Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3767831 A
Publication typeGrant
Publication dateOct 23, 1973
Filing dateAug 23, 1972
Priority dateAug 23, 1972
Publication numberUS 3767831 A, US 3767831A, US-A-3767831, US3767831 A, US3767831A
InventorsHolzgruber W, Machner P, Plockinger E
Original AssigneeBoehler & Co Ag Geb
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Process and apparatus for electro-slag remelting metals and in particular steel
US 3767831 A
Abstract
An apparatus and method for electro-slag-remelting of metals and in particular steel. The electric current flowing through the to be molten electrode changes periodically. The current which is being fed to the apparatus may be either an ordinary alternating current or a three-phase alternating current and is converted into a substantially different current having a base frequency (f) which periodically changes its direction. It is the latter current which supplies the power for remelting the electrode.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 191 Ploc'kinger et a1;

[ PROCESS AND APPARATUS FOR ELECTRO-SLAG REMELTING METALS AND IN PARTICULAR STEEL. Inventors: Erwin Plockin ger, Wolfgang Holzgruber, both of Kapfenberg;

Peter Machner, Leoben, all of I Y Austria v Gebr. Bohler & Co., Aktiengesellschaft, Kapfenberg, Austria F1166; Aug. 23, 1972 Appl. No.: 283,158

Related U.S. Application Data Continuation of Ser. No. 814,376, April 8, 1969, abandoned.

Assignee:

us. or 13/12, 1.3/9, 75/10,

164/52, 164/252 1n1 c|. nosb 7/18, C22d 7/00, B22d'27/02 Field of Search ..75/10-12; 13/9, .125 i [56] References Cited UNITED STATES PATENTS 1 1/1971 Holzgruber 2/1927 Muller 2/1947 Sciaky.... 321/4 9/1952 Cage 321/4 5/1966 Cooper ..l3/34 Attorney- -Arthur O. Klein 3,390,250 6/1968 Apblett 219/137 3,439,103 4/1969 Holzgruber.. 13/14 3,469,968 9/1969 Snow 75/10 3,483,300 12/1969 McGee 13/9 3,496,092 2/1970 Fraser 321/4 3,665,080 5 1972 Medovar.. 13 9 9/1972 Paton 13/9 OTHER PUBLICATIONS Duckworth & Hoyle, Electro-Slag Refining," p. 88, (Chapman & Hall Ltd. 1969).

Primary ExaminerL. Dewayne Rutledge Assistant ExaminerPeter D. Rosenberg [57] ABSTRACT An apparatus and method for electro-slag-remelting of metals and in particular steel. The electric current flowing through the to be molten electrode changes periodically. The current which is being fed to the apparatus may be either an ordinary alternating current or a three-phase alternating current and is converted into a substantially different current having a base frequency (f) which periodically changes its direction. It is the latter current which supplies the power for remelting the electrode.

12 Claims, 4 Drawing Figures P IEmmncr 23 ms $1 767.8 31

Int/en fors Erwin PLDCKINGER Wolfgang HOLZGRUBER Peiar MACHNER A We, 0. Awm I PROCESS AND APPARATUS FOR ELECTRO-SLAG REMELTING METALS AND IN PARTICULAR STEEL This is a continuation of application Ser. No. 814,376 filed on Apr. 8, 1969 and now abandoned.

BACKGROUND OF THE INVENTION The known installations for electro-slag-remelting metals by fusing down an electrode can be powered by direct or alternating current having the normal power supply frequency of 50 cycles respectively 60 cycles.

