Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3770935 A
Publication typeGrant
Publication dateNov 6, 1973
Filing dateDec 21, 1971
Priority dateDec 25, 1970
Also published asDE2164270A1, DE2164270B2, DE2164270C3, DE7148539U
Publication numberUS 3770935 A, US 3770935A, US-A-3770935, US3770935 A, US3770935A
InventorsIchimiya T, Tateno H
Original AssigneeRikagaku Kenkyusho
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Plasma jet generator
US 3770935 A
Abstract
Disclosed is an improved plasma jet generator comprising at least two plasma jet torches and a guide attachment integrally connected to the torches with a view to fixing the anode foot of a non-transferred type plasma jet. This special structure permits the proper selection of the point of the anode foot of the plasma jet with respect to the cathode spot of the plasma jet, thus realizing a high voltage plasma jet. Also, the new structure prevents the local erosion to the parts of the electrodes on which the anode foot and the cathode spot stand by means of an inactive gas, thus allowing the main arc column to directly heat a high concentrated active gas.
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Tateno et al. Nov, 6, 1973 1 PLASMA JET GENERATOR 3,536,885 10/1970 Mitchell 219/121 P 1 1 m 111 11 1 110 1 313133 311331 211112121111 51 91151; lchlmlya Hayama-Machh both of 3,588,594 6/1971 Yamanoto et al. 315 111 Japan 3,403,211 9/1968 Foex 219 121 P x [73] Assignee: Rikagaku Kenlkynsho, Wako-shi Saitama-ken, Japan [22] Filed: Dec. 21, 1971 [21] Appl. No.: 210,350

[] Foreign Application Priority Data Dec. 25, 1970 Japan /118284 Sept. 17, 1971 Japan 46/72338 [52] U.S. Cl 219/121 P, 219/ [51] Int. Cl 323k 9/00 [58] Field of Search 219/121 P, 121 R,

[56] References Cited UNITED STATES PATENTS 3,373,306 3/1968 Karlovitz 219/1211 X 3,476,907 11/1969 Foex et al 219/121 P 3,541,297 11/1970 Sunnen et al 219/121 P Primary Examiner-C. L. Albritton Assistant Examiner-Gale R. Peterson Att0rneyBucknam & Archer Disclosed is an improved plasma jet generator comprising at least two plasma jet torches and a guide attachment integrally connected to the torches with a view to fixing the anode foot of a non-transferred type plasma jet. This special structure permits the proper selection of the point of the anode foot of the plasma jet with respect to the cathode spot of the plasma jet, thus realizing a high voltage plasma jet. Also, the new structure prevents the local erosion to the parts of the electrodes on which the anode foot and the cathode spot stand by means of an inactive gas, thus allowing the main arc column to directly heat a high concentrated active gas.

ABSTRACT 3 Claims, 11 Drawing Figures SHEET 1 BF 5 PATENTEI] NOV 6 I975 PATENTEDNHV si n 3.770.935

SHEET 50F 5 PLASMA JET GENERATOR This invention relates to a plasma jet generator including a plurality of plasma jet torches which are capable of independently functioning as the plasma jet torch of straight polarity.

Thus, the wall of the torch will be free from the damage which would be caused by using the torch wall as the negative electrode if the torch is used in the mode of reverse polarity. The plasma jets ejected from those plasma jet torches will meet one another in the inner space of a guide attachment which are integrally connected with the torches. A main arc can be established in the electrically conductive space by applying a voltage from a main power supply with one electrode of each plasma jet torch used as the positive or negative electrode, and the gas supplied will be heated by the main arc and then properly directed by the guide attachment.

A plasma jet generator (hereinafter abbreviated to P.J.G.) has been widely used in cutting, welding, coating and other operations. The basic structure of P.J.G. (see US. Pat. No. 2,806,124) was originally developed by Union Carbide Corporation, and numerous im provements have been proposed. In these P.J.G.s, the factors to determine the electric characteristics thereof are as, for instance, follows: gas flow rate, gas compositions, size of caliber, distance between the electrodes, and electric current values. It should be noted that the arc voltage also depends on these factors.

