Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3762398 A
Publication typeGrant
Publication dateOct 2, 1973
Filing dateJan 3, 1972
Priority dateJan 3, 1972
Publication numberUS 3762398 A, US 3762398A, US-A-3762398, US3762398 A, US3762398A
InventorsBoktys A, Schefke J
Original AssigneeBoktys A, Schefke J
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Mobile and flexible intensive care unit
US 3762398 A
Abstract
A flexible and self-contained instrumentation unit for intensive care in a hospital, said unit having packaged together monitoring services and ancillary services to support life of the patient undergoing intensive care. The instrumentation unit is of prescribed maximum width, depth and height for placement behind the bed of the patient, for movement in and out of the hospital room, and for conserving space. The unit has a front with monitoring screens, a terminal strip and accessible reporting and storage means on each side of the bed. The sides of the unit are provided with components to serve for the intensive care of the patient.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [1 1 Schefke et al.

[ Oct. 2, 1973 1 1 MOBILE AND FLEXIBLE INTENSIVE CARE UNIT 221 Filed: Jan. 3, 1972 [21] Appl. No.: 215,028

[52] US. Cl. 128/2 R, 128/] R, 174/48,

240/73 [51] Int. Cl. A6lb 5/02, A6lb 5/04 [58] Field of Search 128/2, 2.5, l R,

128/2.05 R, 2.1, 172; 5/2; 174/48, 49, 70 R; 240/73 R; 312/209 X OTHER PUBLICATIONS 1965 Condensed Catalog, Lexington Instruments Corp. Pages 1-3 Lancet A Patient Monitor" Pages 759, 760 Dated 10/13/62 Primary ExaminerAldrich F. Medbery Att0rneyDominik, Knechtel & Godula 57 ABSTRACT A flexible and self-contained instrumentation unit for intensive care in a hospital, said unit having packaged together monitoring services and ancillary services to support life of the patient undergoing intensive care. The instrumentation unit is of prescribed maximum width, depth and height for placement behind the bed of the patient, for movement in and out of the hospital room, and for conserving space. The unit has a front with monitoring screens, a terminal strip and accessible reporting and storage means on each side of the bed. The sides of the unit are provided with components to serve for the intensive care of the patient.

10 Claims, 5 Drawing Figures PATENTEDUCT 2M5 SHEET 10F 3 iol PATENTED 2 75 saw 3 or 3 MOBILE AND FLEXIBLE INTENSIVE CARE UNIT This invention relates to an improved means for providing monitoring and life supporting services in a selfcontained, flexible package. The invention particularly refers to a unit wherein various components and monitoring elements are provided in a frame member mounted to a wall and receiving connections from conventional hospital services usually provided in such a wall.

Intensive patient care is becoming more common in well equipped and staffed hospitals. In fact, almost every large hospital today may be considered to have areas designated for intensive care nursing, that is, to provide life supporting services to a patient who requires constant attention and monitoring. Such patients are often victims of cardiac or cerebral stroke, but such patients may be afflicted with other life challenging afflications, such as advanced emphysema.

Intensive care services require specialized equipment for monitoring physiological activities as well as providing ancillary life supporting services such as oxygen, vacuum, intravenous feeding and still others. Placing a patient under intensive care severely strains the available material, equipment, space and personnel of even large hospitals. The burden becomes very severe for small and medium size hospitals. Special rooms or areas are set up with separate monitoring instruments, communication links, nurses stations, gas and vacuum services, as well as still other services. Hospitals are placed under a serious burden because the number of surgical or media] patients to be provided with intensive care is not predictable. In view of this lack of predictability, it is highly important that an intensive care unit or service area have flexibility to meet varying demands. It is highly desirable to have such a flexible intensive care means, especially means which could be readily transferred from room to room to service a single patient in'such room. It is understandable that such means are further desirable if they can be provided with an orderly arrangement of equipment to be beneficial to the professional staff as well as the patient.