When direct current is used, however, the fusing rate(in kilograms of metal per hour)and the energy consumption (in kilowatt-hours per ton) of the electrode depend, all other conditions remaining constant, on the one hand, and the metallurgical properties of the metal ingot produced by the remelting process, on the other hand, substantially on the direction of the current flowing through the electrode. Thus, for example, if the to be remelted electrode represents the positive pole and the formed metal ingot represents the negative pole the fusing rate is high, whereas the metallurgical properties of the metal ingot are poor (for example the metal ingot has a high oxygen content). When, in contradistinction thereto, the to be remelted eletrode represents the negative pole and the metal ingot represents the positive pole, the metallurgical properties of the metal ingot are substantially better (for example the metal ingot has a low oxygen content) but the fusing rate is substantially lower than in an arrangement of pposite polarity as is described above.

When alternating current of normal power supply frequency of 50 cycles, respectively 60 cycles, is used, the fusing rate is almost as high as in the first aforedescribed example but the metallurgical properties of the formed metal ingots are similar to those of the second aforedescribed example. The use of alternating current has, however, the drawback of substantial inductive resistance occurring in the feed lines. Since the remelting of metallic electrodes requires a very large electric power input, an unduly high unbalance in the power supply frequently occurs. In order to avoid these draw- I backs there has already been proposed an arrangement in which a three-phase electric power supply is used for electro-slag-remelting of electrodes in which the base plate, on which the formed metal ingot rests, is connected to the neutral point of the three phase system and three electrodes are each connected to one phase of the three-phase system. Such an arrangement is, structurally speaking, very complex because three separate electrodes must be simultaneously remelted in one mold. Such an arrangement is not only expensive to construct but involves also substantial production costs for the electrodes themselves. The alternating phase-displaced currents, which flow through the three electrodes, produce a rotating magnetic field which causes the electrically conductive slag layer, which is superposed on the molten metal, to rotate. This rotational movement causes the slag layer to form a rotating paraboloid which increases the surface through which a heat exchange between the slag layer and the cooled walls of the mold may take place. In addition thereto, the specific heat transfer characteristics between the slag and the cooled walls fo the mold are also increased. Consequently, the alternating current threephase power supply produces substantially higher heat losses in the electro-slag-remelting arrangement than SUMMARY OF THE INVENTION It is a principal object of this invention to provide an eIectro-slag remelting process and apparatus which substantially eliminates the afore-described disadvantages and drawbacks.

It is a more specific object of this invention to provide an apparatus for an electro-slag-remelting process which renders particularly advantageous results insofar as the fusing rate and the metallurgical properties of the produced metal ingot are concerned.

The apparatus of this invention uses as a power supply a three-phase alternating or ordinary two-phase alternating current. This power supply current is converted into a current the direction of which periodically changes and which has a basic frequency (f) that is substantially different from the frequency of the threephase or two-phase alternating power supply current. The converted current flows through the electrode which is to be remelted. It has been found to be advantageous if in the apparatus of this invention the relationship of times (T T during which the to be remelted electrode alternately forms the positive, respectively the negative pole as well as the basic frequency (f) of the current flowing through the to be remelted electrode can be adjusted. It has been furthermore found to be advantageous that the basic frequency (f) of the current which flows through the to be remelted electrode is substantially lower than the frequency of the power supply current and amounts to, for example, 5 10 cycles. 7

It has also been found advantageous in order to attain optimum results if the relationship of times (T,, T,) during which the to be remelted electrode alternately forms the positive, respectively negative pole is different from 1.

An apparatus in accordance with this invention for carrying out the process of the invention is fed by a three phase power supply and has rectifiers, such as, for example, dry selenium rectifiers or adjustable rectifiers such as thyristors, and a convertor which is preferably a thyristor. Each phase of the three-phase power supply system is provided with a rectifier; one of the input terminals of each rectifier is connected to the neutralpoint of the three-phase power supply system and the other terminal to the convertor.

The inductive resistances can advantageously be reduced in the apparatus of this invention by positioning the switch of the converter which is connected to the to be remelted electrode as closely as possible to the electrode and position the switching elements of the convertor which are connected to the base plate supporting the mold as closely as possible to said base plate.

