Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3766370 A
Publication typeGrant
Publication dateOct 16, 1973
Filing dateMay 14, 1971
Priority dateMay 14, 1971
Publication numberUS 3766370 A, US 3766370A, US-A-3766370, US3766370 A, US3766370A
InventorsWalther J
Original AssigneeHewlett Packard Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Elementary floating point cordic function processor and shifter
US 3766370 A
Abstract
Three arithmetic units including three shifters are operated in parallel and controlled by a microprogram stored in a read-only memory to provide an improved elementary function floating-point processor. The microprogram includes a set of routines for calculating 20 elementary functions including arithmetic, exponential, hyperbolic, logarithmic, square root, and trigonometric functions. Each shifter is capable of reading a fixed plural number of consecutive bits, beginning with any bit position, from an associated data storage register.
Images(233)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 Walther ELEMENTARY FLOATING POINT CORDIC FUNCTION PROCESSOR AND SI-IIFTER [75] Inventor: John S. Walther, Sunnyvale, Calif. [73] Assignee: Hewlett-Packard Company, Palo OTHER PUBLICATIONS J. Volder, The Cordic Trigonometric Computing Shifter em x nsmsrs ls ADDER m0 SUBTRACTER SIGN OF 1 SIGN OF} DECISlON SIGNALS y REGISTER [111 3,766,370 [4 1 Oct. 16, 1973 Technique, IRE Trans. on Electronic Computers, Sept. 1959. PP. 330-334.

Primary Examiner-Charles E. Atkinson Assistant ExaminerDavid H. Malzahn Attorney-Roland I. Griffin 5 7] ABSTRACT Three arithmetic units including three shifters are operated in parallel and controlled by a microprograrn stored in a read-only memory to provide an improved elementary function floating-point processor. The miqr prcg amlicludesa s t of r u ne fic lsau a n 20 elementary functions including arithmetic, exponentia], hyperbolic, logarithmic, square root, and trigonometric functions. Each shifter is capable of reading a fixed plural number of consecutive bits, beginning with any bit position, from an associated data storage register.

5 Claims, 234 Drawing Figures Adde Control ADDER scam/1cm:

ADDER SUBTRACTEH HARDWARE BLOCK DiAGRAM M PAIENIEDum 16 I975 MEI 01 OF 233 S=Shoded Area P:

ANGLE A AND RADIUS R OF THE VECTOR P (x,y

PAIENIEDnm 16 ms 3. 766370 sum 03 I1 233 Shifter Adder Control Control 28 Q SHIFTER I x REGISTER l6 ADDER mcr SUBTRACTER 30 I2 F+E sm TER I 24 y REGISTER 1 ADDER/ SUBTRACTER DECISION 0F y S'IGNALS SIGN 0F;

20 ADDER SUBTRACTER co-smms a F READ- O NLY 34 MEMORY HARDWARE BLOCK DIAGRAM FIG.3

FLOWCHART OF THE MICROPROGRAM CONTROL FIG.4

PAIENIEBIICHBIQH 3,756,370

sum 0') BF 233 BASIC FPP OPERATIONS A. UNARY FUNCTION ROUTINES MEMORY COMPUTFR INSTR FLOATING POINT PROCESSOR UNIT FLG ER INTERFACE R CONTROLLER Pc LOG; -m

5 E 48'BIT REGiSTERS Al a II I l l Bl E If I 1 IX C I" I I I .SNX OPCODE j (4 FIG] B. BINARY FUNCTION Rourmes MEMORY COMPUTER FLOATING PomT V V PROCESSOR Ul/IT A FLG/ERR INTERFACE Lowe RON CONTROLLER o A 242 3 E 48-5|TREGISTR$ Al 27! I l W Bl HI 1 1 clrwml l I 7 4 M I l ADX oPcooe (D Q FIG.8

Pmmenw 16 ms 3; 766370 um 12 OF 233 FIGOA F1698 FIGJO PATENTEUUBT 16 I973 SI'EET 17 HF 233 INDICATES TOP EDGE CONNECTOR UPPER HALF OF ROM LOWER HALF OFROM DE! mmw H 5uw:mm5a7e M 4 M 5 E. 0:. M WES-I SHRBM-$871 M 1% m 9 2 79 m u 5HE6ME876 mm FIG. HE

PAIENTEDnm 15 I975 SHEET 18 0F 233 FIGJIA FIG. HB

FIG. HC

FIGHD FIGHE FIG. 12

PAIENIEUBBI 161975 3166370 SHEET 19 0F 233 NOTES I. *INDICATES PIN NOT CONNECTED ON THIS MICROCIRCUIT PACKAGE.

2.ALL RESISTORS ARE 560 OHMS.

3.ROM Pc WIRING SHOWN IN SIMPLIFIED FORM ABOVE.

ACTUAL WIRING OF EACH PACKAGE IS AS SHOWN BELOW.

