weight within the range from about 2,000 to about 3,000,- 000 and a cationic charge density greater than .001, said polymer being a polyalkylene polyamine prepared by reacting a polyamine comprising a mixture of tetraethylenepentamine, pentaethylenehexamine, hexaethyleneheptamine, and heptaethyleneoctamine sequentially with ethylene dichloride and epichlorohydrin;

(III) from about 0.1% to about 10% of a waterinsoluble or sparingly soluble particulate substance having an average diameter within the range from 0.2 to 30 microns, selected from the group consisting of:

(A) antimicrobial substances selected from the ggroup consisting of:

(1) substituted salicylanilides having the general formula:

Y O H C? Y Y X Y wherein X is hydrogen or halogen, and Y is hydrogen, halogen or trifluorornethyl; (2) substituted carbanilides having the general structural formula:

Y (I) Y wherein Y is hydrogen, halogen, or triiiuoromethyl, X is halogen or ethoxy, X is hydrogen or halogen;

(3) substituted bisphenols having the general structural formula:

OH OH X Xn wherein X is a halogen and n is an integer from 1 to 3, R is an alkylene radical having from 1 to 4 carbon atoms or divalent sulfur;

(4) N-trichloromethylmercapto 4 cyclohexene-1,2-dicarboximide;

(5) N (1,l,2,2 tetrachloroethylsulfenyl)- cis-A-4-cyclohexene-1,2-dicarboximide;

(6) heavy metal salts of Z-pyridinethiol loxide selected from the group consisting of zinc, cadmium, tin, and zirconium salts; and

(7) combinations thereof;

(B) ultraviolet absorbers selected from the group consisting of Z-hydroxy 4 n octoxybenzophenone, 2 hydroxy 4 methoxy 2 carboxybenzophenone, and 2-hydroxy 4 methoxybenzophenone; and

(C) ultramarine blue.

19 4. The composition of claim 3 wherein the heavy metal salt is zinc.

5. The composition of claim 1 wherein the detergent is a water-soluble salt of a member selected from the group consisting of higher fatty acids, anionic organic sulfuric reaction products having in their molecular structure an alkyl group containing from about 8 to about 20 carbon atoms and a sulfuric or sulfonic acid ester radical, and acyl sarcosinates, wherein the acryl group 10 contains from about 10 to about 18 carbon atoms.

20 References Cited UNITED STATES PATENTS 3,355,388 11/1967 Karsten 252-107 3,489,686 1/1970 'Parran 252l06 3,400,198 9/1968 Lang 42471 LEON D. ROSDOL, Primary Examiner P. E. WILLIS, Assistant Examiner US. Cl. X.R.

*ggggg 'rrn smrrs PATENT eraser CERTIFECATE CF CCRRECTWN Patenfi: No, 3,761,418- Dame September 25, 1973 mvemofls) John J. Parran, Jr,

It is certified that error appears in the aboveddentified patent and that said letters Patent are hereby eorrected as shown below:

a I? Col, 1., line 17, -"serves should read -serve=-,

Col, 3, line 6, should read Col. 5, lines 66 & 67, "quaterized" should read quaternized (both instances) 0 Col, 6, line 5, "hereof" should read ---=chereof--,

Col, 6, line 61, the formula "H---NH (CH CH HN) -CH CHCHg -Nl-I (CH CH NH) CH CH NH m OH should read Col, 8, lines 45 & 46, 'N-trichloromethylmercapto-4cyclohexene-l,3-dicarboximide" should read -Ntrichloromethylmercapto- L-cyclohexene-l,2dicarboximide---e Cole 8, line 48, "antibicaterial" should read -antibacterial--. Colo ll, line 25 amino" should read ammonio- ------L, I Col,, 12, line 30, "assinged" should read ---assigned--. Col... 13, line 61, "sclaes" should read -scales- C010 14, line 30, "completelyquaternized" should read ---c:ompletely qua'ternized--=-,

Col, 16, line 68, "Silicon should read --Silicone--.