The efficiency of heating gas is usually given by the following equation:

The efficiency of heating gas (1;)

Arc Electric Torch Voltago(V) X Currontfl) Consumption (Lt)- Arc Voltage (V) lfllectric Current (I) provided that: Torch Consumption(L,) K X Electric Current(l) Thermal Conduction to Casing Wall(L,,,) z

where K is a constant.

By substituting Equation (2) for the corresponding term of Equation (1 the following equation can be obtained:

The last term is negligible for its smallness, and therefore it is apparent the efficiency will increase with the arc voltage.

A conventional method of increasing the arc voltage is to increase the eddy component of the gas stream in passing through the torch.

Another means to increase the arc voltage is to provide recessed portions electrically isolated both from the anode and the cathode in the flow path of gas. However, relaying on these means, the arc voltage for given values of gas flow rate and electric current cannot be raised beyond a certain critical value without accompanying adverse effects such as double arcing, damage of the throat aperture, and deviation or unstability of the arc column. P.J.G.s heretofore proposed still have defects such as complicatedness in structure, difficulty in operation and narrow range for varying electric current, gas flow rate and other factors.

An object of this invention is to provide an improved P.J.G. which is characteristic of the high are voltage and hence the highly improved efficiency of heating gas and little or no electrode consumption.

Another object of this invention is to provide a new high-voltage lP..I.G. in which an active gas of high density can be heated directly by the arc column. This direct heating of concentrated active gas by means of the arc column was deemed as impossible in the prior art.

This invention will be better understood from the following description which is to be made with reference to the accompanying drawings:

FIG. I shows an embodiment of the P.J.G. according to this invention in section and an associated electric circuit;

FIG. 2 is a similar view to FIG. I, but shows a different embodiment suitable for a concentrated active gas and an associated electric circuit;

FIGS. 3 8 show partly in section, different guide attachments suitable for use in the P.J.G. given in FIG.

FIG. 9 is a similar view to FIG. 2, except for the structure of the guide attachment;

FIG. 10 shows in section an embodiment of this invention having two positive plasma jet torches and one negative plasma jet torch, and an associated circuit; and

FIG. II shows in cross-section, different shapes of the white-bright portion of the plasma flame at the out let.

Referring to FIG. I there is shown a primary PIG. according to this invention which consists of a positive plasma jet torch A, a negative plasma jet torch B and a guide attachment C. The positive plasma jet torch A has a cathode rod I and at least two bushings 2, 3 mounted concentric with the cathode rod. The second bushing 3 has an arc throttle aperture I. A gas such as Argon, Helium and other inactive gases is supplied in the form of stream 7 and 8 from the inlets 5 and 6 to the annular space formed between the cathode and the first bushing 2 and the one between the first bushing 2 and the second bushing 3 respectively. The negative plasma jet torch B has a cathode rod 9 and a bushing II positioned concentric with the cathode. The bushing II has an arc throttle aperture It). An inactive gas I3 is supplied from the inlet I2 to the annular space formed between the cathode 9 and the bushing II.

The guide attachment C has two inlets I5 and I6 and one outlet I7. These inlets are so positioned that when the guide attachment is fixed to the positive and nega' tive jet torches, these inlets function to direct the gas streams from the torches to the intersection of the center axis of these torches, whereas the outlet is so positioned that it functions to allow the resultant gas stream to flow from the intersection to the exterior.

It should be noted that the guide attachment is fixed to at least one bushing (the bushing 3 of the positive plasma jet torch in FIG. I) via an insulator Id of a dielectric material, and that a gas 2b is supplied from the inlet I9 to the annular space formed by the insulator I8 at the joint part. The cathode holders 5th, 511 and the bushings 2, 3, II and the guide attachment C are watercooled by a proper means (not shown), and are integrated via insulators 52 of, for instance, Bakelite in a complete air-tight manner.

An auxiliary power supply 21 includes a highfrequency oscillator for arc-establishment. The negative terminal of the power supply 21 is connected to the cathode 1 of the positive jet torch A via an electric switch 22 whereas the positive terminal is connected to the bushing 2 of the torch A.

