Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3771155 A
Publication typeGrant
Publication dateNov 6, 1973
Filing dateSep 9, 1971
Priority dateSep 9, 1970
Also published asDE2144935A1, DE2144935B2, DE2144935C3
Publication numberUS 3771155 A, US 3771155A, US-A-3771155, US3771155 A, US3771155A
InventorsHamada N, Hayashi Y, Yasuda I
Original AssigneeHitachi Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Color display system
US 3771155 A
Abstract
An improved color display system in which the display screen of a cathode-ray tube is divided into an appropriate number of areas each for displaying a character, symbol or picture element in two or more colors, the whole screen of the cathode-ray tube expressing a definite piece of information.
Images(14)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Unite States Patent 1 [11] 3,771,155 Hayashi et a1. Nov. 6, 1973 1 COLOR DISPLAY SYSTEM [56] References Citedv [75] Inventors: Yukitakaflayashi; lsao Yasuda; UNITED STATES PATENTS Nagaharu Hamada, Hitachi, 3,668,686 6/1972 Strohmeyer 340/324 AD Japan 3,685,038 8/1972 Flanagan 340/324 AD 3,351,929 11/1967 Wagner 340/324 AD AsslgneeI Hitachi, chlyoda'ku, Tokyo, 3,396,377 8/1968 Strout, 340 324 AD Japan 3,516,122 6/1970 Owen 178/6.8 Filed: Sept. 1971 3,505,665 4/1970 Lasoff ct al 340/324 A [21] Appl. No.: 178,928 Primary Examiner-David L. Trafton Att0rneyCraig, Antonelli & Hill [30] Foreign Application Priority Data ABSTRACT Sept. 9, 1970 Japan 45/78408 An improved color display system in which the display screen of a cathode-ray tube is divided into an appropriate number of areas each for displaying a character, symbol or picture element in two or more colors, the whole screen of the cathode-ray tube expressing a definite piece of information.

12 Claims, 18 Drawing Figures I Feb 22, l97l Japan Feb. 26, l97l Japan 27\ DEFLEC77OV CUNTROL CKT T/M/NG CU/VT B/lV/JRY CKT COUNTER \2 EFF/$235 MEMORY a llllllllll HJ/TER REGISTER lllll PROCfiSW BUFFER REG/$752 I awn/mam? SYMBOL GEN Q lllll FL/P-FLOP 960L052 0005 255 T ENCODEI? 050005? FLP-f-ZOP PATENTEDNHY 6191s I 3.771.155

sum 01F 14 INVENTORS YUKITAKA HAYA5H| ISAO YA uDA,'

NA A ARU HAMA DA BY cm autcmfll 4? [+312 ATTORNEY PMFNTEU NOV 6 i975 SHEET 030F 14 YUKlTAK/A HAYAsl-u I sAo YAsu DA. .NAGAHARU HAMADA ATTORNEYS PATENTEDNUV 6191s 3771.155

sun-:1 05M 14 FIG. 5

D/A I 02-A 03-A INVENTORS YUKITA KA HAYASH I ISAO YASUDA NAGAHARU HAMADA BY WMT'ZGMQQLL 4, HLQQ ATTORNEYS PAIENTEUMJV 6191s 3771.155 SHEET UHF 14 INVENTORS YUKITAKA HAYAsH 5Ao YASUDA" NAGA HA RU HAMADA BY cfwu awtwiw J20 ATTORNEY S PAHNTEUHUV 6l975 3371.155 sum 0801 14 INVENTORS YUKITAKA AYAsm, iSAO YA5UDA NAGPAHARU HAMADA ATTORNEYS PATENTEUHHV ems 3771.155 sum mar 14 INVENTORS YUKITAKA HAYASHI, [5A0 YASU DA,

NAGA HARU HAMA DA BY 0mg cumm- 6 H-L ATTORNEY5 PAIENIEUunv 6 m5 SHEEY IBM 14 20 m mw F/G. /4a

CRSPOK c/PSRSHFT HST/0 CPS/ CPS/W CPS/P2 INVENTORS YUKITAKA HAYASHI IISAO YASU DA NAGAHARU HAMADA ATTORNEYS COLOR DISPLAY SYSTEM BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color display sys tem.

2. Description of the Prior Art In a conventional color display system where a unit cell of a memory has the close relationship with a unit display area on thescreen, a change in the color in the midst of consecutive characters, symbols or picture elements results in creation of a space as large as a unit display area at the point of such a change, even though the conventional display of a table is in no way adversely affected by the space. On the contrary, such a space as large as one character is even useful and often formed intentionally. In certain fields of applications, therefore, the conventional display unit serves the purpose quite well.