.Col, 18, Claim 1, line 29., "ggroup" should read -group-.,

Col 19, line 1, Claims 2 s! 3 have been omitted, They should read -=2, The composition of Claim 1 wherein the particulate substance is an antimicrobial substancee- T2723? mrru STATES PATENT emcr- @ERTEFZCATE Q RREQTEN Patent No. 3,761,418 Dated September 25, l973 Inventgr(g) John J0 Parran Jr.

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Page 2 53 h -'--3 The composition of Claim-2 wherein the particulate substance is a heavy metal salt of 2-pyridinethiol-l-oxide wherein said heavy metal salt is selected from the group consisting of zinc, cadmium, tin, and zirconium salts.

Signed and sealed this 26th day of March 197A.

Attest: v EDWARD MOFLET'CHER RQ I c, MARSHALL DANN' Attesting Officer I Commissioner of Patents in a

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3909436 *Apr 16, 1973Sep 30, 1975Ciba Geigy AgDisinfectant composition including a substituted 2-hydroxy benzophenone
US4197865 *Apr 24, 1978Apr 15, 1980L'orealTreating hair with quaternized polymers
US4381919 *Dec 10, 1979May 3, 1983Societe Anonyme Dite: L'orealPolyamines
US4673525 *May 13, 1985Jun 16, 1987The Procter & Gamble CompanyUltra mild skin cleansing composition
US4783484 *Oct 5, 1984Nov 8, 1988University Of RochesterParticulate composition and use thereof as antimicrobial agent
US4812253 *Jun 15, 1987Mar 14, 1989The Procter & Gamble CompanyUltra mild skin cleansing composition
US4832950 *May 10, 1988May 23, 1989Kao CorporationPolyvalent metal salts of 2-mercaptopyridine-n-oxide
US4946618 *Dec 21, 1989Aug 7, 1990The Procter & Gamble CompanyToilet bar composition containing cationic guar gum
US4997454 *Apr 26, 1989Mar 5, 1991The University Of RochesterPrecipitation
US5037818 *Jul 26, 1988Aug 6, 1991Chesebrough-Pond's Usa Co., Division Of Conopco, Inc.Mixture of anionic sulfate surfactant and cationic polygalactomannan; deposition of microbiocidal particles
US5076953 *Feb 1, 1989Dec 31, 1991The Procter & Gamble CompanySkin cleansing synbars with low moisture and/or selected polymeric skin mildness aids
US5104645 *Feb 2, 1990Apr 14, 1992The Proctor & Gamble Company1-hydroxy-2-pyridinethione metal salt inplatelet form of specific size; a synergizer; effective
US5204014 *May 18, 1992Apr 20, 1993The Procter & Gamble CompanyLow pH mild personal cleansing bar with lathering mild synthetic surfactant and magnesium soap
US5328632 *Jan 19, 1993Jul 12, 1994The Procter & Gamble CompanyLow pH mild personal cleansing bar with lathering mild synthetic surfactant and magnesium soap
US5393449 *Feb 11, 1992Feb 28, 1995The Procter & Gamble CompanyPersonal cleansing stamped synbar containing alkyl glyceryl ether sulfonate and acyl isethionate
US5476660 *Aug 3, 1994Dec 19, 1995Lever Brothers Company, Division Of Conopco, Inc.Deposition of materials to surfaces using zwitterionic carrier particles
US5770556 *Mar 21, 1997Jun 23, 1998Lever Brothers Company, Division Of Conopco, Inc.Process for making bar compositions having enhanced deposition of benefit agent comprising use of specific spray dryable adjuvant powders
US5840293 *May 17, 1994Nov 24, 1998Advanced Polymer Systems, Inc.Topical composition comprising carrier with dispersed noncollapsible crosslinked polymeric beads having network of internal pores containing active substance and exterior surface charge which promotes adhesion to keratinic materials