Likewise, the negative terminal of the main power supply 23 containing a high-frequency oscillator for arc-establishment is connected to the cathode 9 of the negative plasma jet torch B, and the positive terminal of the main power supply is connected to the bushing 2 of the torch A. The positive terminals of the power supplies 21, 23 are connected to the bushing 11 via a switch 24. The P.J.G. thus connected to the associated circuit will be operated as follows:

1. Gas 7, 8 is supplied to the positive plasma jet torch A, and then the high-frequency oscillator of the auxiliary power supply 21 is put into operation by closing the switch 22. As a result an auxiliary arc 25 is established and finally a plasma jet flame is formed and extends from the arcthrottle aperture 4 into the guide attachment C.

2. Gas 13 is supplied, and then the high-frequency oscillator of the main power supply 23 is brought into operation by closing the switch 24. As a result an are 26 is established, and then a plasma jet flame is formed and extends from the arc-throttle aperture into the guide attachment C.

3. After the plasma jet flames of straight polarity are thus established and meets one another at the intersection 14, the switch 24 is opened. Then a hairpin shaped main arc is formed, and the plasma jet flame 28 extends from the outlet 17 of the guide attachment C to the exterior.

The supply of the gas stream 20 from the inlet 19 of the guide attachment C may be begun before or after operation 3 above. The hairpin-shaped arc happens to open wide, and as a result the curved leg of the arc approaches one side of the inlet of the attachment to excessively heat the wall of the inlet 15. Partly because of this and partly because of the injection of ions into the inlet wall it is most likely that a cathode spot is formed on the inlet wall. This is the cause for the formation of a double arc. The supply of the gas stream is useful to first, prevent the hairpin are from opening wide and second, prevent ions from invading the inlet wall, thus finally eliminating the possibility of establishing a double arc.

The high-voltage P.J.G. thus operated is capable of establishing a stable arc whose arc-voltage is at least two times as high as the arc-voltage of the conventional P..I.G. for given electric current and gas flow rate.

EXAMPLE l The particulars of the apparatus according to the embodiment shown in FIG. 1 are:

Diameter of the throttle aperture 4 of the bushing 3 Diameter of the inlet 15 of the guide attachment Diameter of the inlet 16 of the guide attachment Diameter of the passage 30 of the guide attachment Distance from the intersection 14 to the end of the bushing 2 18 mm Distance from the intersection 14 to the tip of the cathode 9 27 mm Flow rate of gas 7 (Argon) 0.2 l/rnin.

Flow rate of gas 8 (Argon) 0.4 l/min.

Flow rate of gas 13 (Argon) 3.0 l/min.

Flow rate of gas 20 (Argon) 0.2 l/min.

Arc current 20 A A possible longest plasma jet flame was formed and the arc voltage was as high as 76 volts. (The are voltage in the conventional plasma jet torch is 30 volts or less for the same current and flow rate.)

Referring to FIG. 2, there is shown a P.J.G. according to this invention which is capable of heating a concentrated percent or more) gas chemically active to the material of the electrode such as oxygen or air directly by means of an arc column.

In spite of ever increasing demand for this capability of direct heating an active gas in the fields of chemical reactions, coating, cutting and other appliances since the appearance of the P.J.G., it could not be attained before the completion of this invention.

In the apparatus of FIG. 2 the positive plasma jet torch A is similar to that of the apparatus of FIG. 1. The negative plasma jet torch B has an extra bushing 34 with a throttle aperture 34 and extra inlets 35, 36 for gas 37, 38, compared with the negative plasma jet torch B in FIG. 1. The guide attachment C is fixed to the bushing 34 via an electric insulator 18. Complying with this modification the positive terminal of the main power supply 23 is connected to the bushings 11 and 34 and the guide attachment C.

This apparatus can be operated as I. Argon is supplied in the form of gas stream 7, and then the switch 22 is closed to start the operation of the high-frequency oscillator of the auxiliary power supply 21 with a result of a establishing an auxiliary arc 25. Then, the plasma jet flame is ejected from the throttle aperture 4, and it extends into the main passage 30. Additionally, argon is supplied in the form of the gas streams 8 and 20.