At a time when information which requires processing on a computer is both complicated and increasing in volume, it is necessary for a display unit to be equipped with functions to display colorful graphs in order to simplify and improve the efficiency of communication between operators and the machine. FIG. 1 shows part of a skeleton of a power substation, in which the three states of energization, cut-off and failure of a breaker, transformer, resistor, etc. are displayed in red, green and white respectively, while indicating the intermediate lines in yellow.

It is easy to understand that it is impossible to display this skeleton in a state of high density as shown in FIG. 1, in the conventional display unit which develops a one-character space, and in which the skeleton becomes very loose.

One method of overcoming this difficulty consists in storing color codes and character/symbol codes separately, which are displayed in a proper timing. This makes possible simultaneous indication of two or more characters, symbols or picture elements without any space in a unit area in a single color.

However, it is impossible, even by this method, to display two or more characters, symbols or-picture elements in two or more colors in a unit area.

SUMMARY'OF THE INVENTION An object of this invention is to overcome the problems encountered by the conventional display unit and provide a color-display unit which is capable of displayingtwo or more characters, symbols or picture elements in a unit area in two or more colors. More specifically, the device according to the invention is provided with two or more sets of refresh memories for storing character/symbol codes processed in a processor and color codes which determine display colors, and the color codes correspond to the character/- symbol codes stored in the refresh memories. Information stored in the refresh memories is read into a character/symbol generator, the character/symbol codes being converted into video signals, while applying the color codes to the, cathode-ray tube after being .decoded.

Another object of the invention is to provide acolor display device with a priority circuit for giving priority to one of two or more pieces of information in two or more colors which may be included in one display area, in order to prevent the colors from being mixed at the boundary, which often results in indication of information in a wrong color.

Still another object of the invention is to provide a color display unit having at least two sets of refresh memories comprising a color memory and a data memory for the purpose of displaying information in two or more colors in each unit display area on the display screen, in which a cursor or information to be displayed is controlled at a specific color thereby to change, eliminate or insert the information for selection of refresh memories. The cursor mentioned above means a bright line for designating a display position or display area on the display screen of, say, a cathode-ray tube.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a skeleton diagram displayed by the color display system according to the invention.

FIG. 2 is a diagram showing an embodiment of the invention.

FIG. 3 is a diagram showing an example of information stored in the refresh memory shown in FIG. 2.

FIG. 4 is a diagram showing another embodiment of the invention. I g I FIG. 5 is a diagram for explaining the embodiment shown in FIG. 4.

FIG. 6 is a diagram for explaining another embodiment of the invention.

FIG. 7 is a diagram showing a part of the circuit of FIG. 6 in detail.

FIG. 8 is a diagram illustrating the problems in color display.

FIG. 9 is a diagram showing an example how mixture of colors is prevented according to an embodiment of the invention.

FIG. 10 is a diagram showing another embodiment of the inVention for preventing the mixture of colors, in which is shown a modified circuit corresponding to the circuit shown in FIG. 7.

FIG. 11 is a diagram showing .still another embodiment of the invention for preventing mixture of colors.

FIG. 12 is a diagram showing the embodiment ,of FIG. 11 more in detail. a

FIG. 13 is a diagram showing an embodiment of the invention in connection with a cursor display.

FIGS. 14a and 14b are diagrams showing a part of the device of FIG. 13 in detail.

FIG. 15 is a diagram showing another embodiment of the invention in connection with cursor display.

FIGS. 16a and 16b are diagrams for explaining in detail a part of the device illustrated in FIG. 15.

DESCRIPTION OF THE PREFERRED EMBODIMENTS 'The invention will now be explained in detail with reference to the accompanying drawings. An embodiment of the invention is shown in FIG. 2, in which the reference numeral 1 shows a data processing system, numeral 2 a display control device, and numeral 3 a display unit such as a viewer.

The data processing system 1 produces an output in every 10 bits comprising 7 bits of character symbol (including picture elements constituting a picture) and 3 bits of color signal. The control device 2, on receipt of the output from the data processing system 1, decodes the data to display a data at a predetermined position on the display unit 3.

More in detail, numerals 20 and 20 of the control device 2 show buffer registers which adjust the timing of data transfer from the data processing system 1 to the refresh memories 21 and 21' in accordance with the conditions of the refresh memories 21 and 21.