Intensive care areas now commonly found in hospitals provide a helter-skelter of components and services which understandably psychologically distress the patient who views the operation of such units and themanipulation of such units by trained hospital personnel. The problem of flexibility has also compelled most hospitals to provide a larger area for intensive care where a plurality of patients are accommodated to economize on materials, equipment and trained staff. One patient viewing the extreme condition of another patient, as well as a rather frequent demise of patients in such areas, results in severe apprehension and fright of a patient already in a seriously life-challenging condition. It is therefore understandable that an intensive care means which could be flexibly utilized in a one-to-one relationship with a patient would be exceptionally desirable, especially where such means are advantageously disposed to be out of sight of the patient, yet conveniently accessible for manipulation and viewing by trained personnel.

It is therefore one object of the present invention to provide a packaged, mobile instrumentation unit which contains monitoring and servicing equipment to service a patient under intensive care, which package may be moved from room to room in a hospital and be conveniently positioned behind the head of a patient and connected to conventional piped hospital services, as well as electrical connections.

Yet another important object of the present invention is to provide an improved intensive care unit of the type described which is provided with solid state electronic modules to operate monitoring screens which record various physiological activity, the number of monitoring screens being selectively operated by the necessary number of selected modules.

Yet another object of the present invention is an intensive care unit of the type described in which a package of electrical components is assembled in a bottom mounted caster frame to obtain a self-contained operating unit for monitoring a patient under intensive care and for delivery of life supporting services such as piped gas, vacuum and intravenous fluids.

Still another object of the present invention is to provide an intensive care unit of the type described, which unit may be mounted behind the head of the patient out of his normal view of vision while still providing total accessibility for service of trained personnel while providing total monitoring and patient service under intensive care.

Yet another object of the present invention is an intensive care unit of the type described in which a variety of components and service elements are packaged in a single unit which is dimensioned to serve important purposes of not substantially exceeding bed width of a patient, having modest depth to conserve space, and having a maximum height so that the unit may be flexibly brought in and removed from conventional hospital patient rooms.

Yet another important object of the present invention is an intensive care unit of the type described in which a package of total service and monitoring for intensive care of a patient is positioned between the head of the patients bed and the wall so that said unit can be advantageously anchored to the wall and connected to the usual service sources provided in the walls of conventional hospital patient rooms, such as vacuum lines, oxygen lines, electrical connections, communication links and the like. I

Still another object of the present invention is an intensive care unit of the type described wherein a lightweight frame for ease of handling is provided to receive a packaged insert comprising a plurality of monitoring screens, a number of solid state modules to operate the monitoring screens, and a terminal board for plug-in leads from the patient.

The foregoing objects are attained together with still other objects which will occur to practitioners from time to time by considering the invention of the following disclosure, wherein:

FIG. ii is a front perspective view of the instrumentation unit;

FIG. 2 is one side elevational view;

FIG. 3 is the opposite side elevational view of the instrumentation unit;

FIG. 4 is a perspective view, somewhat schematic, showing connections of the instrumentation unit to existing services and operating rooms; and

FIG. 5 is an exploded perspective view, on a somewhat reduced scale, of a structural frame member and an electronic monitoring package for said frame.

Use of the same numerals in the various views of the drawing will indicate a reference to like parts, structures or elements as the case may be.

An instrumentation unit is provided which is packaged in a supporting frame member that is movalbe so that the unit, as a whole, may be transferred from room to room in a hospital. The unit is particularly dimensioned to advantage so that it has a maximum height of about 7 feet for passage through door heights commonly found in conventional rooms in hospitals. The width of the units is notmore than 54 inches so that it does not substantially exceed the width of a hospital bed. The portions of the unit which extend beyond the sides of the bed are provided with storage spaces, electrical components and other features which are accessible to the trained personnel in the hospital. The depth of the unit is not greater than about 9 inches so that space economy is realized, and so the unit may be conveniently placed between the wall in a hospital room and the head of a patients bed.

The front of the unit is advantageously disclosed as having a plurality of monitoring screens and a transverse light fixture thereabove. A plurality of solid state modules are removably mounted in the unit to operate the various monitoring screens and other monotoring devices, such as audio-visual alarms. Such modules may be removed for service, or for specially operating a a select number of monitoring services. The opposite sides of the unit are advantageously provided with a variety of service components in a manner so that they are easily accessible and operable by the trained personnel of the hospital. The unit is anchored to the wall from the back side, and the usual hospital services are connected from the wall through various parts of the instrumentation unit. A power transformer is utilized preferably at the bottom of the frame, to isolate power sources to prevent current leakage which could be seriously detrimental or fatal to the patient. The instrumentation unit is thereby packaged to totally provide the life supporting and monitoring services requircd for intensive care ofa patient, and such unit may be flexibly utilized by being placed in rooms as it is needed. The unit is relatively light weight for this purpose.