2. Argon is supplied in the form of the gas streams 13, 37 and 38, and then the switches 24, 24' and 24" are closed for the main power supply 23 to apply a dc. voltage and a high-frequency voltage to the torch B and the guide attachment C with a result of establishing the first non-transferred are 26. Then, the switch 24 is opened, transforming the arc column into the second non-transferred are 26'. Next, the switch 24' is opened, thus again transforming the arc column into the third nontransferred are 26'. Then, the supply of gas 13 to the cathode is made to cease, and the switch 24" is opened with a result of establishing the main arc column 27.

3. The switch 22 is opened to extinguish the are 25,

and at the same time the supply of gas 7 to the cathode is made to cease. Finally, the gas streams 2th and 38 are switched from argon to air or oxygen. Thus, a highly concentrated active gas plasma jet can be obtained.

This operation can be reduced to a full automatic on-of operation by using a piping system which includes pre-adjusted needle valves and electromagnetic valves.

EXAMPLE 2 The particulars of the apparatus shown in FIG. 2 are: Diameter of the inlet 15 or 16 of the guide attachment C 3 mm Diameter of the gas channel of the guide attachment mm 1 Diameter of throttle aperture 34' of the bushing 34 2 mm Distance from the intersection M to the end surface of the bushing 2 18 mm Distance from the intersection M of the tip of the cathode 9 34 mm Flow rate of the gas stream 3 (Argon) 0.3 l/min. Flow rate of the gas stream 20 (Oxygen) 0.2 l/min. Flow rate of the gas stream 37 (Argon) 0.3 l/min.

Flow rate of the gas stream 3% (Oxygen) 5 Are current 20 A A plasma flame of 90 percent oxygen concentration was obtained, and the are voltage was as high as 115 volts. The substitution of air for oxygen caused the arc voltage to rise up to 135 volts.

A mixture of a higher active gas content can be used by enhancing the cooling capability to the bushings and by increasing the arc current.

With a view to improving the directional stability of the plasma jet flame and at the same time with a view to increasing the efficiency of heating gas the inventors carried out experiments on a variety of guide attachments as follows:

The guide attachment shown in FIG. 3 is the same as the corresponding part of the apparatus shown in FIG. 1 except for a notched portion a at the downstream side thus making the terminal end of the outlet 17 fairly close to the hairpin arc column. In this modification the plasma jet flame 2b deviated apart from the center axis 29 of the outlet I7, and the directionarity varied with the gas flow rate and the value of electric current.

FIG. 4 shows further modification of the guide attachment of FIG. 3 in that the gas channel is enlarged around the intersection M- at the upstream side while still maintaining the cross-section of the outlet equal to that of the outlet of the guide attachment shown in FIG. 11 or 3. In this case the plasma jet flame 23 was positioned on the center axis 29 of the outlet 17.

FIG. 5 shows a guide attachment shown in FIG. ll modified in the same manner as in FIG. 4i. In this modification, likewise, the plasma jet flame 28 was positioned on the center, axis 29 of the outlet I7, and what was better, the length of the white bright portion of the laminated flow of the plasma jet flame was increased approximately 50 percent. This indicates that the ejection of the plasma jet flame was remarkably enhanced. A similar result was obtained with regard to the guide attachment the gas channel of which was modified as indicated by broken line 3ll.

FIG. 6 shows further modification of the guide attachment of FIG. 5 in that the part b indicated by broken line was removed. In this case the laminar stream of the plasma jet flame 2% deviated with respect to the center axis 29 of the outlet 17.

The guide attachments shown in FIGS. 3, 4, 5 and 6 were tested for the same values of gas flow rate and electric current.

The results of these experiments indicate that:

l. The removal of the part a from the end of the attachment given in FIG. l is useful to direct the plasma jet flame along the center axis 29 of the guide channel.

2. The cross-sectional enlargement of the guide channel shown in FIG. d endows the guide attachment with the directionality of the plasma jet flame.

l/min.

3. The enlargement of the guide channel in the guide attachment free of the notched portion a as shown in FIG. 5 is useful to reduce the loss of the plasma jet flame which otherwise would be caused at the part corresponding to the notched portion a in FIG. 3.

4. If the cross-sectional enlargement extends far to the inlet of the guide attachment as shown in FIG. 6, the effect of directing the plasma jet flame on the center line will disappear. From the results of the experiments above mentioned, the inventors reached the conclusion as follows:

The structures of the guide attachments given in FIGS. 4 and 5 are useful to throttle the disturbing fluid flow which results from the two gas streams supplied from the two inlets of the guide attachment so as to allow the resultant flow to align in the center line of the guide attachment.