A particularly simple and efficient embodiment of this invention comprises a main power supply line and a line leading from the neutral point of, for example, a three-phase or six-phase power supply which have a set of thyristors connected thereto for converting the power supply current into a uni-phase current the direction of which periodically changes. The to be remelted electrode is connected to the uni-phase current.

In a preferred refinement of the aforedescribed embodiment adjustable electronic or mechanical controlling means cooperate with the set of thyristors for adjusting the uni-phase input current for the electrode.

BRIEF DESCRIPTION OF THE DRAWING The invention is illustrated by way of example in the accompanying drawing which forms part of this application and in which FIG. I is a schematic illustration of a first of many embodiments for carrying out the process of this invention;

FIG. 2 is a detailed circuit diagram of the convertor illustrated in FIG. 1;

FIG. 3 is a graph showing how the voltage U in the to be remelted electrode varies as a function of the time t; and

FIG. 4 is a second one of many embodiments for carrying out the process of this invention.

DESCRIPTION OF PREFERRED EMBODIMENTS Before referring in detail to the figures it should be noted that the switches S S S and S of the convertor 5 may not only beone of the many well-known mechanical types but may also be electronic type switches such as electronic switches which operate with changing control voltages (blocking voltages) as are, for example, present in the operation of a thyristor.

Referring now specifically to the embodiment illustrated in FIGS. and 2 of the drawing, a normal threephase power supply (having the usual frequency of 50 cycles) feeds current through the terminals R, S and T and transforms the current by means of a three-phase current transformer 1 into a current of considerably lower voltage. The current is then converted into a direct current having minor pulsations by means of the I plurality of rectifiers 2. The current is then conducted by means of the lines 3 and 4 to the converter 5. The operation of the convertor 5 is controlled by means of mechanically or electronically operated means 6, such as, for example, a thyristor described in greater detail hereinafter. The convertor 5 causes the current at the output thereof to periodically change direction. The basicfrequency (f) as well as the time periods T T during which the-current flows in a positive respectively negative direction can be adjusted by means of the control means 6. The positive directionof the current is indicated by the arrow Z in FIG]. The basic frequency (f) can be determined by the following formula One of the output leads 7 of the convertor 5 is connected to the to be remelted electrode 9 and the output leads 8 is connected to the base plate which preferably is made of copper. If steel is to be remelted with the apparatus then, the electrode 9 consists of steel which consumes itself by being molten down. The lower end 'of the electrode 9 axially extends into a water-cooled mold 11 wherein there is present the liquid layer of slag 12 which forms above the liquid layer of molten steel 13. A solidified ingot of steel 10 eventually forms due to the cooling effect produced by the walls of the mold 11 and comes to rest on the base plate 10. After the electrode 9 has been fuesd with the exception of a small remainder, the latter is pulled upwardly out of the slag layer 12 and is replaced with a new electrode 9. An auxiliary electrode 15 is provided which prevents the slag layer 12 from solidifying while the exchange of electrodes 9 is effected by passing the current through the auxiliary electrode 15. The auxiliary electrode comprises a plurality of rods 15' which are mounted in a support ring 16. The lower ends of the rods 15 also extend into the liquid slag layer 12. A line 18 leads from the positive pole of the rectified direct current to one contact of a switch 17, whereas a line 19 leads from the negative pole of the rectified direct current to the other contact of the switch 17. The auxiliary electrode 15 can thus be connected either to the posivite or negative pole of the rectified direct current by selectively adjusting the switch 17. Therefore, if, for example, the auxiliary pole 15 is connected with the positive pole of the rectified direct current (see FIGS. 1 and 2), the latter will have positive pulsating voltages with respect to the base plate 10 and the electrode 9. Consequently, the base plate 10 as well as the electrode 9 only have negative potentials with respect to the auxiliary electrode 15. The significance of this is that the auxiliary electrode 15 represents the anode of the electrolyte bath which is constituted by the liquid electric slag in which there are present negatively charged ions, such as, for example, oxygen ions, which separateout. On the other hand, if the switch l7 assumes the position indicated by the broken line in FIG.I- (and thus the mixiliary electrode 15 is connected to the negative pole of the rectified direct current) the auxiliary electrode 15 represents the cathode and there are present in the electrolytic bath (that is theliquid slag layer 12) positively charged ions, such as, for example, metal ions which are separated out. lt is therefore possible to decisively influence the metallurgical reaction by means of the auxiliary electrode 15. Thus, the undesirable impurities, such as the so-called steel-impurities can be separated out at the auxiliary electrode 15 and the transfer of certain substances present in the metal ingot into the slag layer can be avoided.

