Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3767564 A
Publication typeGrant
Publication dateOct 23, 1973
Filing dateJun 25, 1971
Priority dateJun 25, 1971
Publication numberUS 3767564 A, US 3767564A, US-A-3767564, US3767564 A, US3767564A
InventorsColvert J, Cooper T, Youngblood D
Original AssigneeTexaco Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Production of low pour fuel oils
US 3767564 A
Abstract
Low pour fuel oils are obtained by first converting waxy pour residua into the corresponding viscous pour residua by deep vacuum fractionation, with or without auxiliary visbreaking or thermal or catalytic cracking, and then blending with sufficient low pour cutter stock to produce fuel oils having commercially acceptable viscosities and pour points.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent n91 Youngblood et al.

[ Oct. 23, 1973 1 PRODUCTION OF LOW POUR FUEL OILS [75] inventors: Douglas J. Youngblood, Groves;

Thomas A. Cooper, Port Arthur; James H. Colvert, Houston, all of Tex.

[73] Assignee: Texaco Inc., New York, NY.

[22] Filed: June 25, 1971 [21] Appl. No.: 156,771

[52] U.S. Cl 208/92, 208/15, 208/93, 208/106, 208/364, 208/366 [51] Int. Cl ClOg 37/00 [58] Field of Search 208/15, 72, 93, 106, 208/366, 92, 364

[56] References Cited UNITED STATES PATENTS 2,762,754 9/1956 Offutt et al. 208/106 VACUUM DlSTlLLATlON 3,575,843 4/1971 Aitken et al. 208/93 3,254,020 5/1966 Frayer et al.

2,900,327 8/1959 Beuther 208/366 2,663,675 12/1953 Ewell 208/1 5 3,303,128 2/1967 Peel et al. 208/15 Primary Examiner-Herbert Levine Att0rneyThomas l-l. Whaley et al.

[57] ABSTRACT 5 Claims, 4 Drawing Figures GAS TO RECOVERY L GASOLINE WAXY 1 CRUDE TwR, FURNACE OIL OR DIESEL FUEL WAXY GAS OIL PORTION FOR INTERNAL CONSUMP- 4 a o TION 550-650 F I.B.F.

CUTTER 5 'FUEL OlL RESIDUUM minimums Ian 3. 767; 564 SHEET 10F 2 ggum OIs TI LLATION GAS TO REcOvERY L GASOLINE WAXY' 1 7 CRUDE TWR. FuRNAcE OIL OR DIESEL FUEL WAXY GAS OIL PORTION FOR INTERNAL CONSUMP- 4 TION 550-650 F I.B.F. A

CUTTER 5 I vIscOus POUR I FUEL OIL REsIOuuM GAS T0 RECOVERY I I V I GASOLINE ATM. i WAXY TWR FURNACE OIL OR c uOE DIESEL FUEL 550'650F EP N CRACKED PROOucTf l6 l4' ATM. I I FLASH WAXY GAS OIL V TWR. PO T ON FOR 4 INTERNAL CONSUMPTION .TwR. VISBREAKING I9 HEATER VISCOUS POUR I FUEL OIL VACUUM DISTILLATION mfiififlw VISBROKEN RESIDUUM PAIENIEUnuzz: ma 3.767.564

CRACKING HEATER ZLze 27 GAS BY PASS -GASOLINE v ATM (FuRNAcE OIL oR} ATMRED. i DIESEL FUEL CRUDE g 22 VISBREAKING HEATER VAC./24 CUTTER 23 Lvlscous POUR y FUEL OIL RESIDUUM VISBREAKING WITH RECYCLE THERMAL CRACKING 55o-e5oF 35 GAS GASOLINE ATM FURNACE OIL VAC. FCCU I OR gm- 3s DIESEL FUEL 55o"s5oF I.B.P. RECYCLE VISCOUS POUR RESIDUUM FUEL OIL MILD CATALYTIC CRACKING 1 PRODUCTION OF LOW POUR FUEL OILS This invention relates to the productionof fuel oils of commercially acceptable viscosities and pour points from waxy crudes such as Libyan crudes. The invention includes methods whereby residual fractions obtained from such crudes by vacuum fractionation, with or without visbreaking, catalytic cracking or other auxiliary treatment, are converted by blending with low pour point cutters into fuel oils having acceptable viscosities and unexpectedly low pour points.