cwma gag ADDRESS CONTENTS FIG. I5

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3022006 *Jan 26, 1959Feb 20, 1962Burroughs CorpFloating-point computer
US3134091 *Jul 2, 1957May 19, 1964IbmMeans to read out less than all bits in a register
US3553652 *Mar 29, 1968Jan 5, 1971Burroughs CorpData field transfer apparatus
Non-Patent Citations
Reference
1 *J. Volder, The Cordic Trigonometric Computing Technique, IRE Trans. on Electronic Computers, Sept. 1959, pp. 330 334.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4024385 *Feb 9, 1976May 17, 1977Raytheon CompanySecond difference function generator
US4910698 *Dec 12, 1988Mar 20, 1990Schlumberger Technologies, Inc.Sine wave generator using a cordic algorithm
US5542068 *Dec 10, 1991Jul 30, 1996Microsoft CorporationMethod and system for storing floating point numbers to reduce storage space
US6385632 *Jun 18, 1999May 7, 2002Advanced Micro Devices, Inc.Fast CORDIC algorithm with sine governed termination
US6410941Jun 30, 2000Jun 25, 2002Motorola, Inc.Reconfigurable systems using hybrid integrated circuits with optical ports
US6427066Jun 30, 2000Jul 30, 2002Motorola, Inc.Apparatus and method for effecting communications among a plurality of remote stations
US6462360Aug 6, 2001Oct 8, 2002Motorola, Inc.Integrated gallium arsenide communications systems
US6472694Jul 23, 2001Oct 29, 2002Motorola, Inc.High quality epitaxial layers of monocrystalline materials grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers.
US6477285Jun 30, 2000Nov 5, 2002Motorola, Inc.Integrated circuits with optical signal propagation
US6555946Jul 24, 2000Apr 29, 2003Motorola, Inc.Acoustic wave device and process for forming the same
US6563118Dec 8, 2000May 13, 2003Motorola, Inc.Pyroelectric device on a monocrystalline semiconductor substrate and process for fabricating same
US6585424Jul 25, 2001Jul 1, 2003Motorola, Inc.Structure and method for fabricating an electro-rheological lens
US6589856Aug 6, 2001Jul 8, 2003Motorola, Inc.Method and apparatus for controlling anti-phase domains in semiconductor structures and devices
US6594414Jul 25, 2001Jul 15, 2003Motorola, Inc.Structure and method of fabrication for an optical switch
US6638838Oct 2, 2000Oct 28, 2003Motorola, Inc.Semiconductor structure including a partially annealed layer and method of forming the same
US6639249Aug 6, 2001Oct 28, 2003Motorola, Inc.Structure and method for fabrication for a solid-state lighting device
US6646293Jul 18, 2001Nov 11, 2003Motorola, Inc.Structure for fabricating high electron mobility transistors utilizing the formation of complaint substrates
US6667196Jul 25, 2001Dec 23, 2003Motorola, Inc.Method for real-time monitoring and controlling perovskite oxide film growth and semiconductor structure formed using the method
US6673646Feb 28, 2001Jan 6, 2004Motorola, Inc.Growth of compound semiconductor structures on patterned oxide films and process for fabricating same
US6673667Aug 15, 2001Jan 6, 2004Motorola, Inc.Method for manufacturing a substantially integral monolithic apparatus including a plurality of semiconductor materials
US6691328Jul 15, 2002Feb 17, 2004Nicholas A. DelfinoFluid dispensing bottle having a refillable reservoir and a metering section
US6693033Oct 26, 2001Feb 17, 2004Motorola, Inc.Method of removing an amorphous oxide from a monocrystalline surface
US6693298Jul 20, 2001Feb 17, 2004Motorola, Inc.Structure and method for fabricating epitaxial semiconductor on insulator (SOI) structures and devices utilizing the formation of a compliant substrate for materials used to form same
US6709989Jun 21, 2001Mar 23, 2004Motorola, Inc.Method for fabricating a semiconductor structure including a metal oxide interface with silicon
US6855992Jul 24, 2001Feb 15, 2005Motorola Inc.Structure and method for fabricating configurable transistor devices utilizing the formation of a compliant substrate for materials used to form the same
US6885065Nov 20, 2002Apr 26, 2005Freescale Semiconductor, Inc.Ferromagnetic semiconductor structure and method for forming the same
US6916717May 3, 2002Jul 12, 2005Motorola, Inc.Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
US6965128Feb 3, 2003Nov 15, 2005Freescale Semiconductor, Inc.Structure and method for fabricating semiconductor microresonator devices
US6992321Jul 13, 2001Jan 31, 2006Motorola, Inc.Structure and method for fabricating semiconductor structures and devices utilizing piezoelectric materials
US7005717May 14, 2004Feb 28, 2006Freescale Semiconductor, Inc.Semiconductor device and method
US7019332Jul 20, 2001Mar 28, 2006Freescale Semiconductor, Inc.Fabrication of a wavelength locker within a semiconductor structure
US7020374Feb 3, 2003Mar 28, 2006Freescale Semiconductor, Inc.Optical waveguide structure and method for fabricating the same
US7045815Jul 30, 2002May 16, 2006Freescale Semiconductor, Inc.Semiconductor structure exhibiting reduced leakage current and method of fabricating same
US7067856Feb 2, 2004Jun 27, 2006Freescale Semiconductor, Inc.Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same
US7105866Aug 5, 2004Sep 12, 2006Freescale Semiconductor, Inc.Heterojunction tunneling diodes and process for fabricating same
US7161227Jun 29, 2004Jan 9, 2007Motorola, Inc.Structure and method for fabricating semiconductor structures and devices for detecting an object
US7169619Nov 19, 2002Jan 30, 2007Freescale Semiconductor, Inc.Method for fabricating semiconductor structures on vicinal substrates using a low temperature, low pressure, alkaline earth metal-rich process
US7211852Apr 29, 2005May 1, 2007Freescale Semiconductor, Inc.Structure and method for fabricating GaN devices utilizing the formation of a compliant substrate
US7342276Jun 7, 2004Mar 11, 2008Freescale Semiconductor, Inc.Method and apparatus utilizing monocrystalline insulator
EP0297588A2 *Jun 30, 1988Jan 4, 1989Nec CorporationTrigonometric function arithmetic processor using pseudo-division
Classifications
U.S. Classification708/494, 708/230, 708/276, 708/274, 708/277
International ClassificationG06F7/48, G06F17/10, G06F7/544
Cooperative ClassificationG06F7/5446, G06F17/10
European ClassificationG06F17/10, G06F7/544C