Referring now specifically to the embodiment illustrated in FIG.4, there is shown a normal three-phase power supply of normal frequency, for example, 50 cycles, which has the usual main power lines R, S, T. A

three-phase current transformer 21 transforms the power supply current into a current having a substantially lower voltage and the neutral point lead 23. Either three or six leads 22 (depending on the construction of the device) conduct the current from the secondary of the transformer 21 to the set of thyristors 24. The three-phase, respectively six-phase,current is converted by the set of thyristors into a uni-phase current, the direction of which periodically changes. An electronic or mechanical control means 25 are connected to the set of thyristors 24 and are adapted to adjust the relationship of the times T T during which the cur-.

rent flows in a positive, respectively negative direction, as well as to adjust the basic frequency (f). A line 26 leads from the set of thyristors 24 to the self-consuming electrode 28, and a second line 28 leads from the set of thyristors to the base plate 29 which is preferably made of copper. The electrode 28 which consists of to be molten down steel is concentrically mounted in a water-cooled mold 30 and extends with its lower end into the liquid slag layer 31 which forms on top of the molten metal layer 32. The solidified metal 33' comes to rest on'the base plate 29. The voltage U, which the electrode 28 has relative to the solidified metal 33, varies in accordance with the time period t as indicated in the graph .of FIG. 3.

improved metallurgical properties by electroslag remelting a consumable metallic electrode, said process being also characterized by an improved fusing rate, comprising the steps of In contradistinction to the known electro-slagremelting operations, the process of this invention achieves the optimum operating conditions for all types of electro-slag-remelting processes insofar as the fusing rate and the metallurgical properties of the formed 5 metal ingot are concerned. The construction costs for the apparatus of the invention are relatively low. A further advantage resides in the fact that the apparatus of the invention may be powered with three-phase current of ordinary frequency; all three phases of the powersupply current are completely symmetrically loaded. Furthermore, the significantly higher output factor cos 1) is attained with the apparatus of the invention which is a significant advantage when compared to the apparatuses operating with ordinary alternating current or three-phase current. This output factor is arrived at by virtue of the fact that the self-consuming electrode is connected to a uni-phase current, in which the inductive voltage drop is relatively very small when basic frequencies are used in the circuit, for example, 5 cycles, which are significantly smaller than the normal circuit frequencies.

What is claimed is: l. A process for producing refined metallic ingots of in claim 1, wherein said converted current flows in one direction during a period T,, and in an other direction during a period T said electrode forming respectively during said periods the positive and the negative pole in an electric circuit; and selectively adjusting said basic frequency (f). 4

3. The process for electro-slag-remelting as set forth in'claim l, in which the basic frequency (f) is in the range of 5-10 cycles and is substantially below the frequency of said power supply current.

4. The process for electro-slag-remelting as set forth in claim 2, wherein the relationship of the periods T and T is different than 1.

5. An apparatus for electro-slag-remelting of metallic electrodes by means of a three phase power supply current, comprising in combination,

a consumable electrode;

a base plate;

a mold mounted on said base plate;

a three-phase transformer operatively connected to said three-phase power supply current;

converter means operatively connected to said transformer and having one line connected to said electrode and an other line connected to said base plate; said convertor means converting said threephase power supply into uni-phase current having a basic frequency (f) which is substantially lower than the frequency of said power supply current and periodically changing the direction of said uniphase current.