Waxy crudescan be defined as those whose atmospheric reduced crudes have high pour points and which cannot be converted into fuel oils meeting a prescribed pour point specification (50F. or lower for low By our invention fuel oils meeting the viscosity and pour point requirements conventionally required in the United States can be obtained from waxy crudes by blending their viscous pour residua wit-h certain diluents hereinafter defined as low pour cutter stocks. We

"have discovered that blends containing these low pour cutters exhibit two unexpected and hlghly important properties.

The first of these is that their pour points are much oilower (usually more than 50F. lower) than would be expected frOm calculations based on linear blending of component pours. This is illustrated by the following table wherein 1,020F.+ Libyan residua are blended with the +F. cutters used in U.S. Pat. No. 3,303,128

5 and with low pour cutters having a pour point of -l 0F.

*The wt. percent of cutter and actual pour points are taken from Table 2 of the patent.

* *Calculated pour of blend obtained by linear blending of component pours.

pour point fuel oils) without using so much cutter oil as to reduce the viscosity of the resulting fuel oils to an unacceptably low level. Viscous pour residua are those whose pour point is primarily due to their viscosity whereas, on the other hand, waxy pour residua are those whose pour points are primarily due to their wax content. Fora given viscosity residuum, a waxy pour residuum will have a higher pour point than a viscous pour residuum because the wax present therein will cause it to solidify at a higher temperature.

U. S. Pat. No. 3,303,128 describes a procedure for converting waxy crudes into fuel oils that meet come mercial requirements in Great. Britain, where relatively high pour points are tolerated. This patent shows that a maximum pour point of 70F. and a viscosity range of 40 to 90 cs at 75C. can be obtained by vacuum dis-;

tillation of waxy crudes under conditions to obtain a final vacuum residue boiling above 550C. (1,022F.) at a pressure corrected to 760 mm. Hg but below the temperature at which cracking of the feedstock corn-; mences. The patent shows that when this is done the heat-modified residues can be blended with a typical; catalytically cracked gas-oil cutter stock, having a pour point of 20F., in proportions such that the resulting fuel oil will meet British specifications. g

In the United States, most fuel oils must have viscosi-I ties of about 50 to 240 Saybolt Universal Seconds; (SUS) at 210F. and a pour point of 50F. or less. This} combination is considerably more difficult to obtain: than the British requirements mentioned above. For ex-; ample, Table 2 of the patent shows that with a Nigerian crude residue a fuel oil having a 40F. pour point is obtainable only after vacuum distillation to a TBP cuti point of 595C. (l,l03F.) followed by cutting the resi-} due with 52 percent by weight of gas oil and that this. pour point could not be reached at all with a Libyan. crude, even when distillation temperatures as high asl 1 to 550F. They can also be obtained by other proce- The second advantage possessed by our low pour cutters is that they are effective with a much wider range of viscous pour residua than could be used with the cutters previously employed. Thus, Libyan virgin crudes need be distilled only to 950F. or higher residua, and

by the use of visbreaking the depth of fractionation required to obtain a residuum that will blend with a low pour cutterto meet fuel oil requirements can be still further reduced. To obtain a suitable fuel oil from less waxy crudes, such as Mata crude, the virgin residuum need be out only to a 850F. or higher lBP. This advantage will be further described and illustrated with reference to the accompanying drawings.

We have found that the above and other advantages 1 are obtained by using cutters with pour points between herein designated as low pour cutter stocks. It is an im- 5 portant advantage of the invention that they may be obi tained from the same stocks vused 'in producing high pour cutters, having pour points on the order of +20F. or higher, by reducing the end point of the distillation.