The refresh memories 21 and 21' in this embodiment, which store character signals of 7 bits and color codes of 3 bits, have functions to refresh the data for display and comprise MOS dynamic shift registers. Numeral 22 shows a character/symbol generator which decodes only character and symbol codes selectively among the codes of, say, bits and converts them into video signals for scanning on the display unit 3. Numeral 23 shows a color-code decoder for identifying color codes which are divided into the three primary colors by means of the color encoder 24 which in turn produces signals of red (R), green (G) and blue (B). Numerals 25R, 25G and 253 show flip-flops of the D type for setting the color signals of red, green and blue respectively. Numerals 26R, 26G and 268 show AND circuits to which color signals and video signals corresponding to the respective colors are, applied. Numeral 27 shows a deflection control circuit for controlling the position of data display. 1

Numeral 28 shows a timing control circuit which adjusts the timing of data transfer from the refresh memories 21 and 21 or the processing system 1, the timing of generation of video signals from the character/symbol generator 22 and the timing of operation of the deflection control circuit 27 for indicating a desired data at a desired position. Numeral 28' shows a binary counter which reverses its operation at every field by means of the timing control circuit 28 to decide from which of the two sets of refresh memories information should be read out. Referring to the refresh memories 21 and 21', numeral 21a shows a memory for character/symbol codes of the refresh memory 21, numeral 21b a memory for color codes thereof, numeral 2la a memory for character/symbol codes of the other refresh memory 21', and numeral 2l'b a memory for color codes thereof. Numerals 29a, 29b, 29a and 29b show AND gates respectively for controlling the transfer of information stored in each memory by means of the binary counter 28'.

The operation of the device described above will be now explained. Data is processed in the processor 1. Characters, symbols and colors processed in. the processor 1 are encoded and applied, through the timing buffer'registers and 20', to the refresh memories 21 and 21' respectively so that they are stored in these memories in parallel witheach other. Among the encoded data, character and symbol codes are decoded by the character/symbol generator 22 for conversion into a series of video signals. On the other hand, color codes are read by the color code decoder 23. The color signals thus read are divided into the three primaries by the color code encoder 24 which produces output signals R, G and B corresponding to each color, thereby setting the flip-flops R, 25G and 25B of the D type. Output signals from these flip-flops, combined with the output signals from the character/symbol generator, are applied to the AND circuits 26R, 260 and 263 so that a video signal is displayed in a desired color on the display unit 3.

Now let us discuss the character/symbol code memories 21a and 21a of the refresh memories 21 and 21 respectively. Information stored in the memories 21a and 2l'a. is alternately read at every field. In other words, the timing control circuit 28 causes the binary counter 28' to reverse its operation at every other field, so that the AND gates 29a and 29b are opened for a certain period and the AND gates 29a and 29b are opened for the remaining period to read out the information stored in the refresh memories.

Now, assume that the output of the binary counter 28 is applied to the AND gates 29a and 29b. Character/symbol codes are read from the memory 21a in the refresh memory 21 and color codes from the memory 21b at predetermined intervals through the timing control device 28. The character/symbol codes, together with the output from the binary counter 28, are applied to the AND. gate 29a, the output of which is applied to the character/symbol generator 22. On the other hand, the color codes, together with the output from the binary counter 28, are applied to the AND gate 29b, the output of which is applied to the color code decoder 23. The character/symbol codes applied to the character/symbol generator 22 are converted into video signals. Out of the colorcodes applied to the color code decoder 23, one of a designated color is read and divided into the three primary colors by the color encoder, which are latched respectively to the flip-flops 25R, 25G and 253. The information stored in the flip-flops 25R, 25G and 25B are applied, together with the video signals from the character/symbol generator 22, to the AND gates 26R, 26G and 268, the outputs of which are applied to the display unit 3. lnforma tion is displayed in color at a predetermined position on the display unit 3 by means of the deflection control circuit 27 which is controlled by the timing control circuit 28. Information stored in the refresh memory 21' is read out for display in quite the same manner. Between the information signals in the memory 21a and the one in the memory 21 a, there is such a relationship that the former is displayed in the form of color signals stored in the memory 21b and the latter in the form of color signals stored in the memory 2l'b, transfer between which is effected every l/ 16 second. As a result, to the naked tye of a human being, information is displayed on the screen of the display unit 3 as if the information in the memory 21a and the one in the memory 21'a are displayed at the same time.