6. The apparatus for electro-slag-remelting of metallic electrodes as set forth in claim 5, wherein said convertor means comprising three selenium rectifiers each of which is respectively connected to a different phase of said three-phase power supply current, on the one hand, and to the neutral point of said three-phase power supply current, on the other hand, thereby converting said three-phase current into a weakly pulsating direct current.

7. The apparatus for electro-slag-remelting of metallic electrodes as set forth in claim 5, wherein said convertor means comprise thyristor means which are operatively connected to said selenium rectifiers and which periodically change the direction of said direct current.

8. The apparatus for electro-slag-remelting of metallic electrodes as set forth in claim 7, including auxiliary electrode means mounted in said apparatus, said electrode and said auxiliary electrode means extending into said mold,

and switch means having a pair of terminals which are respectively connected to the star point of said three-phase transformer and to the output lead of said transformer,

and movable contact means connected to said auxiliary electrode means, said switch means being adapted to thus selectively connect the positive or the negative pole of said transformer to said auxiliary electrode means.

9. The apparatus for electro-slag-remelting of metallic electrodes as set forth in claim 5, including electronic control means for adjusting the operation thereof.

10. The apparatus for electro-slag-remelting of metallic electrodes as set forth in claim 9, wherein said electronic control means comprise a set of thyristors.

11. A process for producing refined metallic ingots of improved metallurgical properties by electroslag remelting, said process being also characterized by an improved fusing rate, comprising the steps of converting an alternating poly-phase power supply current of 50 to 60 cycles per second into a uniphase current of 5 to 10 cycles per second, and conducting said converted current to a metallic electrode immersed in a liquid layer of slag and thereby remelting said electrode.