Looking now at the drawings the unit is shown to be generally box-shaped having a front 10, a top 12, vented at 120 (FIG. 4), a bottom 14 and opposite sides 16 and 18.

Components and parts are disposed on the front of the unit so that parts are exposed to the trained personnel even if a bed with a head board is placed against the unit. One such part is a sphygmomanometer including mercury pressure tube and mount 11, bulb l3, and cuff in basket 17. The exposed parts and components include a transverse lighting fixture 19 which may provide indirect and direct lighting. The patient lighting may approximate sun light in the spectrum and preferably has a prismatic lens as shown for maximum diffusion. Three monitoring screens 20 are shown disposed immediately below the transverse lighting fixture 19. A terminal plug board or strip 22 is shown below the monitoring screens and such strip or board has a plurality of plugs such as 24 for connecting electrical leads to convey impulses associated with physiological activities of the patient. The light 19, screens 20 and terminal board 22 are provided to be accessible above the head board, if any, of the hospital bed.

The bottom half of the front 10 of the instrumentation unit is provided with a plurality of solid state modules such as 26 which are located behind removable covers 28. Three typical 6 inch wafers are shown with controls, in two uncovered modules. Covers 30 provide service access to a wiring duct between modules and an isolating transformer which is accessible through cover 32. It is preferred that lighting 19, screens 20, board 22 and modules 26 be provided as a separate package or insert separably positioned within the unit, as will be later described. This insert 29 is indicated by parting lines and extends from the top of the unit to the bottom of the last row of module components.

The solid state modules operate the screens and other vital services. The front 10 of the unit is also provided with a communication link between the patient and the nurses station, such link shown as a two-way speaker 34 operated by control switch 36. Speaker 34 is positioned so it is proximate to the patients head.

The front 10 of the unit is also shown with ancillary controls including an audio or visual monitor alarm such as a cardiac arrest alarm 38 which alerts personnel. Master circuit breaker 40 is also shown on the front toward one of the sides to deactivate the electrical system in the event of shorting. A multi-channel selector 42 tunes a particular physiological parameter onto a monitoring screen, such selector having a sufficient number of channels for the monitored parameters. A grounded hazard detector 44 detects any errant current at selected settings, for example, up to 20 microamps. At predetermined levels, the detector shuts off the monitoring system. The electrical switch 46 opens and closes the circuit for lights and convenience outlets, as indicated.

The bottom 14 of the instrumentation unit is provided with a base 50 which additionally has casters or rollers on the underside, not shown. These casters may be retracted in the conventional way once the instrumentation unit is placed in position.

Mounted to side 16 of the unit is a pivotable intravenous bottle bracket, including angel arm 52 having bent notches 54 for frictionally contacting the top 12 of the unit when not in use, and for holding bails of bottles when in use. One part of the angle arm is pivotally mounted in a socket (not shown) in the top of the unit. It is preferred that a similar bottle bracket be mounted on the opposite side. Side 16 of the instrumentation unit is shown as further provided with grounded outlets 60, oxygen outlet 62 and vacuum outlets 64 and 66. Side 16 is also shown with storage spaces, including small storage spaces 67 and larger storage space 68. The storage spaces are recesses in the sides and are particularly used to store vacuum trap bottles to receive collected body fluids in the usual way. It is preferred that the spaces be back-lighted for reading collected volumes in a darkened room.

Opposite side 18 is shown as having a telephone mount assembly 70 as a further part of the communication link between the hospital room and other stations in the hospital or elsewhere. Side 18 is also shown with an oxygen outlet 72 which is similar to oxygen outlet 62 on side 16. A vacuum outlet is shown at 74. Four staggered grounded outlets 75 are shown, together with a nurses call jack 76. A variety of leads may be connected from the bed to the jack 76. Storage spaces 78 and 80, similar to 67 and 68 on side 16, are shown to serve similar functions.