US5858939 *Mar 21, 1997Jan 12, 1999Lever Brothers Company, Division Of Conopco, Inc.Method for preparing bars comprising use of separate bar adjuvant compositions comprising benefit agent and deposition polymer
US5935917 *Nov 5, 1997Aug 10, 1999Lever Brothers CompanyExtruded toilet bar of chips of carrier of hydrophobic polyalkylene glycols, ethylene oxide-propylene oxide copolymer, a benefit agents, thickener and chips based on a surfactant system; entrapped drops; materials handling
US5955409 *Mar 21, 1997Sep 21, 1999Lever Brothers CompanyBar compositions comprising adjuvant powders for delivering benefit agent
US5972859 *Mar 28, 1997Oct 26, 1999Lever Brothers CompanyBar composition comprising entrapped emollient droplets dispersed therein
US6008173 *Oct 24, 1996Dec 28, 1999Colgate-Palmolive Co.Composition of soap, silicone, petrolatum and cationic polymer
US6026534 *Sep 22, 1997Feb 22, 2000Lever Brothers CompanyBathing ball
US6034043 *Apr 20, 1999Mar 7, 2000Lever Brothers Company, Division Of Conopco, Inc.Skin cleaning compound
US6057275 *Jan 4, 1999May 2, 2000Unilever Home & Personal Care Usa, Division Of Conopco, Inc.Consists of synthetic non-soap surfactant, a hydrophilic surfactant, a water insoluble surfactant with melting point 40 to 200 degree c., a benefit agent(moisturizer) and an alkali metal salt of dialkyl diallyl ammonium polymer
US6083491 *Mar 13, 1992Jul 4, 2000L'orealCosmetic compositions, comprising a dispersion of solid particles in a binder, having good properties of stability and adhesion to the skin prepared by introducing into the said compositions solid particles whose surfaces have been coated
US6156713 *Sep 2, 1999Dec 5, 2000Colgate-Palmolive CompanyComposition
US6223942Jul 28, 1998May 1, 2001Lever Brothers Company, Division Of Conopco, Inc.Container and closure
US6365560Nov 6, 2000Apr 2, 2002Colgate-Palmolive CompanyFor cleansing skin
US6369024Sep 15, 1998Apr 9, 2002The Procter & Gamble CompanyImpart appearance and integrity benefits to fabrics and textiles laundered in washing solutions
US6645476Jul 14, 2000Nov 11, 2003Clariant GmbhPreparable by free-radical copolymerization of macromonomers containing an end-group capable of polymerization, a hydrophilic moiety based on polyalkylene oxides, and a hydrophobic moiety with olefincally unsaturated comonomers
US6759376Sep 11, 2002Jul 6, 2004Unilever Home & Personal Care Usa, Division Of Conopco, Inc.Enhanced skin shine
US6780826Sep 11, 2002Aug 24, 2004Unilever Home & Personal Care Usa, Division Of Conopco, Inc.Hydrophobically modified mica particles enhance the shine of skin or other substrate on which they are deposited and reduce the appearance of flaws or defects on the substrate (e.g., skin)
US6849584Nov 1, 2002Feb 1, 2005The Procter & Gamble CompanyComposition containing a cationic polymer and water insoluble solid material
US7026308Jun 22, 2000Apr 11, 2006The Procter & Gamble CompanyTopical anti-microbial compositions
US7470654Sep 6, 2005Dec 30, 2008The Procter & Gamble CompanyAdsorbed onto water insoluble solid support; water soluble and/or water dispersible material encapsulates liquid or liquefiable active component; laundry detergents
US7528125Mar 20, 2007May 5, 2009Jonathan L. SesslerWater-soluble zinc ionophores, zinc chelators, and/or zinc complexes and use for treating cancer