E in which they are produced. To illustrate this, light gas 55 oils obtained from the total liquid product from oncethrough visbreaking of Libyan reduced crude were tested for pour points. The 350-550F. fraction had a 30F. pour point and the 350650f. had a +5F.

pour point. Thus a 35F. lower pour point cutter was obtained by reducing the cutter end point from 650F.

dures such as thermal cracking, catalytic cracking, visbreaking and the like. Representative cutter stocks obtained by these procedures are further described in Ex- The amount of cutter to be mixed with viscous pour residua will depend largely on the fuel oil specifications tha t must be met. Since cutter stocks are normally worth more than the fuel oils into which they are blended, it is desirable to add only enough cutter to meet maximum viscosity specifications as well as the 50F. maximum pour point mentioned above. Within these limits the exact amount will vary with the particular viscous pour residua being treated and the type of cutter stock used, but will usually be within the range of about 15 percent to 45 percent by weight and, in most cases, within the preferred range of 20 percent to 40 percent, based on the weight of the mixture of residl uum and cutter. It is understood that in the preferred practice of the invention, a waxy crude is first pretreated by vacuum distillation, with or without an auxiliary treatment such as visbreaking thermal cracking or' both, or catalytic cracking, to convert its waxy pour re-, siduum into viscous pour residuum after which this vis-' cous pour residuum is blended with an amount of a low pour cutter sufficient to produce a fuel oil having a maximum pour point of 50F. and a viscosity within the range of about 50 to 240 SUS at 210F. The preferred new fuel oils of the invention are those produced by this procedure.

In addition to the advantages outlined above, our invention also makes available a source of low sulfur fuel oils of great commercial importance. This is because waxy crudes normally have low sulfur contents. This is shown in the following tabulation where 30 weight percent of cutter was added to various residua from waxy crudes and the sulfur content of the resulting blends was determined.

No. Waxy Resid Cutter Fuel Oil Blend Crude Type Type Sulfur, Wt.

l Libyan I020F. 350650F. 0.72

Virgin VisbrOken 2 Libyan 850F.+ do. 0.60

visbroken 3 Mata 850F.+ 350650F. L36

4 Nigerian I020F.+ 350650F. 0.43

Virgin visbroken 5 Orito 1020F.+ do. 1.00

Virgin I Our invention also includes certain processing procedures in which our low pour point blending is applied on a commercial scale. The simplest of these is vacuum distillation by the procedure shown diagrammatically in FIG. 1 of the drawings, wherein a waxy crude is first charged to atmospheric fractionating tower 1 for the separation of volatae volatile A portion of a 350550F. fraction, taken off through line 2, is bypassed through line 3 for use as a low pour cutter, as has been described above. The residue leaving through line 4 is fed into a vacuum tower 5, where an overhead waxy gas oil portion is separated. The viscous pour residuum leaving through line 6 is converted into low pour fuel oil in accordance with the present invention.- It will be understood that the temperature employed in tower 5 will vary from one feedstock to another, the controlling factor being the point where the residuum goes from a predominatly waxy pour to a predominantly viscous pour.

FIG. 2 shows diagrammatically a process in which visbreaking is combined with the procedure shown in FIG. 1. The tower 1, line 2 and bypass line 3 are the same as in FIG. 1 but the residue leaving the tower 1 through line 14 is passed through a visbreaking furnace 15 where it is heated to incipient cracking. It is then discharged into an atmospheric flash tower 16, from which the partially cracked overhead product is returned through line 17 to tower l for fractionation with the waxy crude feedstock. The visbroken residuum leaves flash tower 16 through line 18 and is fed into a vacuum tower 19, similar in operation to tower 5 of FIG. 1, where an overhead waxy gas oil portion is separated The residuum, which for example may be the 850F.+ residuum of a Libyan waxy crude, leaves tower 19 through line 20 and now has a viscous pour. It therefore is converted into a fuel oil meeting the desired specifications by blending with the requisite quantity of the low pour cutter obtained from line 3.

In some instances, particularly in foreign countries it is often desired to maximize middle distillate (furnace oil or diesel fuel) production from a crude. Two procedures for accomplishing this objective are shown in FIGS. 3 and 4 of the drawings.