FIG. 4 illustrates how the various components and elements in the instrumentation unit are connected to existing services commonly found in hospital rooms. The patient room light 82 is joined by conductor 84 to transverse lighting fixture 19. The nurses call outlet 85 is joined by conductor 86 to the nurses call 76 on side 18 of the unit. Oxygen outlet 87 passes oxygen through flexible conduit 88 to outlets 62 an 72. Vacuum outlet 90 creates a pressure differential through flexible conduit 89 to outlet 64, 66 and 74. Telephone line 92 connects telephone mount assembly 70 on side 18, not shown in this view. Electrical outlet 94 is fed into an isolating transformer (not shown) in the base of the unit, or into a conventional electrically susceptible patient grounded system.

FIG. 5 shows the structural frame member for supporting the various monitoring and electrical components, as well as other parts and elements. The frame member is made of a plurality of substantially rigid but light weight elongated members which are electrically non-conductive, such as plastic or hard rubber. Such elongated members are spaced in position relative to one another to accommodate the various components which are variously mounted thereto by fasteners, not shown in detail. Four frame members are shown defining vertical columns 100 and 102, such vertical columns defining the opposite sides of the instrumentation unit frame member. Electronic monitoring package 29 is inserted into the space between the vertical columns 100, 102, as indicated in the drawings. The insert 29 is securely fastened in the frame member in various ways by conventional locking and fastening devices. Cross planar members are shown defining a larger rectangular plane 104, and a smaller rectangular plane 106. Other supporting cross frame members may be used to enhance the rigidity or to provide further support means for the various components, parts or elements. The isolating transformer indicated schematically at 107 in the view of FIG. l is positioned between the columns and below planar member 1106. The power source wire duct (not shown) is placed above the transformer between the columns.

It will be appreciated that the instrumentation unit has wall coverings or plates, such as indicated, some with openings to define the storage spaces, or recesses. Such plates are conventionally mounted to the elongated frame members by fasteners, not shown in detail. It will further be appreciated that the front and'back of the instrumentation unit may likewise be covered with wall coverings or plates with fasteners in conventional ways.

The base 50 of the instrumentation unit accommodates an isolation transformer which is connected to a power source. Such an isolating transformer is not shown, but it is conventional, and is preferably positioned in the base below the smaller rectangular planar member 1106. The transformer isolates the power source for the patient monitoring modules as well as isolating the power source to serve other ancillary patient life support services through the various apparatus and elements which are shown.

The foregoing disclosure, therefore, illustrates a totally selflcontained instrumentation unit for intensive care which provides isolated electrical sources without endangering the patients through leakage of current.

The packaged unit also accommodates the conventional piped services of gas and vacuum, and the instrumentation unit provides an efficient communication link. These advantages are in addition to the obtained advantages of mobility of the unit for movement from room to room on its casters, flexibility because of removable and interchangeable modules and monitoring means to meet particular patient needs, total accessibility to trained personnel when mounted in a convenient location without causing distress to the patient, and light weight construction for handling. It is understood that the desired relative light weight of the instrumentation unit makes it advisable to anchor the unit to the hospital room wall, and such anchoring means may be of various effective types. For example, flexible hooks of adjustable lengths can be fixed in the frame members at the back of the unit, and the wall may be provided with securely fixed locking loops or rings above the patients bed. The wall may be provided with threaded sockets, and the sides of the unit may have straps or tabs which may be locked to the sockets by a threaded fastener. Other anchoring means will occur to practitioners.

The claims of the invention are now presented in terms which may be further understood by reference to the foregoing description and drawings.

What is claimed is:

l. A self-contained mobile instrumentation unit for intensive care in a hospital, including a frame member having a width not substantially in excess of the width of a patient bed,

said frame having a front and back defining a depth,

sides defining the width, and a top and bottom defining a height, roller mounted base at the bottom of such frame member,

a unitary electronic monitoring package removably positioned in the front of said frame member, said package having a transverse lighting fixture at an uppermost portion, a plurality of monitoring screens for recording and viewing physiological function aligned below said light fixture, a mounting terminal plate strip below the screens to receive physiological activity leads from the patient for recording on said monitoring screens, said electronic monitoring package providing total accessibility to personnel when said instrumentation unit is mounted behind a patients bed, and a plurality of removable and interchangeable solid state modules positioned adjacent the bottom and in the front of said frame member for operating said monitoring screens in accordance with patient needs,

said sides having components including storage spaces, vacuum outlets, gas outlets, and communication links, and

means connecting hospital room gas, vacuum and electrical services to selected components and modules of said unit.