US7531497Sep 15, 2005May 12, 2009The Procter & Gamble CompanyPersonal care composition containing a cleansing phase and a benefit phase
US7585827Aug 20, 2007Sep 8, 2009The Procter & Gamble Companyconditioning copolymer containing noncrosslinked cationic monomer units selected from diallyldimethyl ammonium chloride and 1-Propanaminium, N,N,N-trimethyl-3-[(2-methyl-1-oxo-2-propenyl)amino]-, chloride, and one or more nonionic monomers such as acrylates, vinylamine; an anionic detersive surfactant
US7598213Oct 31, 2007Oct 6, 2009The Procter & Gamble Companycleansing compounds comprising a detersive surfactant selected from anionic, amphoteric and zwitterionic surfactants, a water soluble cationic homopolymer promotes the formation of lyotropic liquid crystals that exhibit birefringence and water; hair conditioners
US7674785Dec 8, 2005Mar 9, 2010The Procter & Gamble Companypolyvalent metal salts of pyrithione; salt of zinc, copper, silver, nickel, cadmium, mercury, and/or bismuth; di- or polyamines, diethylene triamine penta-acetic acid, tetraethylene triamine, ethylene diamine, and/or diethylene triamine strong chelator
US7838536Mar 24, 2009Nov 23, 2010Jonathan L. Sesslerdelivers zinc to cancer cells or zinc chelation within the cancer cells using the unbound ligand; bioavailability; with texaphyrin metal complex;
US8119168Mar 18, 2003Feb 21, 2012The Procter & Gamble CompanyTopical antidandruff agents comprising mixtures of group IIB compounds such as zinc pyrithione, zinc oxide or calamine
US8268764Dec 8, 2009Sep 18, 2012The Procter & Gamble CompanyPorous, dissolvable solid substrate and surface resident starch perfume complexes
US8273333Apr 16, 2009Sep 25, 2012The Procter & Gamble CompanyNon-lathering personal care composition in the form of an article
US8349301Sep 16, 2005Jan 8, 2013The Procter & Gamble CompanyMixture of surfactants, fatty amphiphiles and aqueous carrier
US8349302Jun 27, 2006Jan 8, 2013The Procter & Gamble CompanyShampoo containing a gel network and a non-guar galactomannan polymer derivative
US8349341Dec 8, 2010Jan 8, 2013The Procter & Gamble CompanyPorous, dissolvable solid substrate and a surface resident coating of cationic surfactant conditioner
US8349786Dec 8, 2009Jan 8, 2013The Procter & Gamble CompanyPorous, dissolvable solid substrates and surface resident cyclodextrin perfume complexes
US8349787Dec 8, 2010Jan 8, 2013The Procter & Gamble CompanyPorous, dissolvable solid substrate and a cationic surfactant conditioner material
US8361448Jun 27, 2006Jan 29, 2013The Procter & Gamble CompanyMixture of surfactants, crystalline fatty alcohol, and aqueous carrier; dispersed gel network
US8361449Mar 3, 2008Jan 29, 2013The Procter & Gamble CompanyShampoo containing a gel network
US8361450Nov 21, 2006Jan 29, 2013The Procter & Gamble CompanyShampoo containing a gel network and a non-guar galactomannan polymer derivative
US8361516Jul 31, 2007Jan 29, 2013SedermaComposition comprising sarsasapogenin
US8367048Nov 21, 2006Feb 5, 2013The Procter & Gamble CompanyShampoo containing a gel network
US8404648Feb 16, 2006Mar 26, 2013SedermaPolypeptides KXK and their use
US8415287Dec 8, 2009Apr 9, 2013The Procter & Gamble CompanyPorous, dissolvable solid substrate and surface resident inorganic particulate perfume complexes