As seen from FIG. 6, the position of the outlet relative to the arc column is critical, and it is necessary to allow a part of the hairpin" are or at least the sharp bent portion of the hairpin to appear in the throttle aperture for the following reasons:

First, the entrance of a part of the are column into the throttle aperture will cause the rise of the temperature of the gas in the throttle aperture, and hence the increase of the cubic expansion of the gas, finally resulting in the increase of the flow resistance of the throttle, which is useful to improve the directing capability of the throttle. Second, the directing effect realized by the wall of the aperture at the sacrifice of the heat loss as is the case with the device in FIG. ll, can be reduced, and the ejection of the plasma jet flame will be improved because the hairpin" of the arc whose thermal energy is about half the total energy of the arc column, is aligned in the central axis of the throttle aperture for heating the gas.

FIGS. 7 and 3 show other modifications of the guide attachment. The guide attachment of FIG. '7 is specifically designed for the cutting operation. In this example the space 32 which the hairpin" enters is made larger than the outlet 117 of the guide attachment which is for instance as small as 1.0 mm diameter across, because otherwise the hairpin would not enter the throttle aperture.

FIG. b shows a modification of the guide attachment of FIG. d. In this modification a blind hole 33 is made on the wall of the guide channel opposite to the inlet 15 of the guide attachment. Thus, the directness of a laminar flow of plasma jet which is ejected from an aperture I7 of relatively small diameter was substantially improved.

As is apparent from the results of the experiments on the modifications given in FIGS. 3 6., the directness of a plasma jet flame can be improved, and at the same time the efficiency of heating gas can be raised by enlarging the cross-section of the guide channel over the length of the channel beyond the intersection of the two center axes of the positive and negative plasma jet torch towards the outlet.

FIG. 9 shows a P.J.G. which is equivalent to the embodiment of FIG. 2 modified by substituting the guide attachment of FIG. 4 or 5 for the corresponding member of the apparatus of FIG. 2. This modification was compared with the apparatus of FIG. 2. as follows:

EXAMPLE 3 Operating condition:

Gas stream 8 Argon 0.3 l/min.

Gas stream 37 Argon 0.3 l/min.

Gas stream 7 none Gas stream 13 none Gas stream 38 Oxygen 4 l/min.

Gas stream 20 Oxygen 1 l/min.

Arc voltage 95 V Arc current 50 A P.J.G. of FIG. 2

Diameters d d of the inlets 15, 16 d d 3.0 mm

Diameter d of the outlet 17 d 5.0 mm

Distance I from the intersection 14 to the outlet 17 -l 8.5 mm

The plasma jet flame extended 25 to 30 cm, and it deviated about 2 apart from the center axis 29.

P.J.G. of FIG. 9

Diameters (l 11 of the inlets I5, I6 d d =3.0 mm.

Diameter d, of the outlet d 5.0 mm

Diameter d of the guide channel d 7.0 mm

Distance 1 from the intersection 14 I4 to the outlet I7 1 4.5 mm, I 4.0 mm

The plasma jet flame extended 35 to 50 cm on the central axis 29.

The throttle part was modified into the two step form as shown in FIG. 7.

The following are voltages were realized for different diameters d and d of the inlet 16 and the outlet 17, and the ejection of the plasma jet flame suitable for the cutting operation was substantially improved.

Pressure in the Guide d, d, Are Voltage Attachment (Gauge din. dia. Pressure) 3.0 mm 3.0 mm 95 V 20mm 15 mm llOV 0.1 kg/em 2 mm l 0 mm I20 V 1.0 kg/cm EXAMPLE 4 Operating Condition Gas stream 38 Oxygen l2 l/min. Gas stream 20 Oxygen 3 l/min (The flow rates of the other gas streams were equal to those in Example 3.) Are voltage 130 V Arc current 50 A P.J.G. of FIG. 2

The dimensions of the apparatus were identical with those of Example 3. The incandescent part of the flame was composed of a disturbed flow about 2 cm. long, and the plasma jet flame deviated about 3 or more apart from the central axis. P.J.G. of FIG. 9

The particular dimensions of the apparatus were identical with those of Example 3. The incandescent part of the flame was composed of a disturbed stream about 3.5 cm long, and the plasma jet flame was directed straight.

