Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3765420 A
Publication typeGrant
Publication dateOct 16, 1973
Filing dateDec 16, 1971
Priority dateDec 16, 1971
Also published asCA996434A1
Publication numberUS 3765420 A, US 3765420A, US-A-3765420, US3765420 A, US3765420A
InventorsFelczak T
Original AssigneeKendall & Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Eccentric locking device for surgical drainage members
US 3765420 A
Abstract
A locking guard device for regulating the penetrating depth of a rigid or semi-rigid hollow shaft member used for draining body cavities, such as a hypodermic needle, catheter, and the like, which guard is mounted on the shaft member through a channel in each of a male and female elements of the guard, the channel in each element being concentric with respect to each other but eccentric with respect to the true centers of the elements. Rotation of an element with respect to the other locks the pair of elements on the shaft of the member.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Felczak ECCENTRIC LOCKING DEVICE FOR SURGICAL DRAINAGE MEMBERS [75] Inventor: Theodore F. Felczak, Mundelein,

[73] Assignee: The Kendall Company,

Walpole, Mass.

[22] Filed: Dec, 16, 1971 [21] Appl. No.: 208,657

[52] US. Cl 128/347, 128/218 N, 285/178, 287/D1G. 8 [51] Int. Cl A6lb 17/34 [58] Field of Search 128/208, 218 N, 218 PA, 128/221, 348-350, D16. 26; 287/136, DIG. 8; 285/178 [56] References Cited UNITED STATES PATENTS 506,039 10/1893 Freeman 287/D1G. 8 843,906 2/1907 Murchie 287/D1G. 8 2,693,182 11/1954 Phillips 128/208 2,952,256 9/1960 Meader et a1 128/221 [111 3,765,420 1451 Oct. 16, 1973 3/1966 Coanda 128/1316. 26

3,487,837 1/1970 Petersen 128/349 R FOREIGN PATENTS OR APPLICATIONS 936,797 7/1948 France 128/218 PA Primary Examiner-Charles F. Rosenbaum Att0rney-John F. Ryan [57] ABSTRACT A locking guard device for regulating the penetrating depthof a rigid or semi-rigid hollow shaft member used for draining body cavities, such as a hypodermic needle, catheter, and the like, which guard is mounted on the shaft member through a channel in each of a male and female elements of the guard, the channel in each element being concentric with respect to each other but eccentric with respect to the true centers of the elements. Rotation of an element with respect to the other locks the pair of elements on the shaft of the member.

6 Claims, 6 Drawing Figures PMENIEDucI 16 1915 3.765420 SHEET 2 OF 2 ECCENTRIC LOCKING DEVICE FOR SURGICAL DRAINAGE MEMBERS This invention relates to an improved device especially adapted for removing fluid from a body cavity by surgical puncture or drainage. More specifically, it relates to an improved locking guard device, mounted on the shaft of a hollow member such as a needle or semirigid catheter, intended to regulate the depth of penetration of the needle or catheter into a body cavity in a paracentesis or catheterization procedure, especially thoracentesis.

ln a thoracentesis procedure, a sharp-pointed hypodermic needle, or the like is thrust into the pleural cavity in order to remove fluid. Various well-known valve arrangements are employed to allow the aspiration of fluid without allowing air to enter the pleural cavity, with the consequent danger of lung collapse.

In inserting the aspirating needle into the cavity, it is most important that the depth of penetration be closely controlled, so that the pleural cavity will be tapped but without the danger of excessive penetration which could cause the sharp needle point to puncture or tear the lung itself. The desired degree of penetration may vary with the physical condition of the patient.

Various expedients have been resorted to in the past to serve as a guard or stop mechanism, controlling the depth of penetration of the needle. One well-known method is to clamp a hemostat on the needle shaft. Others include the clamping of a coiled spring on the shaft, as in U.S. Pat. No. 3,477,437, and various setscrew arrangements as in U.S. Pats. Nos. 2,001,638 and 2,338,800.

It is with improvements in the art of providing such depth guards that the present invention is concerned, and it is a primary object of the invention to provide a disposable light-weight guard which can be readily adjusted to any desired position on the shaft of a cannula, but which can be locked tightly onto said shaft by a simple manipulation.

It is an additional object of the invention to provide such a guard which can be slidably adjusted to any desired position on the shaft and locked onto the shaft by a rotation of one element of said guard.

A further object of the invention is such a guard having means to retain the guard in a stable position with respect to the body when in use.