US8425622May 23, 2012Apr 23, 2013The Procter & Gamble CompanySoluble solid hair coloring article
US8439981May 23, 2012May 14, 2013The Procter & Gamble CompanySoluble solid hair coloring article
US8444716May 23, 2012May 21, 2013The Procter & Gamble CompanySoluble solid hair coloring article
US8461090Dec 8, 2009Jun 11, 2013The Procter & Gamble CompanyPersonal care composition in the form of an article having a porous, dissolvable solid structure
US8461091Dec 8, 2009Jun 11, 2013The Procter & Gamble CompanyPersonal care composition in the form of an article having a porous, dissolvable solid structure
US8466099Dec 8, 2009Jun 18, 2013The Procter & Gamble CompanyProcess of making an article for dissolution upon use to deliver surfactants
US8470305Dec 7, 2007Jun 25, 2013The Procter & Gamble CompanyMixture of deteresive surfactant, solid, crystalline fatty acid gel network and aqueous carrier
US8476211Jul 30, 2012Jul 2, 2013The Procter & Gamble CompanyPorous, dissolvable solid substrates and surface resident starch perfume complexes
US8491877Mar 17, 2004Jul 23, 2013The Procter & Gamble Companycontaining a surfactant having an anionic group; treatment of microbial and fungal infections on the skin or scalp, especially dandruff; may also contain a pyrithione or polyvalent metal salt of pyrithione, particularly zinc pyrithione.
US8507531Oct 15, 2010Aug 13, 2013Jonathan L. SesslerWater-soluble zinc ionophores, zinc chelators, and/or zinc complexes and use for treating cancer
US8507649May 4, 2007Aug 13, 2013SedermaCosmetic compositions comprising at least one peptide with at least one immobilized aromatic cycle
US8563491 *Mar 3, 2006Oct 22, 2013The Procter & Gamble CompanyMethods of cleansing skin and rinse-off or wipe-off compositions therefor
US8628706Aug 29, 2012Jan 14, 2014The Procter & Gamble CompanyNon-lathering personal care composition in the form of an article
US8653014Oct 5, 2012Feb 18, 2014The Procter & Gamble CompanyShampoo composition containing a gel network
US8673274Dec 12, 2007Mar 18, 2014The Procter & Gamble CompanyComposition comprising pyrithione or a polyvalent metal salt of a pyrithione and furametpyr
US8685908Feb 28, 2012Apr 1, 2014The Procter & Gamble CompanyBar soap comprising pyrithione sources
US8697656Jan 15, 2010Apr 15, 2014SedermaCompounds, in particular peptides, compositions comprising them and cosmetic and dermo-pharmaceutical uses
US8741357Jan 13, 2006Jun 3, 2014Sederma SasCosmetic or dermopharmaceutical composition comprising an euglena extract
US8765170Jan 29, 2009Jul 1, 2014The Procter & Gamble CompanyPersonal care composition in the form of an article
US8795695Aug 15, 2012Aug 5, 2014The Procter & Gamble CompanyPersonal care methods
US8796252Dec 23, 2004Aug 5, 2014Arch Chemicals, Inc.Pyrithione biocides enhanced by zinc metal ions and organic amines
US20130045263 *Aug 15, 2012Feb 21, 2013Edward Dewey Smith, IIIPersonal Care Compositions Having Dried Zinc Pyrithione-Polymer Aggregates
US20130045961 *Aug 15, 2012Feb 21, 2013Edward Dewey Smith, IIIPersonal Care Compositions Having Dried Zinc Pyrithione
CN1777669BApr 16, 2004May 12, 2010宝洁公司A composition comprising a surface deposition enhancing cationic polymer
DE3150338A1 *Dec 18, 1981Jul 15, 1982OrealOeliges, schaeumendes mittel mit einer fluessigen phase zur pflege von keratinmaterialien und der haut