The deviation and the length of the plasma jet flame is a direct measure for the efficiency of heating gas for a given condition. In view of this it is apparent that the effect of the special structure of the guide attachment given in FIG. 4 or is remarkable for improving the efficiency of heating gas. Additionally, the capability for varying the flow rate of the gas stream 20 over a wide range facilitates the operation of the apparatus.

As seen from the above, the P.J.G. according to this invention has a single throttle aperture and at least one anode electrode, essentially different from a conventional P.J.G. using the inside wall of the throttle aperture as the anode electrode.

The advantages attributable to the use of a plurality of positive plasma jet torches are:

First, as a matter of course, the anode input power can be equally divided into as many parts as the positive plasma jet torches, thus avoiding the damage of the throttle aperture due to the local concentration of heat as is the case with the conventional P.J.G. Second, the adverse effect by the gas injection from the inlet 15 on the main arc column can be substantially reduced.

FIG. 10 shows a P.J.G. having a negative plasma jet torch and two positive plasma jet torches positioned symmetrical to the negative torch. This apparatus is identical with the apparatus of FIG. 1 except for the guide attachment. A single switch 24 is provided for generating a plasma jet flame in each of the negative torches. Although two auxiliary power supplies 21 are shown in the drawing, a single power supply in place of these devices can be used by properly modifying the relevant electrical connection because the device is not used with regard to the positive plasma jet torches at the same time.

In operation, a main arc is established by the positive plasma jet torch to which the switch 24 is connected (right torch in the drawing), in the same manner as in the apparatus of FIG. 1. With the main are thus established, an auxiliary arc is established by the other positive plasma jet torch (left torch in the drawing), and then a main arc is established therein. After the establishment of the main are at the left side the switch 22 is opened, and then the supply of the gas stream 7 is made to cease. The flow rates of the gas 7 and 8, such as argon are set to a proper value, for instance 0.2 l/min. Thus, the main are 27 is finally established.

In a particular example of the apparatus the total electric current was 40 A and the are voltage was 73 V.

FIG. Ill shows the shapes of the cross-sections of the incandescent cores of different plasma jet flames which are ejected from the main channel 30 when the gas is supplied from either of the right and left positive plasma jet torches at an equal pressure balancing at the center of the main channel. In this drawing the outer circle 39 is the wall of the main channel of the guide attachment, and the direction of the gas supplied by the positive plasma jet torch is indicated by the arrow. The shaded part 40 is the cross-section of the incandescent part or core of the plasma jet flame in the outlet 17.

FIG. ll-I pertaining the use of a single positive plasma jet torch shows the off-center position of the incandescent core, the cross-section of which is of an ellipse. This phenomenon is observed in the plasma jet flame in a conventional torch.

FIG. Ill-II pertaining to the use of two positive plasma jet torches shows the on-center position of the incandescent core 40, the cross-section of which is of an ellipse.

FIG. lI-III pertaining to the angular arrangement of three positive plasma jet torches apart shows the on-center position of the incandescent core 40, the cross-section of which is almost circular.

F IG. ll-IV pertaining to the angular arrangement of four positive plasma jet torches 90 apart shows the on-center position of the incandescent core, the cross-section of which approaches a circle.

The positioning of the incandescent core on the exact center of the throttle aperture as shown in FIGS. 11-11, Ill and IV means the aligning of the plasma jet flame in the central axis of the main channel, thus decreasing the thermal loss which would be caused if the plasma jet flame approaches the channel wall apart from the center. The centering of the plasma jet flame by means of a plurality of positive plasma jet torches is useful to improve the efficiency of the apparatus.