'To make it easier to understand the embodiments of the invention, an example of information stored in the refresh memories 21 andZl' of FIG. 2 is shown in FIG. 3. It will be seen from this drawing that the area (j, k) in FIG. 1 corresponds to the memory adress of block j and NO. k which is hereinafter referred to as (j, k) In a scanning of one field, (j, k) to (j, k+l2),, read from 21a are displayed at (j, k) to (j, k+12) respectively on the viewer 3 in the color (white, showing a failure, in this case) designated by 21b. In the scanning of the next field after j+l to j+m are displayed in sequence, (j, k),, to (j, k+l2)' read from 21'a are displayed respectively at (i, k) to (j, k+l2) on the viewer 3. The latter display is superposed on the preceding one, and its color is designated by 2l'b independently of 21b. For example, at (i, k+4) and (j, k+7) in FIG. 1, the white of the preceding field is displayed crossed with the red while, at (j, k+l l), the white is displayed superposed on the yellow character X. If the field scanning is repeated at every 1/60 second,

played at every l/30 second.

Besides the above-described method in which the character/symbol generator is used by chronologically dividing its operation for each field, it is obvious that the invention is effective with character/symbol generators as many as the refresh memories.

Further, there is another method of using the character/symbol generator by time division. An embodiment of this method will be explained in detail below with reference to FIGS. 4 and 5. Referring to FIG. 4, numerals 21 and 21 show refresh memories, numerals 22d and 220 latch registers for adjusting the variations in the output of 220 and 220', numeral 230 a switching gate for applying the character/symbol codes from the two refresh memories at an appropriate timing, numeral 233 a color switching gate for producingas an output the color codes from the two refresh memories at an appropriate timing,.numera1s 241 to 243 pattern latch registers which temporarily receive and hold for a certain period of time the dot patterns of the character/symbol codes read out, numerals 251 and 252 a multiplexer for converting the dot patterns read in parallel into series video signals, and numerals 261, 262 and 263 show OR circuits. The other parts with like numerals show like parts in FIG.'2.

The operations of this embodiment will be explained with reference to a time chart therefor shown in FIG. 5. Information processed in the data processing system 1 is stored, as in the embodiment of FIG. 2, inthe refresh memories 21 and 21 in such an orderly manner as shown by (a) and (b) of FIG. 5. Assuming that the character/symbol code (DI-A) of the refresh memory 21 and the data code (DI-B) are displayed superposed on each other in the same unit area of the cathode-ray tube, the character/symbol codes (Dl-A) and (DI-B), like (0) and (d) of FIG. 5, are read into the latch regis ters 220 and 220 simultaneously with color codes. Suppose it takes 500 ns to operate the character/symbol generator 22 and that it takes 1 us display given information in a unit area of the CRT screen. Also suppose it takes 500 us to transfer the switching gate 230. (The time required for operation of the switching gate 230 must not exceed 500 ns or the time required to operate the character/symbol generator.) The character/- symbol code (Dl-A) is read into the character/symbol generator 22 during the first 500 ns and the code (DI-B) during the second 500 ns, through the switching operations of the gate 230, as illustrated in (g) and (h) of FIG. 5. All the timings for these operations are provided by the timing control circuit 28. The signal (Dl-A) read into the character/symbol generator 22 during the first 500 us is converted into the video signal (Pl-A) and latched to the output latch register 241. During the next 500 ns, the signal (DI-B) is taken into the character/symbol generator 22 where it is converted into the video signal (Pl-B) and latched to the output latch register 243. At the same time, information stored in the output latch register 241 or the signal (Pl-A) is latched again to the output latch register 242. This is to temporarily maintain the signal (Pl-A) in the latch register 242 from the output latch register 241' as a result of the character/symbol code (D2-A) being taken into the character/symbol generator 22 for display in the next unit area of the refresh memory 21 whose display continues for 1 ps. In other words, the information stored in the output latch register is latched in the manner as shown by (i to (k) of FIG. 5. The video signals (Pl-A) and (Pl-B) latched to 242 and 243 are respectively converted into more serial signals by the multiplexers 251 and 252 and applied to the AND circuits 26R, 266 and 26B and 26R, 266 and 268. The output of these AND circuits is applied to the OR circuits 261, 262 and 263 for display on the cathode-ray tube. The control of color signals is effected in the same manner as described with reference to the embodiment of FIG. 2, the only difference being in that they are controlled taking the time relationship with the character/symbol code. In this embodiment, a color is identified by the color decoder 23 by means of the timing of switching the character/symbol code to be applied to the color encoder 24. It is possible, with this construction, to display information in a plurality of colors in a unit display area. This method also makes possible display with less flickers than the embodiment of FIG. 2.