EP0093601A2 *Apr 29, 1983Nov 9, 1983Unilever N.V.Washing composition
EP0149175A2 *Dec 18, 1984Jul 24, 1985Kao CorporationDispersions of antifungus agents and antifungal hair treatment compositions
EP0227321A2 *Nov 27, 1986Jul 1, 1987THE PROCTER & GAMBLE COMPANYMild skin cleansing soap bar and method of making
EP0277876A2 *Jan 29, 1988Aug 10, 1988Laboratoire Lachartre Societe Anonyme:Composition for washing and conditioning hair in a single step
EP0405664A2 *Jun 22, 1990Jan 2, 1991THE PROCTER & GAMBLE COMPANYPersonal cleansing product with odor compatible bulky amine cationic polymer
EP1471137A1 *Apr 23, 2003Oct 27, 2004THE PROCTER & GAMBLE COMPANYA composition comprising a surface deposition enhacing cationic polymer
EP1632558A1 *Sep 6, 2004Mar 8, 2006The Procter & GambleA composition comprising a surface deposition enhancing cationic polymer
EP1975226A1 *Mar 20, 2007Oct 1, 2008The Procter and Gamble CompanyLiquid treatment composition
EP2082723A1Jun 23, 2000Jul 29, 2009The Procter and Gamble CompanyTopical anti-microbial compositions
EP2510982A1May 4, 2007Oct 17, 2012SedermaCosmetic compositions comprising at least one peptide with at least one immobilized aromatic cycle
EP2666457A2Apr 16, 2009Nov 27, 2013The Procter and Gamble CompanyProcess for forming a non-lathering personal care article in the form of a dissolvable solid foam
EP2666458A2Apr 16, 2009Nov 27, 2013The Procter and Gamble CompanyPre-mix for a non-lathering personal care article, the article having the form of a solid foam
EP2687287A2May 12, 2010Jan 22, 2014The Procter and Gamble CompanyDelivery particles
EP2687590A2May 12, 2010Jan 22, 2014The Procter and Gamble CompanyDelivery particles
WO1992018100A1 *Apr 3, 1992Oct 16, 1992Procter & GambleAntibacterial mild liquid skin cleanser
WO1996021426A1 *Jan 5, 1996Jul 18, 1996Procter & GambleThree in one ultra mild lathering antibacterial liquid personal cleansing composition
WO1998042815A1 *Jan 23, 1998Oct 1, 1998Unilever NvPersonal cleansing bar with enhanced deposition
WO1999014297A1 *Sep 15, 1998Mar 25, 1999Procter & GambleLaundry detergent compositions with linear amine based polymers to provide appearance and integrity benefits to fabrics laundered therewith
WO1999015062A1Sep 21, 1998Apr 1, 1999Unilever NvBathing ball
WO2000006456A2Jul 26, 1999Feb 10, 2000Lever Hindustan LtdContainer and closure
WO2004082648A1Mar 18, 2004Sep 30, 2004Procter & GambleComposition comprising particulate zinc materials having a defined crystallite size
WO2004094583A2 *Apr 16, 2004Nov 4, 2004Chieffi AndreA composition comprising a surface deposition enhancing cationic polymer
WO2005068594A1 *Dec 18, 2004Jul 28, 2005Lever Hindustan LtdImproved detergent composition
WO2006029066A1 *Sep 6, 2005Mar 16, 2006Procter & GambleA composition comprising a surface deposition enhancing cationic polymer
WO2008114226A1 *Mar 19, 2008Sep 25, 2008Procter & GambleLiquid treatment composition
WO2010067327A1Dec 10, 2009Jun 17, 2010SedermaCosmetic composition containing acetylated oligoglucuronans
WO2010077653A2Dec 8, 2009Jul 8, 2010The Procter & Gamble CompanyPersonal care composition in the form of an article having a hydrophobic surface-resident coating
WO2010082175A2Jan 15, 2010Jul 22, 2010SedermaNew compounds, in particular peptides, compositions comprising them and cosmetic and dermopharmaceutical uses