In the process shown diagrammatically in FIG. 3 the atmospheric reduced waxy crude, such as a Libyan crude, is visbroken in a furnace 21 and charged to atmospheric column 22 operating at atmospheric pressure, where gases, gasoline and a furnace oil or diesel fuel fraction are separated. The stripped residue passes through line 23 to a vacuum distillation column 24, the overhead fraction of which is passed through line 25 to a thermal cracking furnace, 26. In this furnace it is heated to a cracking temperature, after which it is recycled through line 27 to atmospheric after which it is recycled through line 27 to atmospheric column 22 in admixture with further quantities of visbroken feed. The residuum from vacuum column 24, which now has a viscous pour, is withdrawn through line 28 for blending with a low pour cutter such as a'fraction of the diesel or furnace oil boiling in the 350550F. range.

In a modification of this procedure the atmospheric reduced waxy crude is not visbroken. The overhead from vacuum tower 24 would then be a waxy gas oil which would be recycled to extinction through a visbreaker furnace. To maximize middle distillates production, the residuum in line 28, produced from the vacuum tower, would be a high IBP material 1,000F. IBP or greater), the quantity of which would be correspondingly reduced. By cutting a deep vacuum residuum in this manner the available visbreaker recycle would be increased, giving rise to greater production of middle distillates from recycle thermal cracking heater 26.

In FIG. 4, a procedure somewhat similar to that of FIG. 3 is shown in which the thermal cracker on the recycle stream is replaced by a catalytic cracker. In this process the atmospheric reduced waxy crude is not visbroken; it is introduced through feed line 31 into a vacuum distilling column 32. A distillate from this column, having a 550650F. IBP, is withdrawn through line 33 and introduced into fluid catalytic cracking unit 34. In

I order to maximize middle distillate production, instead of gasoline, this cracker is operated at reduced severity. Thus, instead of obtaining about 50 volume percent per pass of gas oil conversion to gasoline and lighter products, the per pass conversion is reduced to about 30 volume percent or lower.

The "product's leaving catalytic cracker 34 through line 35 are separated in the usual manner in atmospheric column 36, the bottoms being withdrawn through line 37 and recycled to extinction by admixture with the catalytic cracker feed. The desired furnace oil or diesel fuel fraction is withdrawn through line 38 as a side stream from column 36.

The column 32 is operated at temperatures such that the residuum leaving through line 40 will have a viscous pour. Thus in the case of a reduced Libyan crude the residue in this line will have an IBP of at least 950F.

and preferably about 1,020F. The material in this line can therefore be converted into a low pour fuel oil by blending with suitable quantities of low pour cutter, such as a suitable fraction obtained through line 41.

Typical results obtainable by the processes of FIGS. 3 and 4 are described in Examples 4 and 5, respectively.

The invention will be further described and illustrated by the following specific examples. It should be understood, however, that although these examples may describe some of the more specific features of our invention they are given primarily for purposes of illustration and the invention in its broader aspects is not limited thereto.

Example 1 Low pour point cutter stocks suitable for use in practicing the invention are obtainable from virgin and cracked light gas oils:

CUTTER NO. 1

This is a 350550F. fraction derived from an Amna virgin crude and has the following properties:

API Gravity 45.2 Viscosity, SUS at 100F. 32.1 Pour Point, F. 20 Sulfur, Wt. 0.091

CUTTER NO. 4

Thermal cracked 350-650F. gas oil:

APl Gravity 32.9 Viscosity, SUS at 100F. 333 Four Point, F. 31 20 5 Sulfur, Wt. 0.25

CUTTER NO. 5

Thermal cracked 350-650F. gas oil:

AP! Gravity 32.4 Viscosity, SUS at 100F. 33.6 Pour Po m, F. -35

CUTTER NO. 6

This was a catalytically cracked 3505'50F. gas oil fraction. it has a pour point of 85F.

CUTTER NO. 7

This was a catalytically cracked 350650F. gas oil fraction having a pour point of 10F.

The use of these cutters will be illustrated in subsequent examples. It will be understood, that, if desired,

they can be used in admixture with each other, or in admixture with other gas oils, to obtain cutter compositions having any desired pour point of 0F. or lower. Such mixtures are sometimes more compatible with certain residua, and particularly with some visbroken residua, than are single gas oil fractions.