For the sake of simplicity this invention has been heretoabove described with reference to the nontransferred type straight polarity P. l.G., but it should be noted that the reverse polarity P.J.G. according to this invention is equally useful. It is commonly admitted that the use of oxygen or air in the transferred type P..l.G. will increase the cutting speed for steel or alu minium sheets. However, in order to avoid the damage to the electrode of a conventional P.J.G. (more specifically in order to assure the life of the apparatus as long as the apparatus using argon), it is necessary to use an inactive gas in the mode of non-transferred operation and then introduce oxygen or air as a substitute for the inactive gas after the transition of the arc to the workpiece. This operation is too inconvenient, and it makes the apparatus actually useless. This defect is overcome by, according to this invention, generating first nontransferred plasma jet with the aid of an auxiliary power supply and second, a transferred plasma jet between the cathode rod and the workpiece with the aid of the main power supply.

This invention has been heretoabove described as using plasma jet of straight polarity, but it is apparent to the skilled in the art that a P.J.G. according to this invention can equally use plasma jet of reverse polarity. in other words, a P.J.G. according to this invention will not be deteriorated, which type of plasma jet may be used. The embodiments herein disclosed have the axis of the positive plasma jet torch and the axis of the negative plasma jet torch transverse therewith. However, in cutting a workpiece of a dielectric material, such as concrete in the mode of non-transferred operation or in cutting a workpiece of a conductive material, such as aluminium, iron and other metals in the mode of transferred operation, two plasma jet torches were angularly arranged thus first allowing the hairpin" arc to approach the outlet with a result of increasing the thermal energy to the workpiece and second, making the outlet accessible to the workpiece because the plasma jet units causes little or no hindrance against the workpiece. As a matter of course, the angle at which the two plasma jet units are arranged can be arbitrarily determined to meet the requirements.

The P..l.G. has been widely used in numerous industrial fields since it appeared in the world, and this invention enlarges'the domain of appliance to the possible extremity from the points of economical and technical views.

What is claimed is:

l. A plasma jet generator comprising a plurality of plasma jet torches, a hollow guide attached to said torches, said hollow guide having an outlet and a plurality of inlets, said inlets being disposed to receive and direct the gas streams from respective torches to intersect at a given location within the guide to form a combined plasma jet exiting the guide through said outlet, said inlets and outlets being the only openings in said hollow guide, one of said torches including a cathode rod and at least two bushings which define a gas flow space, and said hollow guide being electrically insulated from at least one of said torches by a body of dielectric material.

2. A plasma jet generator according to claim l including two plasma jet torches disposed to produce gas streams that are oriented generally perpendicular to each other.

3. A plasma jet generator according to claim l. including three plasma jet torches disposed to produce gas streams, two of which gas streams are oriented generally symmetrical with respect to the third gas stream. l: ll= 4F t =l=