WO2010082176A2Jan 15, 2010Jul 22, 2010SedermaCosmetic composition containing kxk type peptides and uses
WO2010082177A2Jan 15, 2010Jul 22, 2010SedermaNew compounds, in particular peptides, compositions comprising them and cosmetic and dermopharmaceutical uses
WO2010136965A2May 25, 2010Dec 2, 2010SedermaCosmetic use of tyr-arg dipeptide to combat cutaneous sa
WO2010141683A2Jun 3, 2010Dec 9, 2010The Procter & Gamble CompanyMultiple product system for hair
WO2011103146A2Feb 16, 2011Aug 25, 2011The Procter & Gamble CompanyA post foaming gel composition comprising an anti-irritation agent
WO2011103173A2Feb 16, 2011Aug 25, 2011The Procter & Gamble CompanyNon-aerosol personal care compositions comprising an anti-irritation agent
WO2011123727A2Apr 1, 2011Oct 6, 2011The Procter & Gamble CompanyOrganosilicones
WO2011123732A1Apr 1, 2011Oct 6, 2011The Procter & Gamble CompanyComposition comprising modified organosilicones
WO2011123734A1Apr 1, 2011Oct 6, 2011The Procter & Gamble CompanyCare polymers
WO2011123736A1Apr 1, 2011Oct 6, 2011The Procter & Gamble CompanyCare polymers
WO2011123739A1Apr 1, 2011Oct 6, 2011The Procter & Gamble CompanyCompositions comprising organosilicones
WO2011156551A1Jun 9, 2011Dec 15, 2011The Procter & Gamble CompanyMethod for preparing a non-ionic surfactant stable personal care dispersion
WO2011156558A1Jun 9, 2011Dec 15, 2011The Procter & Gamble CompanyCocoamide monoethanolamine (cmea) composition
WO2011156566A2Jun 9, 2011Dec 15, 2011The Procter & Gamble CompanyChemically stabilized anti-dandruff compositions for use in personal care compositions
WO2011156584A1Jun 9, 2011Dec 15, 2011The Procter & Gamble CompanyMethods of preparing personal care compositions
WO2012051374A2Oct 13, 2011Apr 19, 2012The Procter & Gamble CompanyUse of monoamine oxidase inhibitors to improve epithelial biology
WO2012058216A2Oct 25, 2011May 3, 2012The Gillette CompanyComposition dispensing device comprising a non-foaming hydrating composition
WO2012058526A1Oct 28, 2011May 3, 2012The Procter & Gamble CompanyInhibition of microbial growth by aconitase inhibition
WO2012058557A2Oct 28, 2011May 3, 2012The Procter & Gamble CompanyPersonal care compositions comprising a pyrithione and an iron chelator
WO2012118798A1Feb 28, 2012Sep 7, 2012The Gillette CompanyRazor comprising a molded shaving aid composition comprising a pyrithione source
WO2012135651A1Mar 30, 2012Oct 4, 2012The Procter & Gamble CompanySystems, models and methods for identifying and evaluating skin-active agents effective for treating dandruff/seborrheic dermatitis
WO2012138696A2Apr 4, 2012Oct 11, 2012The Procter & Gamble CompanyShampoo compositions with increased deposition of polyacrylate microcapsules
WO2012162331A2May 23, 2012Nov 29, 2012The Procter & Gamble CompanyCompositions comprising an efficient perfume bloom
WO2012174091A2Jun 13, 2012Dec 20, 2012The Procter & Gamble CompanyPERSONAL CARE COMPOSITIONS COMPRISING A pH TUNEABLE GELLANT AND METHODS OF USING
WO2012174096A2Jun 13, 2012Dec 20, 2012The Procter & Gamble CompanyPersonal care compositions comprising a di-amido gellant and methods of using
WO2012177757A2Jun 20, 2012Dec 27, 2012The Procter & Gamble CompanyPersonal care compositions comprising shaped abrasive particles
WO2013025772A2Aug 15, 2012Feb 21, 2013The Gillette CompanyComposition dispensing device comprising a moisturizing composition