The invention will be better understood from the following description and drawings, in which:

FIG. 1 is a perspective view of one embodiment of this invention, mounted on a needle shaft.

FIG. 2 is a cross-sectional representation of the elements of FIG. 1, in dismantled relationship.

FIG. 3 is an end view of the coupled elements of the embodiment shown in FIG. 1, each containing a circular passageway concentric with each other, but with both passageways eccentrically disposed with respect to the true centers of the elements.

FIG. 4 is a view of the embodiment as in FIG. 3 showing the constricting effect on the passageway caused by rotation of one of the elements.

FIG. 5 is a cross-sectional view of the elements of another embodiment of the invention having means to hold the elements thereof together and means to hold the device in position on the body.

FIG. 6 is a perspective view of another embodiment of the invention in use, locked on a cannula, and held in position on a patient.

For convenience, similar or equivalent elements of the device shown in the drawings, are identified by the same numerals. 2

Referring to FIG. 1, a male element 10 and a female counterpart 20 are shown positioned on the shaft of a hollow needle 30. In the cross-sectional view as shown in FIG. 2, the element 10 may consist of a cylindrically shaped shoulder portion 12 and a projecting cylindrical portion 14, which fits into the cylindrically shaped cavity 26 in the female element 20, the outer surface 31 of the projection 14 being frictionally engageable with the inner surface 32 of the cavity 26 upon rotation of the elements 10 and 20 with respect to each other, as will be described below. The element 20 is conveniently moulded or machined in the form of two disk-like portions 22 and 24, connected by a stem portion 25. The end disk portion 22 serves as the flange-like guard which in use presses against the body and determines the depth to which the needle can penetrate into a body cavity.

The male element 10 and female element 20 are each provided with channels drilled or otherwise formed throughout their lengths (16 and 28, respectively). As

shown, these channels are concentric in at least one rotational position of the elements with respect to each other so that, when elements 10 and 20 are coupled with the holes 16 and 28 in alignment with each other, they provide a-passageway through which the needle 30 can slide readily through the assembly. The elements as located, however, at unequal distances from edge portions of their respective elements, such as the unequal distances 15 and 17 and 27 and 29 in elements 14 and 26, respectively. In the embodiment shown, they are located eccentrically with respect to the true centers of the cylindrical projecting male portion 14 and cavity 26, the degree of eccentricity being determined by the ratio of the distance 15 to 17 and 27 to 29.

With the elements 10 and 20 coupled together and in position on the needle shaft as in FIG. 1, simple rotation of one of the pair of elements will cause a constriction in the passageway, formerly concentric, formed by the channels 16 and 28. This is shown in principle in FIGS. 3 and 4 which are views of the coupled elements 10 and 20 from the disk end 22. Rotation of one of the elements 10 or 20 with concentric channels eccentrically disposed with respect to their true centers (FIG. 3) results in a constriction of the formerly circular passageway (FIG. 4) at the interface between the end of the male projection 14 and the bottom of the cavity 26. When the shaft of the needle 30 is inserted through the passageway with the female and male elements 10 and 20 in coupled relationship as shown in FIG. 1, the displacement of one channel portion of the passageway is resisted by the shaft and tends to cause the elements 10 and 20 to rotate about the shaft, which of course is eccentrically located with respect to the true centers of these elements, specifically the centers of the male projecting portion 14 and female cavity portion 26. This brings the outer surface 31 of the male projection 14 into frictional engagement with the inner surface 32 of the female portion 26 and surfaces of the channels 16 and 28 into frictional engagement with the shaft, with a consequent locking action of the guard on the shaft.

In the use of this device in a surgical procedure, the

desired penetration depth may be first determined. The

guard elements may be assembled in coupling relationship with the male projecting portion 14 positioned in the female cavity portion 26. the elements are rotated so that the channels 16 and 28 are in alignment to provide an unobstructed passageway therethrough. The needle is inserted through the passageway with the tip extending past the end disk 22 for a length equal to the predetermined penetration depth. The elements 10 and 20 are rotated with respect to each other and, with slight tightening force, the guard is locked at the chosen location on the needle shaft. The doctor or medical assistant may now grasp the guard for better control of the needle during the puncturing and penetration procedure. Penetration of the needle beyond the predetermined depth is prevented by the flange-like surface of the end disk 22 coming into contact with the body surface. If desired in some instances, the guard may be temporarily positioned on the shaft remote from the tip, either in a locked or unlocked position, and then moved and locked into position with the end disk 22 against the patients body to prevent accidental movement of the shaft into a position of deeper pene tration in the body. It will be appreciated that this invention provides devices which are lockable and unlockable by a displacement motion which is generally transverse to the axis of the shaft.