2. A self-contained mobile instrumentation unit which includes the features of claim ll, wherein said communication link includes a telephone, a nurses call signal, and a two-way speaker.

3. A self-contained mobile instrumentation unit which includes the features of claim 1, wherein the gas outlet components in said sides include an outlet mounting, and a communicating tube between said outlet mounting and a conventional gas source in a hospital room.

4. A self-contained mobile instrumentation unit which includes the features of claim 1, wherein the storage space component is a recessed area to accommodate a pair of vacuum trap bottles.

5. A self-contained mobile instrumentation unit which includes the features of claim 1 wherein the electrical components in the side include grounded outlets.

6. A self-contained mobile instrumetation unit as in claim 1 wherein the front of the unit includes an audio two-way communication with the nurses station as part of the communication link.

7. A self-contained mobile instrumentation unit which includes the features of claim 1 wherein the front of the unit includes a plurality of drawers for medication or the like located towards the opposite sides.

8. A self-contained mobile instrumentation unit which includes the features of claim 1, wherein the front of the unit is provided with an audio-visual alarm panel to indicate changes in physiological activity beyond predetermined safety levels.

9. A self-contained mobile instrumentation unit which includes the features of claim 1, wherein said transverse light fixture is in the form of a prismatic black glass.

10. A self-contained mobile instrumentation unit which includes the features of claim 1 wherein the height of the unit if not substantially in excess of about 7 feet to fit the door height of conventional hospital rooms, the width of the unit is not substantially in excess of about 54 inches, and the depth is not substantially in excess of about 9 inches.

UNITED STATES PATENT OFFICE CERTIFICATE OF CQRRECTION October 2, 1973 Patent No. 3 r 762 I 398 Dated John T. Schefke and Algimantas K. Baktys Inventor-(s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

The name of the inventor Algimantas K. Boktys should be changed to read Algimantas K; Baktys Signed and sealed this 2nd day of April 197M.

(SEAL) Attest:

C. MARSHALL DANN Commissioner of Patents EDWARD M.FLET-3 HER,JR. Attesting Officer UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION October 2, 1973 3,762,398 Dated Patent No.

John T. Schefke and Algimantas K. Baktys Inventor(s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

The name of the inventor Algimantas K. Boktys should be changed to read Algimantas K; Ba'ktys Signed and sealed this 2nd day of April 1971;.

(SEAL) Attest:

EDWARD M.FLETGHER,JR. Attesting Officer C. MARSHALL DANN Commissioner of Patents

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3032057 *May 8, 1959May 1, 1962House Lane SchoolHospital recovery service unit
US3354301 *Feb 9, 1967Nov 21, 1967Bobrick MitchellRoom utility and service system
US3462892 *Jan 22, 1968Aug 26, 1969Meyer Ronald KAdapter wall
US3514794 *Aug 12, 1968Jun 2, 1970Ital Bed Cost Letti AffiniBed units
US3660591 *Oct 26, 1970May 2, 1972Hill Rom Co IncHospital in-patient service core module
Non-Patent Citations
Reference
1 *1965 Condensed Catalog, Lexington Instruments Corp. Pages 1 3
2 *Lancet A Patient Monitor Pages 759, 760 Dated 10/13/62
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3931452 *Sep 24, 1973Jan 6, 1976Agne Lars Harry NilssonDevice for attachment of ceiling-supended equipment
US4134148 *May 16, 1977Jan 9, 1979Demag, A.G.Electrical control and service unit
US4248243 *Aug 23, 1979Feb 3, 1981Fa. Ingeborg Niess Elektromedizinische ApparateSuspension arm for E.K.G. suction electrodes
US4325385 *Sep 19, 1980Apr 20, 1982Simonsen & Weel's Eftf. A/SPatient monitoring equipment
US4338485 *Nov 10, 1980Jul 6, 1982Hill-Rom Company, Inc.Headwall unit for patient servicing and method for installation
US4475322 *Dec 31, 1980Oct 9, 1984Square D CompanyMedical see-through columns
US4821470 *Jun 17, 1988Apr 18, 1989Hill-Rom Company, Inc.Head wall for hospital bed
US4933873 *Jun 2, 1988Jun 12, 1990Healthtech Services Corp.Interactive patient assistance device
US5107636 *May 18, 1990Apr 28, 1992Herman Miller, Inc.Medical equipment support column
US5142484 *Dec 19, 1989Aug 25, 1992Health Tech Services CorporationAn interactive patient assistance device for storing and dispensing prescribed medication and physical device
US5323565 *Apr 5, 1993Jun 28, 1994Hill-Rom Company, Inc.Head wall for hospital bed
US5442728 *Sep 22, 1993Aug 15, 1995Healthtech Services Corp.Interactive patient assistance device for storing and dispensing a testing device
US5590648 *Apr 7, 1994Jan 7, 1997Tremont MedicalPersonal health care system
US5618090 *May 12, 1995Apr 8, 1997Medaes, Inc.Movable hospital room equipment column
US5653064 *May 2, 1994Aug 5, 1997Hill-Rom Company, Inc.Head wall for hospital bed
US5687717 *Aug 6, 1996Nov 18, 1997Tremont Medical, Inc.Patient monitoring system with chassis mounted or remotely operable modules and portable computer
US5756933 *Oct 5, 1994May 26, 1998Medaes, Inc.Wall mountable universal bracket for use with a raceway system
US5784249 *Feb 25, 1992Jul 21, 1998Pouliot; Gary J.Circuit breaker panel
US5868135 *Aug 5, 1996Feb 9, 1999Healthtech Service CorporationInteractive patient assistance device for storing and dispensing a testing device
US5886295 *Jul 18, 1997Mar 23, 1999Steelcase Inc.Modular utility distribution mounting system
US6745764Jul 18, 2001Jun 8, 2004Scott Laboratories, Inc.Apparatus and method for providing a conscious patient relief from pain and anxiety associated with medical or surgical procedures
US6807965 *Jun 3, 1999Oct 26, 2004Scott Laboratories, Inc.Apparatus and method for providing a conscious patient relief from pain and anxiety associated with medical or surgical procedures
US6986347Jul 23, 2001Jan 17, 2006Scott Laboratories, Inc.Apparatus and method for providing a conscious patient relief from pain and anxiety associated with medical or surgical procedures
US7201734Aug 3, 2004Apr 10, 2007Scott Laboratories, Inc.Apparatus for drug delivery in association with medical or surgical procedures
US7204714May 14, 2004Apr 17, 2007Modular Services CompanyModular in-wall medical services outlet system
US7211726Aug 5, 2002May 1, 2007Lifespan Healthcare, LlcOpen medical system
US7227081Feb 4, 2005Jun 5, 2007Lifespan Healthcare, LlcOpen medical system
US7247154Aug 3, 2004Jul 24, 2007Scott Laboratories, IncMethod for drug delivery in association with medical or surgical procedures
US7539537Oct 3, 2003May 26, 2009Scott Laboratories, Inc.Systems and methods for providing sensor fusion
US7775000 *Mar 19, 2002Aug 17, 2010Modular Services CompanyModular in-wall medical services unit
US8028694Oct 3, 2003Oct 4, 2011Scott Laboratories, Inc.Systems and methods for providing trend analysis in a sedation and analgesia system
US8312877Dec 20, 2007Nov 20, 2012Draeger Medical Systems, Inc.Modular medical care system
DE3918379A1 *Jun 6, 1989Dec 20, 1990Thorn Licht GmbhSupply console for intensive care of patients - has double sided construction for multichannel supplies and ceiling suspension for max. bedside access
EP0045267A2 *Jul 29, 1981Feb 3, 1982Jean Bernard DolleyEquipment for storing surgical material, and process for its use
WO2005120299A2 *May 31, 2005Dec 22, 2005Hill Rom Services IncPatient care modules for hospital walls
Classifications
U.S. Classification600/301, 174/501
International ClassificationA61B19/00, A61B5/00, A61B5/02, A61B19/02
Cooperative ClassificationA61B5/02, A61B19/0248, A61B5/00
European ClassificationA61B5/02, A61B5/00, A61B19/02F