Another emodiment of the invention will be now explained with reference to FIGS. 6 to 9. FIG. 6 shows a color display unit comprising 2 sets of refresh memories each capable of displaying information in two colors in its unit display area. Numeral 10 shows a color code control circuit for distinguishing between a color code and a data code. Numeral 200 shows a memory selector circuit for distributing color codes and data codes from the color code control circuit 10 between the memories. Numerals 21 and 21 show refresh memories, numerals 22 and 22' character/symbol generators, numerals and color flip-flops, numerals and color control gates, numeral 28 a timing control circuit, numeral 27 a deflection control circuit, numeral 13 a color driving circuit, and numeral 3 a color CRT.

The operations of this embodiment will be explained now with reference to FIG. 6. Information supplied by a computer or other external device enters the device of the invention in series of words (which usually comprises 8 bits). This information includes control data for designating a refresh memory for storage purposes, color codes-for designating a display color and data codes for specifying characters and symbols to be displayed. This composite information is applied to .the color code control circuit 10 wherefrom color codes and data codes are sent out separately. The output of the color code control circuit 10 is applied to the memory'selector circuit 200 for selection of a-refresh memory to store the signal involved. The output of the memory selector circuit 200 is applied to and stored in the refresh memories 21 and 21'. The color and data codes stored in the refresh memories are read out in synchronism with the motion of electron beams of the color CRT. The color codes, after being timed by the color flip flops 70 and 80 respectively, are applied to the color control gates 90 and 100 respectively. The data codes, by contrast, are applied to the character/symbol generators 22 and 22' and after being converted into character/symbol signals (video signals), are applied to the color control gates 90 and 100. The color control gate 90, which receives the outputs R1, G1 and B11 from the color flip-flop 70 and the character/symbol signal Vll, functions as an AND circuit, while the color control gate 100 receives the outputs R2, G2 and B2 of the color flip-flop 80 and the character/symbol signal V2 to function as an AND gate, producing outputs RlV, 01V, 81V, R2V, G2V and B2V to drive an electron gun. The outputs from the color control gates 90 and 100 are applied to the color driving circuit 13 which acts as an OR gate and applies its output to the color CRT 3, whereby an electron gun is driven by a deflection signal produced from the deflection control circuit 27 for display on the CRT screen. The color control gates 90 and 100 and the color driving circuit 13 of FIG. 6 are shown more in detail in FIG. 7. In FIG. 7, numerals 91 to 93 and 101 to 103 show AND gates, and numerals 131 to 133 OR gates. As already explained, the color codes R1, G1, B1, R2, G2 and B2 and character/symbol signals V1 and V2 are applied respectively to the AND gates 91 to 93 and 101 to 103,

and as a result the outputs are produced in the form of.

the signals R1V, GIV, BIV, R2V, 62V and 82V. These signals are applied to the OR circuits 131 to 133 of the color driving circuit 13 which produces an output to be applied to the color CRT 3.

In this embodiment mentioned with reference to FIGS. 6 and 7, there is a disadvantage as explained below. An example of information displayed on the color display unit of FIG. 6 is shown in FIG. 8. FIG. 8(a) shows an example of a power flow chart. Information displayed in the areas (K,j+l (K+1,j+) and (K-l-Z, j+5) are enlarged in FIGS. 8(a), 8(b) and 8(a). In the case of display of FIG. 8(b), the color of character H is mixed with the background color, while in the display of FIGS. 8(c) and 8(d), the difference in two colors causes them to be mixed with each other at their crossings.

Another embodiment of this invention will be explained with reference to FIG. 10 which is intended to provide a display without any color mixture as mentioned above. FIG. 10 shows a modified circuit corresponding to the circuit shown in FIG. 7. In FIG. 10, like parts are marked with like numerals as in FIGS. 6 and 7. Numeral shows a priority circuit, provision of which makes possible clear display of information in a plurality of colors (two in this embodiment) in a single unit area. The priority circuit of the embodiment comprises an inverter 150 and AND gates 151 to 153. As in FIG. 6, inforrnations stored in the refresh memories 21 and 21 are applied to the color flip-flops 70 and 80 and character/symbol generators 22 and 22' respec tively. The outputs R1, G1 and B1 of the color flip-flop 10 and the output V1 of the character/symbol generator 22 are respectively applied to the AND gates 91, 92 and 93 of the color control gate 90. The outputs R2, G2 and B2 of the color flip-flop 80 and the output V2 of the character/symbol generator 6 are applied to the AND gates 101, 102 and 103 of the color control gate 100. The output V1 of the character/symbol generator 22 is also applied to the priority circuit 15 for the purpose of giving priority to the color signals R1, G1 and B1 and character signal V1. The outputs of the AND gates 91, 92 and 93 of the color control gate 90 are applied to the OR gates 131, 132 and 133 of the color driving circuit 13 respectively. On the other hand, the outputs of the AND circuits 101, 1.02 and 103 of the color control gate 100 are applied to the AND gates 151, 152 and 153 of the priority circuit 15. The signal V1 is applied through the inverter 30 of the priority circuit 15 to the AND gates 151, 152 and 153. The outputs of the priority circuit 15 are expressed in the following logical equations:

(3) These outputs are applied to the OR gates 131, 132 and 133 of the color driving circuit 13 to which the output of the color control gate is also applied. The outputs from the OR circuit are applied in the form of color video signals RV, GV and BV to the color CRT 3 for display thereon. This embodiment is so constructed that the video (character/symbol) signal V1 of a memory to which priority is given is inverted by the inverter 150 to obtain a logical product from its combination with a color video signal of the other memory, making it possible to display information without any color mixtures in one unit display area. Thus, the infomation such as shown in FIGS. 8(b), 8(c) and 8(d), like the information of FIGS. 9(a), 9(b) and 9(0), is displayed independently.

In this embodiment, the priority circuit is inserted between the color control gate and the color driving circuit. However, the invention is not limited to such an arrangement, but may be applied to a construction in which the video signal V1 for deciding on the priority may be used to prohibit the application of the video sig nal V2 to the color control gate 100, or the signal VI may be applied as one of three inputs to the AND gate of the color control gate for prohibition of color mixture.

Another embodiment of the invention will be explained in connection with prevention of color mixture with reference to FIG. 11. This embodiment is such that color signals are given priority by types. In other words, priority is determined according to the color of information displayed. In the figure, like parts are marked with identical numerals with FIGS. 6, 7 and 10. Numeral 16 shows a decoder which, after converting into a single color the video signals RlV, GIV and BlV and the video signals R2V, G2V and 82V produced from the color control gates 90 and 100 respectively, acts as an OR gate and produces outputs in the form of color video signals RV, GV, BV, YV, MV, CV and WV shown by the following equations:

' The color signals R1, G1, Bl, R2, G2 and B2 and Numeral 17 shows a priority circuit which produces its outputs' in order of predetermined priority. If, for example, priority is given in order of R, M, Y, W, C, B and G, the logical equations according to which outputs are produced from the priority circuit 17 are as follows:

The priority circuit is shown more in detail in FIG. 12, from which it will be seen that the circuit comprises AND circuits.

Numeral 18 shows an encoder which combines into the three color video signals RV, GV and BV the seven video signals which were placed in order of priority, the signals RV, GV and BV driving the color CRT 3. This will be expressed in the following equations:

RV RV2 MV2 YV2 WV2 GV GV2 YV2 CV2 WV2.

BV BV2 MV2 CV2 WV2 the video signals V1 and V2 which are applied from the memories to the color control gates 90 and 100 functioning as AND gates. The outputs of the gates 90 and 100 in the form of color video signals RlV, 61V, 81V, R2V, 62V and 82V are applied to the decoder 16. These signals are converted into the seven color video signals RVl, GVl, BVl, YVl, MVl, CV1 and WVl by the decoder 16 to be applied to the priority circuit 17 which place the input signals in the predetermined order of priority. The seven color video signals which left the priority circuit 17 are converted again into RV, GV and RV by the encoder l8 and applied to the color CRT 3. In this way, the color CRT 3 displays information without any mixture of two colors in a unit display area.

Another embodiment of the invention in connection with cursor control will be now explained. In FIG. 13, the numeral 1000 shows an input/output control circuit for controlling information inputs from external devices (as computers) and outputs to external devices. Numeral 21 shows a first refresh memory consisting of a first data memory and a first color memory. Numeral memory 210 and produces video signals as an output.

Numeral 13 shows a color driving circuit which, on receipt of the output of the character/symbol generator 22 and the first color code, produces color video signals that establish a relationship between color codes and video signals. Numeral 22 shows a character/symbol generator which receives the second data code and produces character/symbol signals, and numeral 790 a color control circuit for producing color video signals on receipt of the output from the character/symbol generator 22' and the second color code. Numeral 28 shows a timing control circuit which sends a timing signal to each circuit. Numeral 27 shows a deflection control circuit, numeral 4 a cursor display control circuit, and numeral 13 a color driving circuit which receives output signals from the cursor control circuits 790 and 800 and the cursor display control circuit 4 and combines them into a color video signal for driving an electron gun. Numeral 3 shows a color CRT.