WO2013025857A1Aug 16, 2012Feb 21, 2013The Gillette CompanySkin engaging member comprising an anti-irritation agent
WO2013025886A1Aug 16, 2012Feb 21, 2013The Gillette CompanyShave preparations comprising an anti-irritation agent
WO2013025891A1Aug 16, 2012Feb 21, 2013The Gillette CompanyAn aerosol shave composition comprising a hydrophobical agent forming at least one microdroplet and an anti-irritation agent
WO2013025893A1Aug 16, 2012Feb 21, 2013The Gillette CompanyPersonal care compositions comprising an anti-irritation agent
WO2013052771A2Oct 5, 2012Apr 11, 2013The Procter & Gamble CompanyPersonal care compositions and methods of making same
WO2013052820A2Oct 5, 2012Apr 11, 2013The Procter & Gamble CompanyMethod of achieving improved hair feel
WO2013092698A2Dec 19, 2012Jun 27, 2013Akzo Nobel Chemicals International B.V.Bioactive compositions having hair anti aging activity
WO2013106367A2Jan 9, 2013Jul 18, 2013The Procter & Gamble CompanyHair care compositions
WO2013142654A2Mar 21, 2013Sep 26, 2013The Procter & Gamble CompanyCompositions for delivering perfume to the skin
WO2013158380A2Apr 5, 2013Oct 24, 2013The Procter & Gamble CompanyHair care composition comprising metathesized unsaturated polyol esters
WO2013158381A2Apr 5, 2013Oct 24, 2013The Procter & Gamble CompanyHair care composition comprising metathesized unsaturated polyol esters
WO2013163491A1Apr 26, 2013Oct 31, 2013The Procter & Gamble CompanyApplicator assembly for applying a composition
WO2013163492A1Apr 26, 2013Oct 31, 2013The Procter & Gamble CompanyApplicator assembly for applying a composition
WO2013170004A2May 9, 2013Nov 14, 2013The Procter & Gamble CompanyHair treatment comprising silicone grafted starch
WO2014004800A2Jun 27, 2013Jan 3, 2014The Procter & Gamble CompanyAerosol composition comprising a particulate tapioca starch
WO2014004847A2Jun 27, 2013Jan 3, 2014The Procter & Gamble CompanyAerosol composition comprising a particulate tapioca starch
WO2014028568A1Aug 14, 2013Feb 20, 2014The Procter & Gamble CompanySystems, models and methods for identifying and evaluating skin-active agents effective for treating an array of skin disorders
WO2014028569A1Aug 14, 2013Feb 20, 2014The Procter & Gamble CompanySystems, models and methods for identifying and evaluating skin-active agents effective for treating an array of skin disorders
WO2014028572A2Aug 14, 2013Feb 20, 2014The Procter & Gamble CompanySystems, models and methods for identifying and evaluating skin-active agents effective for treating an array of skin disorders
WO2014138141A1Mar 5, 2014Sep 12, 2014The Procter & Gamble CompanyMixed sugar compositions
Classifications
U.S. Classification510/382, 510/492, 510/507, 510/343, 510/121, 510/394, 510/390, 510/319, 510/475, 514/188, 510/419, 510/133
International ClassificationC11D9/22, A61Q5/02, C11D3/48, C11D3/00, A61K8/81, A61K8/49, C11D3/42, A61K8/84, C11D3/37, A61Q19/10, A61K8/73
Cooperative ClassificationA61Q5/02, C11D9/225, C11D3/3723, A61Q5/006, A61K8/4933, C11D3/48, A61K8/8152, A61K8/817, C11D3/3769, A61K8/84, C11D3/0036, C11D3/3703, C11D3/3773, C11D3/42, A61K2800/5426, A61Q19/10, A61K8/731
European ClassificationC11D3/48, A61K8/84, A61K8/49C6, C11D3/37B9, A61K8/73C, C11D3/37B, C11D3/00B7, C11D3/37C8F, C11D3/42, A61Q5/02, A61Q19/10, A61K8/81K4, A61K8/81R, C11D3/37C8, C11D9/22B