The guard may be provided with means for stable securement thereof-and maintenance of the needle in place against dislodgement from the body cavity. As shown in FIG. 5, the surface of the end disk 22 is provided with a coating of pressure-sensitive adhesive 33 which is pressed into adhering contact with the skin of the patient. The surface of the adhesive may be provided with a releasable facing sheet for protection of the adhesive layer prior to use, as in the case of facings conventionally used in adhesive finger bandages. Other means for retaining the guard may be provided; for example, body straps 34 may be attached to the end disk 22 as shown in FIG. 6. v a

FIG. also illustrates a variation of the embodiment of FIG. 1 by which the elements and are coupled together against axial displacement and separation -of one from the other. The elements 10 and 20 are held together by a ring and groove means on the interfitting male projecting portion 14 and female cavity 26. As specifically shown in the drawings, a ring-like ridge 4! is integrally formed on the male projecting portion 14 for fitment into a ring-like groove 40 in the sidewall of the cavity 26. The outer diameter of the ridge 41 is slightly larger than the inner diameter of the cavity 26 but no greater than the diameter of the groove 40.

The terms disk or disk-shaped" herein are not confined to true disk shapes. It will be obvious that the male and female locking elements may be in the form of cylinders, squares or other polygons, or the like, provided that concentricity-eccentricity of the channels therethrough is maintained. For convenience in rotation, the outside surfaces of one or both elements may be knurled or provided with bosses or the like.

For economy, lightweight, and sterilizability it is preferred that the product of this invention be moulded from a slightly resilient or deformable plastic material such as DELRIN (a du Pont trademark for an acetal resin), polystyrene, polystyrene-acrylonitrile, or the like. The slight deformability of most plastic materials allows a frictional engagement or compressive fit so that the surface 31 frictionally engages with the surface 32 when the male and female elements are brought together, so that the two elements are held together. An

alternative form of engagement is a tongue and groove arrangement of the male element against the female element.

In actual size, the disk-shaped element serving as the actual guard shield may be one inch or less in diameter, andthe total height of the interlocked elements may be 0.75 inches or less, with other dimensions in proportion. In many routine thoracentesis procedures, a size 16 needle is used, 0.063 inches in outside diameter. Using a pair of moulded plastic elements, it has been found that the channels 16 and 28 need be no larger in diameter, and may even be as small as 0.060 inches in diameter and still provide an adjustable sliding fit on the No. 16 needle shaft, due to the above-mentioned deformability of plastic materials.

Althoughthe foregoing description relates to the use of the locking device of this invention in a thoracentesis procedure, it will be obvious to those skilled in the art that it is equally useful in limiting the depth of penetration of other rigid or semi-rigid surgical drainage appliances, such as plastic suprapubic catheters. 7

Having thus described my invention I claim:

1. An apparatus for penetrating a body cavity comprising;

a member with an elongated shaft and a lockable guard member mounted thereon, said member comprising a'pair of guard elements;

one of said guard elements having a male projecting portion and the other of said guard elements'having a counterpart female cavity portion into which the male portion is positioned;

said elements with their respective male and female portions being rotatable with respect to each other, each of said elements having a substantially circular channel therethrough;

the channels in both elements being concentric with each other when the elements are in one position of orientation providing a passageway therein through which the shaft of said member is inserted for mounting said guard on said shaft;

and the substantially circular channels in both elements being eccentric with respect to the true centers of said male projection and female cavity portions;

the guard elements being restricted from complete rotation about the true centers of said portions by the shaft in said channels;

whereby a rotating force applied to one of said guard elements causes the elements to rotate about the position of eccentricity to cause frictional engagement between the shaft and the channels, and whereby frictional engagement between the outer wall of the male portion and the inner wall of the female portion secures said portions against displacement.

2. An apparatus in accordance with claim 1 wherein said male projecting portion has a ridge thereon and said female cavity has a groove therein corresponding to said ridge into which said ridge is positioned when the guard elements are coupled together.

3. An apparatus in accordance with claim 1 wherein said guard element having the female cavity portion terminates in a flange-like surface.

4. An apparatus in accordance with claim 3 wherein 6. An apparatus in accordance with claim 1 wherein Sald flange'l'ke Surface Coated wlth a pressure said guard member includes means for attaching said sensitive adhesive.