Actual interconnections of componentsof the cursor display control circuit 4 and those of the color driving circuit 13 are shown in FIGS. 14(a) and 14(b) respectively. The embodiment of FIG. 13 is intended to select an appropriate refresh memory in case of change, elimination or addition of information according to the cursor color. For example, assuming that information is displayed on the screen of the color CRT 3, the cursor is made green in color if that information is displayed through the data of the first refresh memory 21, while the cursor color is made blue if it is displayed through the data of the second refresh memory 21. When there is no data stored in the memories, the cursor color is made, say, red so as to indicate that it is possible to write in any of the refresh memories.

The operations of this embodiment will be now explained with reference to FIGS. 13 and 14. Information is distributed, for storage purposes, between the data memory and color memory of the refresh memories 21 and 2l-' and converted into the video signals by means of the character/symbol generators 22 and 22'. The information stored inthe color memory and the outputs of the character/symbol generators 22 and 22' are applied to the color control circuits 800 and 790 respectively, which in turn apply color video signals RVl, GVl, BVl, RV2, GV2 and BV2 to the color driving circuit 13.

The cursor display control circuit 4 also applies three types of signals to the color driving circuit 13. Explanation will be made in detial now of this cursor display control circuit with reference to FIG. 14a. Numerals 41 and 42 show flip-flops, and numerals 43 to 47 AND gates. To the AND gates 43 and 44 are applied the character agreement signal CRSROK from the timing control circuit 28 (shown in FIG. 13) and the outputs V1 and V2 from the character/ symbol generator 22 and 22'. The outputs from the AND circuits 43 and 44 are set in the flip-flops 41 and 42. In other words, ab-

- reset by the cursor transfer signal CRSRSHFT produced from the timing control circuit 28. The signal which is produced from the timing control circuit 28