12. The apparatus for electro-slag-remelting of metallic electrodes as set forth in claim 5, that a three or six phase thyristor group is connected to said three phase transformer, which convert the three phase current into a uni-phase current, the direction of which changes periodically, said consumable electrode being connected to said thyristor group.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1615995 *Jan 24, 1924Feb 1, 1927Electroiuimica De Flix SocElectric arc for melting and pulverizing metals
US2415708 *Jun 23, 1944Feb 11, 1947Welding Research IncWelding method and apparatus therefor
US2610288 *Apr 8, 1947Sep 9, 1952Raytheon Mfg CoDielectric heating apparatus
US3254149 *May 10, 1965May 31, 1966Titanium Metals CorpVacuum melting of metals
US3390250 *Nov 16, 1964Jun 25, 1968Foster Wheeler CorpApplication of a pulsating current to tube-to-tube sheet welding
US3439103 *Oct 18, 1967Apr 15, 1969Boehler & Co Ag GebElectrode assembly for electric slag melting
US3469968 *Oct 20, 1965Sep 30, 1969Allegheny Ludlum SteelElectroslag melting
US3483300 *May 24, 1968Dec 9, 1969United Steel Co LtdElectric arc furnaces
US3496092 *Mar 28, 1968Feb 17, 1970Gen ElectricSolid state corona generator for chemical - electrical discharge processes
US3619464 *Feb 3, 1970Nov 9, 1971Boehler & Co Ag GebApparatus for electroslag remelting of metals and in particular steel
US3665080 *May 28, 1970May 23, 1972Bogachenko Alexsey GeorgievichRemelting system and process utilizing varying voltage,current and melting rate
US3693700 *Jul 6, 1970Sep 26, 1972Bondarenko Oleg PInstallation for the electroslag remelting of consumable electrodes with modulated current
Non-Patent Citations
Reference
1 *Duckworth & Hoyle, Electro Slag Refining, p. 88, (Chapman & Hall Ltd. 1969).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3857697 *Feb 27, 1974Dec 31, 1974Siderurgie Fse Inst RechMethod of continuously smelting a solid material rich in iron metal in an electric arc furnace
US3867130 *Feb 17, 1972Feb 18, 1975Bondarenko Oleg PMethod for electroslag remelting of consumable electrodes
US3921699 *Jul 27, 1973Nov 25, 1975Mitsubishi Heavy Ind LtdMethod of and apparatus for producing metallic articles by electroslag melting
US3995100 *May 27, 1975Nov 30, 1976Gebr. Bohler & Co. AgArrangement for the production of ingots from high-melting metals, particularly steel, by electroslag remelting
US3999976 *Apr 7, 1975Dec 28, 1976Demag AktiengesellschaftPreserving inner walls of the furnace
US4061493 *Sep 24, 1976Dec 6, 1977Vereinigte Edelstahlwerke Aktiengesellschaft (Vew)Method for removing undesired elements, particularly H2 and O2, in electroslag remelting and an arrangement for carrying out the method
US4291744 *Feb 14, 1979Sep 29, 1981Medovar Boris IApparatus for electroslag remelting of consumable electrodes
US4388108 *Jan 15, 1982Jun 14, 1983Rozenberg Vladimir LMethod and apparatus for smelting charge materials in electric arc furnace
US4465119 *Sep 1, 1981Aug 14, 1984Yoshimasa KidowakiMethod and apparatus for controlling current level in arc discharge melting of material to be precision cast
US4850573 *Jan 15, 1988Jul 25, 1989Inductotherm Europe LimitedInduction melting
US4927460 *Apr 4, 1989May 22, 1990Inductotherm Europe LimitedInduction melting and stirring
US5666891 *Feb 2, 1995Sep 16, 1997Battelle Memorial InstituteWaste conversion unit
US5700308 *Jan 20, 1995Dec 23, 1997Massachusetts Institute Of TechnologyMethod for enhancing reaction rates in metals refining extraction, and recycling operations involving melts containing ionic species such as slags, mattes, fluxes
US5756957 *Mar 25, 1996May 26, 1998Integrated Environmental Technologies, LlcTunable molten oxide pool assisted plasma-melter vitrification systems
US5798497 *Jun 19, 1995Aug 25, 1998Battelle Memorial InstituteTunable, self-powered integrated arc plasma-melter vitrification system for waste treatment and resource recovery
US5811752 *Mar 25, 1996Sep 22, 1998Integrated Environmental Technologies, LlcEnhanced tunable plasma-melter vitrification systems
US5908564 *Aug 14, 1997Jun 1, 1999Battelle Memorial InstituteTunable, self-powered arc plasma-melter electro conversion system for waste treatment and resource recovery
US6018471 *Mar 16, 1998Jan 25, 2000Integrated Environmental TechnologiesMethods and apparatus for treating waste
US6037560 *Sep 22, 1998Mar 14, 2000Integrated Environmental Technologies, LlcEnhanced tunable plasma-melter vitrification systems
US6066825 *Dec 8, 1998May 23, 2000Integrated Environmental Technologies, LlcMethods and apparatus for low NOx emissions during the production of electricity from waste treatment systems
US6127645 *Aug 24, 1998Oct 3, 2000Battelle Memorial InstituteTunable, self-powered arc plasma-melter electro conversion system for waste treatment and resource recovery
US6160238 *May 21, 1998Dec 12, 2000Integrated Environmental Technologies, Inc.Tunable molten oxide pool assisted plasma-melter vitrification systems
US6215678Sep 9, 1999Apr 10, 2001Integrated Environmental Technologies, LlcArc plasma-joule heated melter system for waste treatment and resource recovery
US6630113Sep 9, 1999Oct 7, 2003Integrated Environmental Technologies, LlcMethods and apparatus for treating waste
Classifications
U.S. Classification75/10.25, 164/515, 373/51
International ClassificationC22B9/16, C22B9/18
Cooperative ClassificationC22B9/18
European ClassificationC22B9/18