5. An apparatus in accordance with claim 3 wherein said flange-like surface has straps extending therefrom. 5

member to the body.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US506039 *Jan 26, 1893Oct 3, 1893 Set collar or coupling
US843906 *Jan 4, 1906Feb 12, 1907Lucius G FisherClamp-collar for shafting.
US2693182 *Sep 9, 1953Nov 2, 1954Phillips John WOro-tracheal tube positioner and retainer
US2952256 *Dec 6, 1957Sep 13, 1960Sierra Eng CoEpidural needle
US3241554 *Aug 14, 1963Mar 22, 1966Baxter Don IncPeritoneal dialysis entry device
US3487837 *Feb 6, 1967Jan 6, 1970Roy A PetersenDevice for holding catheters in position
FR936797A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4128295 *Aug 10, 1977Dec 5, 1978Amp IncorporatedEccentric bore connecting device
US4287891 *Aug 31, 1979Sep 8, 1981Peters Joseph LSecuring device for surgical tubes
US4447235 *May 7, 1981May 8, 1984John M. ClarkeThoracentesis device
US4613329 *Sep 30, 1983Sep 23, 1986Sherwood Medical CompanyCatheter placement device
US4834719 *Apr 28, 1986May 30, 1989Cordis CorporationQuick connect/disconnect tubing adapter
US4878897 *Nov 26, 1986Nov 7, 1989Ideation Enterprises, Inc.Injection site device having a safety shield
US4904238 *Dec 21, 1987Feb 27, 1990Alcon Laboratories, Inc.Irrigation/aspiration handpiece
US5265840 *Oct 9, 1992Nov 30, 1993Symbiosis CorporationFor a flexible conduit
US5300046 *Sep 23, 1992Apr 5, 1994Symbiosis CorporationThoracentesis sheath catheter assembly
US5743883 *Jun 7, 1995Apr 28, 1998Visconti; Peter L.Thoracentesis catheter instruments having self-sealing valves
US6217556Mar 19, 1998Apr 17, 2001Allegiance CorporationDrainage catheter
US6322536Sep 10, 1999Nov 27, 2001Cornell Research Foundation, Inc.Minimally invasive gene therapy delivery and method
US6508802May 23, 2000Jan 21, 2003Cornell Research Foundation, Inc.Remote sensing gene therapy delivery device and method of administering a therapeutic solution to a heart
US6629959Apr 30, 2001Oct 7, 2003Injectimed, Inc.Needle tip guard for percutaneous entry needles
US6860871May 21, 2003Mar 1, 2005Injectimed, Inc.Needle tip guard for percutaneous entry needles
US7066908Jul 25, 2002Jun 27, 2006Injectimed, Inc.Method and apparatus for indicating or covering a percutaneous puncture site
US7534231Feb 24, 2005May 19, 2009Injectimed, Inc.Needle tip guard for percutaneous entry needles
US8262645Dec 9, 2010Sep 11, 2012Actuated Medical, Inc.Devices for clearing blockages in in-situ artificial lumens
US8348966 *Aug 6, 2010Jan 8, 2013Thayer Intellectual Property, Inc.Systems and methods for treatment of compressed nerves
US8652157May 18, 2012Feb 18, 2014Thayer Intellectual Property, Inc.Systems and methods for treatment of compressed nerves
US8721668Dec 18, 2012May 13, 2014Thayer Intellectual Property, Inc.Systems and methods for treatment of compressed nerves
US8753364Jun 27, 2011Jun 17, 2014Thayer Intellectual Property, Inc.Systems and methods for treatment of compressed nerves
EP0588470A1 *Jun 8, 1993Mar 23, 1994Medtronic, Inc.Needle stop and safety sheath
EP2528644A2 *Jan 26, 2011Dec 5, 2012Warsaw Orthopedic, Inc.Needle guide system
WO1991007204A2 *Nov 14, 1990May 30, 1991Frimberger Eckart & HmDevice for external supply of percutaneous probes
WO2011094322A2Jan 26, 2011Aug 4, 2011Warsaw Orthopedic, Inc.Needle guide system
Classifications
U.S. Classification604/117, 285/148.27, 604/180
International ClassificationA61M5/32, A61B17/32, A61M25/02, A61B17/34
Cooperative ClassificationA61B2017/347, A61M2025/028, A61B2017/3492, A61M2025/0233, A61B17/32, A61M5/32, A61M25/02
European ClassificationA61M5/32, A61B17/32, A61M25/02