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3351929 *May 26, 1964Nov 7, 1967Hazeltine Research IncData converter
US3396377 *Jun 29, 1964Aug 6, 1968Gen ElectricDisplay data processor
US3505665 *Jun 13, 1966Apr 7, 1970Burroughs CorpDisplay system
US3516122 *May 22, 1967Jun 23, 1970Shell Oil CoApparatus for making integral containers having parallel vertical walls
US3668686 *Jun 6, 1969Jun 6, 1972Honeywell IncControl apparatus
US3685038 *Mar 23, 1970Aug 15, 1972Viatron Computer Systems CorpVideo data color display system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3877009 *Mar 15, 1974Apr 8, 1975Nippon Electric CoColor character signal transmission system
US3939487 *Oct 5, 1973Feb 17, 1976William LeventerColor video signal generators
US3944999 *Nov 20, 1974Mar 16, 1976International Computers LimitedColour display apparatus
US3958225 *Jan 28, 1974May 18, 1976Teletype CorporationApparatus and method for controlling a communications terminal
US3996585 *Jan 22, 1976Dec 7, 1976International Business Machines CorporationVideo generator circuit for a dynamic digital television display
US4051520 *Aug 9, 1976Sep 27, 1977U.S. Philips CorporationColor television chroma keying signal generator
US4064561 *Nov 26, 1976Dec 20, 1977Pertec Computer CorporationCRT key station which is responsive to centralized control
US4139838 *Apr 6, 1977Feb 13, 1979Hitachi, Ltd.Color pattern and alphanumeric character generator for use with raster-scan display devices
US4149152 *Dec 27, 1977Apr 10, 1979Rca CorporationColor display having selectable off-on and background color control
US4155095 *Sep 16, 1976May 15, 1979Alpex Computer CorporationChroma control for television control apparatus
US4200867 *Apr 3, 1978Apr 29, 1980Hill Elmer DSystem and method for painting images by synthetic color signal generation and control
US4200869 *Feb 14, 1978Apr 29, 1980Hitachi, Ltd.Data display control system with plural refresh memories
US4206457 *Dec 27, 1977Jun 3, 1980Rca CorporationColor display using auxiliary memory for color information
US4213124 *Sep 14, 1977Jul 15, 1980Etablissement Public De Diffusion Dit "Telediffusion De France"System for digitally transmitting and displaying texts on television screen
US4217577 *Dec 11, 1978Aug 12, 1980International Business Machines CorporationCharacter graphics color display system
US4241415 *Feb 24, 1977Dec 23, 1980Canon Kabushiki KaishaMasking device for selectively preventing visualization of data from a data output system
US4262338 *May 19, 1978Apr 14, 1981Gaudio Jr John JDisplay system with two-level memory control for display units
US4278972 *Jan 8, 1980Jul 14, 1981Apple Computer, Inc.Digitally-controlled color signal generation means for use with display
US4309700 *May 22, 1980Jan 5, 1982Technology Marketing, Inc.Cathode ray tube controller
US4361848 *May 17, 1979Nov 30, 1982L'etat FrancaisSystem for digitally transmitting and displaying data on television receiver screen
US4379292 *Dec 4, 1980Apr 5, 1983Nissan Motor Company, LimitedMethod and system for displaying colors utilizing tristimulus values
US4388621 *Jun 10, 1980Jun 14, 1983Hitachi, Ltd.Drive circuit for character and graphic display device
US4447809 *Sep 2, 1982May 8, 1984Hitachi, Ltd.High resolution figure displaying device utilizing plural memories for storing edge data of even and odd horizontal scanning lines
US4498081 *Jul 25, 1980Feb 5, 1985Mitsubishi Denki Kabushiki KaishaDisplay device for displaying both video and graphic or character images
US4520358 *May 11, 1982May 28, 1985Mitsubishi Denki Kabushiki KaishaOptimized display device memory utilization
US4631531 *Aug 24, 1982Dec 23, 1986Sony CorporationSystem for text display with plural page memory and flag memory
US4642676 *Sep 10, 1984Feb 10, 1987Color Systems Technology, Inc.Priority masking techniques for video special effects
US4835526 *Jul 13, 1988May 30, 1989Ascii CorporationDisplay controller
US5912994 *Oct 27, 1995Jun 15, 1999Cerulean Colorization LlcMethods for defining mask of substantially color-homogeneous regions of digitized picture stock
US6049628 *Sep 8, 1995Apr 11, 2000Cerulean Colorization LlcPolygon reshaping in picture colorization
US6119073 *Jun 17, 1999Sep 12, 2000Texas Digital Systems, Inc.Variable color digital measuring instrument for sequentially exhibiting measured values
US6121944 *Jun 8, 1998Sep 19, 2000Texas Digital Systems, Inc.Method of indicating and evaluating measured value
US6147483 *Jun 18, 1999Nov 14, 2000Texas Digital Systems, Inc.Variable color digital voltmeter with analog comparator
US6166710 *Jun 18, 1999Dec 26, 2000Texas Digital Systems, Inc.Variable color display system for sequentially exhibiting digital values
US6208322Apr 23, 1998Mar 27, 2001Texas Digital Systems, Inc.Color control signal converter
US6219014Aug 18, 1998Apr 17, 2001Texas Digital Systems, Inc.Variable color display device having display area and background area
US6239776May 5, 1998May 29, 2001Texas Digital Systems, Inc.Multicolor multi-element display system
US6263101Oct 27, 1995Jul 17, 2001Cerulean Colorization LlcFiltering in picture colorization
US6281864Mar 15, 1999Aug 28, 2001Texas Digital Systems, Inc.Digital display system for variable color decimal point indication
US6300923Jul 6, 1998Oct 9, 2001Texas Digital Systems, Inc.Continuously variable color optical device
US6310590Aug 11, 1999Oct 30, 2001Texas Digital Systems, Inc.Method for continuously controlling color of display device
US6414662Oct 12, 1999Jul 2, 2002Texas Digital Systems, Inc.Variable color complementary display device using anti-parallel light emitting diodes
US6424327Aug 11, 1999Jul 23, 2002Texas Digital Systems, Inc.Multicolor display element with enable input
US6535186Mar 16, 1998Mar 18, 2003Texas Digital Systems, Inc.Multicolor display element
US6577287Feb 20, 2001Jun 10, 2003Texas Digital Systems, Inc.Dual variable color display device
US6690343Mar 20, 2001Feb 10, 2004Texas Digital Systems, Inc.Display device with variable color background for evaluating displayed value
US6734837Jun 16, 1999May 11, 2004Texas Digital Systems, Inc.Variable color display system for comparing exhibited value with limit
USRE32187 *Jun 3, 1981Jun 17, 1986Etablissement Public De Diffusion Dit "Telediffusion De France"System for digitally transmitting and displaying texts on television screen
EP0026269A1 *Jul 1, 1980Apr 8, 1981International Business Machines CorporationDigital colour data display system
Classifications
U.S. Classification345/22, 715/860, 345/549
International ClassificationG09G5/02
Cooperative ClassificationG09G5/026
European ClassificationG09G5/02C