EXAMPLE 2 Typical fuel oils derived from Libyan crude are shown in the following table.

TABLE 2 Blend Cutter Visc. Res Viscosity Pour SUS, Pour N0. IBP F. SUS, 210 F. pt. (F.) No. Wt. percent 210 F. pt. F.)

850 508 100 4 20 Ill 75 850 508 100 4 51 950 2,250 140 4 20 192 950 2.250 140 4 40 30 1020 11,000 160 4 20 447 50 1020 11,000 160 7 28 197 30 1020 11,000 160 7 36 93 10 1020 11,000 160 6 30 146 35 CUTTER NO. 2 The iiiiportance of converting the residua from waxy V V M" pour to viscous pour is evident from the above results. Thermal cracked 350650F. gas oil:

APl Gnavuty 35 5 EXAMPLE 3 ,121 02? 50 Visbreaking is a process in which a petroleum feed- Sulfur, Wt. 0.35 Stock such as a topped crude 1s heated and thermally cracked slightly in a visbreaker furnace. It is described, a for example, on page 154 of the September 1969 issue C T 3 of Hydrocarbon Processing. We have found that vis- I i 55 breaking cracks or alters the wax in the vacuum resid- Thermal cracked 3SO-650F. gas om uum of a waxy crude and thus converts its pour charac- CP fi 00F teristics from waxy to viscous. g Fuel oils obtained by cutting visbroken Libyan re- Sulfur. Wt. 0.36 sidua with low pour point cutters are shown in Table 3.

TABLE 3 I Blend Cutter Visc. Resid. Viscosity Pour SUS, Pour No. lBP F. SUS, 21 R m No. Wt. percent 210 F. Pt. (F.)

EXAMPLE 4 Visbreaking With Recycle Thermal Cracking The process shown in FIG. 3 of the drawings was operated with a Libyan reduced waxy crude charge using the following conditions:

" If the atmospheric reduced crude is not visbroken this yield of residuum increases to bout 42.5 column percent.

EXAMPLE Mild Catalytic Cracking at 920F. Reactor Temperature The process of FIG. 4 of the drawings was operated with the following material and results;

Fresh Feed Recycle Recycle: Fresh Feed Volumn Ratio Per Pass F.F. Conversion Volume Percent (350F.)

Yields: Dry Gas Butanes Pentanes ll5l4 350F. Naphtha 350-650F. Gas Oil lO20F.+Residuum 6501020F. Gas Oil 650F.+Gas Oil Vol.

We claim:

1. A method of producing a low pour fuel from a waxy crude which comprises the steps of producing a viscous pour residuum from a waxy crude by subjecting a waxy pour atmospheric residuum obtained from the waxy crude to visbreaking, separating the resulting product under atmospheric pressure into distillates and a residuum, subjecting the residuum so obtained to a deep vacuum distillation to produce a viscous pour vacuum residuum having an initial boiling point of at least 1,020F. and mixing the viscous pour residuum so obtained with from about 15-45 percent based on the weight of the mixture of a low pour cutter, having a pour point not higher than OF., sufficient to produce a fuel oil having a pour point not higher than 50F. and

a viscosity within the range of about 50 to 240 SUS at 2. A method according to claim 1 in which at least a portion of the distillate from the vacuum distillation is thermally cracked and the thermally cracked product so obtained is combined with the product of the visbreaking.

3. A method according to claim 1 in which the viscous pour residuum is produced by vacuum distillation of a waxy crude feedstock at a temperature sufficiently high to produce a viscous pour residuum and the low pour cutter is produced by cracking an overhead fraction from the said vacuum distillation.