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3373306 *Oct 27, 1964Mar 12, 1968Northern Natural Gas CoMethod and apparatus for the control of ionization in a distributed electrical discharge
US3403211 *Aug 15, 1966Sep 24, 1968Centre Nat Rech ScientMethods and devices for heating substances
US3476907 *Jan 3, 1967Nov 4, 1969Centre Nat Rech ScientProcess for obtaining a permanent flow of plasma
US3536885 *Oct 20, 1966Oct 27, 1970Ass Elect IndPlasma torch assemblies
US3541297 *Dec 31, 1968Nov 17, 1970Soudure Autogene ElectHeating a reactive fluid to high temperature
US3588594 *Jan 15, 1969Jun 28, 1971Hitachi LtdDevice for bending a plasma flame
US3601578 *Dec 23, 1969Aug 24, 1971Siemens AgHigh-pressure plasma burner
US3644782 *Jan 8, 1970Feb 22, 1972Sheet Korman Associates IncMethod of energy transfer utilizing a fluid convection cathode plasma jet
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3949188 *Jul 16, 1974Apr 6, 1976Rikagaku KenkyushoMethod and apparatus for operating an arc-transfer type torch
US4009413 *Feb 27, 1975Feb 22, 1977Spectrametrics, IncorporatedPlasma jet device and method of operating same
US4013867 *Aug 11, 1975Mar 22, 1977Westinghouse Electric CorporationPolyphase arc heater system
US4038512 *Aug 11, 1975Jul 26, 1977Westinghouse Electric CorporationSelf-stabilizing arc heater
US4220844 *Oct 25, 1977Sep 2, 1980U.S. Philips CorporationMethod of and device for plasma MIG welding
US4341941 *Feb 26, 1980Jul 27, 1982Rikagaku KenkyushoMethod of operating a plasma generating apparatus
US4390772 *Nov 24, 1980Jun 28, 1983Susumu HiratakePlasma torch and a method of producing a plasma
US4439662 *Sep 30, 1981Mar 27, 1984Rikagaku KenkyushoMethod of operating a plasma generating apparatus
US4540868 *Mar 3, 1983Sep 10, 1985Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V.Plasma gun that reduces cathode contamination
US4626648 *Jul 3, 1985Dec 2, 1986Browning James AHybrid non-transferred-arc plasma torch system and method of operating same
US4670290 *May 12, 1986Jun 2, 1987Rikagaku KenkyushoMultiple torch type plasma spray coating method and apparatus therefor
US4896017 *Nov 7, 1988Jan 23, 1990The Carborundum CompanyAnode for a plasma arc torch
US4982067 *Nov 4, 1988Jan 1, 1991Marantz Daniel RichardPlasma generating apparatus and method
US5008511 *Jun 26, 1990Apr 16, 1991The University Of British ColumbiaPlasma torch with axial reactant feed
US5017752 *Mar 2, 1990May 21, 1991Esab Welding Products, Inc.Plasma arc torch starting process having separated generated flows of non-oxidizing and oxidizing gas
US5144110 *May 11, 1990Sep 1, 1992Marantz Daniel RichardPlasma spray gun and method of use
US5166494 *Apr 12, 1991Nov 24, 1992Hypertherm, Inc.Process and apparatus for reducing electrode wear in a plasma arc torch
US5170033 *Apr 12, 1991Dec 8, 1992Hypertherm, Inc.Swirl ring and flow control process for a plasma arc torch
US5243169 *Nov 6, 1990Sep 7, 1993Onoda Cement Co., Ltd.Multiple torch type plasma generation device and method of generating plasma using the same
US5317126 *Jan 14, 1992May 31, 1994Hypertherm, Inc.Nozzle and method of operation for a plasma arc torch
US5396043 *Aug 30, 1991Mar 7, 1995Hypertherm, Inc.Plasma arc cutting process and apparatus using an oxygen-rich gas shield
US5514848 *Oct 14, 1994May 7, 1996The University Of British ColumbiaFor decreasing ampere to volts ratio of operating power for a plasma torch
US5591357 *Feb 27, 1995Jan 7, 1997Hypertherm, Inc.Plasma arc cutting process and apparatus using an oxygen-rich gas shield
US5620617 *Oct 30, 1995Apr 15, 1997Hypertherm, Inc.Circuitry and method for maintaining a plasma arc during operation of a plasma arc torch system
US5798493 *May 14, 1996Aug 25, 1998Heller, Sr.; Walter R.Fixed welding apparatus and method
US6114649 *Jul 13, 1999Sep 5, 2000Duran Technologies Inc.Anode electrode for plasmatron structure
US6163009 *Oct 23, 1998Dec 19, 2000Innerlogic, Inc.Process for operating a plasma arc torch
US6326583Mar 31, 2000Dec 4, 2001Innerlogic, Inc.Gas control system for a plasma arc torch
US6498317Apr 2, 2001Dec 24, 2002Innerlogic, Inc.Process for operating a plasma arc torch
US6677551Jul 23, 2002Jan 13, 2004Innerlogic, Inc.Process for operating a plasma arc torch
US8338740Sep 30, 2008Dec 25, 2012Hypertherm, Inc.Nozzle with exposed vent passage
EP0427194A2 *Nov 6, 1990May 15, 1991Chichibu Onoda Cement CorporationMultiple torch type plasma generation device and method of generating plasma using the same
EP0444344A2 *Aug 22, 1990Sep 4, 1991ESAB Welding Products, Inc.Plasma arc starting process
WO1990013392A1 *Aug 11, 1989Nov 15, 1990Tungsram ReszvenytarsasagApparatus for machining by the means of a plasma beam a workpiece made of a material of high softening or melting point, especially quartz, glass or a metal
Classifications
U.S. Classification219/121.47, 219/121.52, 219/75, 219/121.5, 219/121.51
International ClassificationH05H1/44, H05H1/26
Cooperative ClassificationH05H1/26, H05H1/44
European ClassificationH05H1/44, H05H1/26