4. The method according to claim 2 in which the cracking is fluidized catalytic cracking.

5. A method according to claim 1 in which the cutter is a 350550F. gas oil fraction.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2663675 *Oct 29, 1951Dec 22, 1953Shell DevConversion of hydrocarbon oils
US2762754 *Dec 20, 1951Sep 11, 1956Gulf Oil CorpThermal conversion of reduced crudes
US2900327 *Mar 9, 1953Aug 18, 1959Gulf Research Development CoVisbreaking of reduced crude in the presence of light catalytic cycle stock
US3254020 *Jul 2, 1963May 31, 1966Gulf Research Development CoProduction of a reduced sulfur content and pour point high boiling gas oil
US3303128 *Jun 18, 1964Feb 7, 1967British Petroleum CoProduction of fuel oils
US3575843 *Dec 19, 1968Apr 20, 1971British Petroleum CoProduction of fuel oils
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4138227 *Dec 27, 1977Feb 6, 1979Texaco Inc.Production of low pour, low sulfur fuel oils
US4283270 *Jun 25, 1980Aug 11, 1981Mobil Oil CorporationProcess for removing sulfur from petroleum oils
US4604188 *Jan 16, 1985Aug 5, 1986Mobil Oil CorporationThermal upgrading of residual oil to light product and heavy residual fuel
US4695365 *Jul 31, 1986Sep 22, 1987Union Oil Company Of CaliforniaMolecular sieve, deslufurization, denitrification
US4778586 *Jun 5, 1987Oct 18, 1988Resource Technology AssociatesViscosity reduction processing at elevated pressure
US4784746 *Apr 22, 1987Nov 15, 1988Mobil Oil Corp.Alkylation of lower molecular weight hydrocarbons
US4818371 *Jun 5, 1987Apr 4, 1989Resource Technology AssociatesViscosity reduction by direct oxidative heating
US4904347 *Dec 17, 1987Feb 27, 1990Spie BatignollesMethod and apparatus for distilling liquid hydrocarbon products
US4960502 *May 22, 1989Oct 2, 1990Phillips Petroleum CompanyCatalytic cracking
US4994149 *Nov 3, 1989Feb 19, 1991Delta Projects Inc.Diluent substitution apparatus
US5008085 *Mar 31, 1989Apr 16, 1991Resource Technology AssociatesVertical tube reactor within a well bore for reducing the viscosity of hydrocarbons
US5096566 *Feb 11, 1991Mar 17, 1992Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Energy, Mines And ResourcesProcess for reducing the viscosity of heavy hydrocarbon oils
US5312543 *Jun 22, 1992May 17, 1994Amoco CorporationDeasphalting crude oils and hydrotreatment
US5917101 *Oct 7, 1998Jun 29, 1999Western Petroleum Enterprises, Inc.Sulfur compounds
US6337011Mar 15, 2000Jan 8, 2002Halliburton Energy Services, Inc.Pour point depression unit using mild thermal cracker
US6379534 *Feb 19, 1999Apr 30, 2002Halliburton Energy Services, Inc.Pour point depression unit using mild thermal cracker
US6599488 *Mar 15, 2000Jul 29, 2003Kellogg Brown & Root, Inc.Pour point depression unit using mild thermal cracker
US6855248 *Mar 28, 2000Feb 15, 2005Sulzer Chemtech LimitedVacuum distillation; withdrawing from the distillation column an overhead stream, a bottom stream comprising wax products, and at least one side stream comprising wax products; no thermal degradation
US7622033Jul 12, 2006Nov 24, 2009Uop LlcCracking hydrocarbon feed stream with catalyst to form cracked hydrocarbon products stream and spent catalyst, regenerating spent catalyst, concurrently directing hot flue gas and heavy residual oil into spray contactor, converting heavy residual oil to volatile products and coke; efficiency
US7708876Jul 11, 2006May 4, 2010Oiltreid Limited Liabilities CompanyHeavy fuel oil
WO1996026992A1 *Feb 29, 1996Sep 6, 1996Shell Int ResearchProcess for the conversion of a hydrocarbon oil
Classifications
U.S. Classification208/92, 208/15, 208/106, 208/93, 208/364, 208/366
International ClassificationC10L1/04, C10G7/00, C10G11/18
Cooperative ClassificationC10L1/04, C10G11/18, C10G7/00, C10G9/00
European ClassificationC10G9/00, C10G11/18, C10L1/04, C10G7/00