Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3771568 A
Publication typeGrant
Publication dateNov 13, 1973
Filing dateDec 6, 1972
Priority dateDec 6, 1972
Also published asCA998422A1, DE2356434A1, DE2356434B2
Publication numberUS 3771568 A, US 3771568A, US-A-3771568, US3771568 A, US3771568A
InventorsBischoff V, Keur R
Original AssigneeDick Co Ab
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Ink analyzer and compensator
US 3771568 A
Abstract
In an ink drop writing system a vibrating nozzle forms drops, which are thereafter deflected electrostatically, whereby characters or waveforms are written on paper by the deflected drops. The fluid resonance of the ink must be considered in the design of the nozzle if good drop formation and printing is to be obtained. This invention maintains a desired fluid resonance by compensating for the effects of evaporation on fluid resonance.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 91 Bischoff et al. v

[ NOV. 13, 1973 INK ANALYZER AND COMPENSATOR Inventors: Vincent E. Bischoff, River Grove;

Robert I. Keur, Niles, both of I11.

Dec. 6, 1972 Assignee: A. B. Dick Company, Chicago, 111.

Filed:

Appl. No.: 312,667

US. Cl 137/805, 73/54, 137/827,

Int. Cl. .l F15c 1/04 Field of Search 73/54; 346/75, 140;

References Cited UNITED STATES PATENTS 6/1969 Roche 10/1969 Troland et a1.

1/1970 Lilly 2o CLOCK TRANSDUCER DRWER 3,529,615 9/1970 Kishel 137/829 X 3,538,931 11/1970 Blosser, Jr. et a1. 137/805 3,541,959 1l/1970 Taffel 137/805 X 3,590,843 7/1971 Meyer 137/804 3,498,307 3/1970 Adams..... 137/804 3,612,084 10/1971 Kassel 137/827 X 7 Primary Examiner-Samuel Scott Attorney-Samuel Lindenberg et a1.

[57 ABSTRACT In an ink drop writing system a vibrating nozzle forms drops, which are thereafter deflected electrostatically,

whereby characters or waveforms are written on paper by the deflected drops. The fluid resonance of the ink must be considered in the design of the nozzle if good drop formation and printing is to be obtained. This invention maintains a desired fluid resonance by compensating for the effects of evaporation on fluid reso- ONE BHOT D E LAY VALVE NSC a5 \NK NOZZLE.

Patented Nov. 13, 1973 3,771,568

2O CLOCK f 26 I f v 52 DRWER GNE 36 USO us I T ANSDUCER DRWER j \NK NOZZLE CLOCK A CLOCK L SEND l l PUL5E D 13 L2 L3 0 D D D EXAMPLES 5 5 5 RECBVED l l I C, PULSE i i I AND GATE L D '50 OUTPUT BACKGROUND OF THE INVENTION This invention relates to ink drop printing systems, and more particularly, to improvements therein,

In a U.S. Pat. No. 3,683,396, there is described a technique for designing a nozzle for ink drop writing apparatus in a manner to create fast satellite ink drops whereby better drop charging and thereby improved ink drop writing is made to occur, and also in a manner to improve the efficiency of operation of an ink drop writing system. As the ink stream emitted by a vibrating nozzle is broken up into drops, it is noted that each drop is accompanied by a small drop known as a satellite. Describing this separation in more detail, when a drop is formed there is a fine filament of the fluid that connects the drop to the stream just before separation. This filament forms a satellite. If the drop separates from the filament before the filament separates from the stream, the filament will form into a satellite whose speed will be less than that of the drop,which is known as a slow satellite condition. If the filament separates from the stream before it separates from the drop, the filament will form into a satellite whose speed is greater than that of the drop, resulting in a fast satellite condition. There is an intermediate satellite condition which occurs when the drop and filament separate simultaneously, resulting in the satellite speed being the same asthat of the drop. In the fast satellite condition, the charge applied to the drop also charges the satellite,

where as in the other satellite conditions, charge must be applied to both drop and satellite to insure that the satellite will not arrive at the paper at a location outside of the character or waveshape being formed,otherwise, the drop writing has a poor and sloppy appearance.

It should be appreciated that the synchronisrn of the drop charge inducing voltages is much less difficult with a fast satellite condition than with a slowsatellite condition because the charging voltage need only be synchronous with one separation per drop period, instead of two separations per drop period, which is resorted to, if the satellite is to receive a charge which will direct it to the proper location. Operation in a fast satellite condition is facilitated by designingthe nozzle for fluid resonance. In the design of the nozzle for fluid resonance, its internal length is determined by the formula F=N/4 V IL, is the internal length of the nozzle, and F is the desired frequency of resonance. The frequency of resonance is determined amongst other things, by the frequency in which the nozzle is vibrated.

From the foregoing formula, it is seen that once a nozzle is designed and built, the only variable which is left at a fixed F, is v for the speed of sound through the fluid in the nozzle. Normally, the ink which is to be used is contained in a reservoir out of which it is pumped to thereafter passthrough the vibrating nozzle. The ink contains a solvent. Evaporation of this solvent from the ink, alters the velocity of sound through the ink, thereby shifting the fluid'resonance of the nozzle and thereby changing the drive requirement.

OBJECTS AND SUMMARY OF THE INVENTION despite the presence of evaporation.

Another object of this invention is the-provision of a novel and useful ink parameter monitoring and maintenance system.

This invention measures the velocity of sound periodically through the ink and, if it departs from the predetermined value, this invention adds solvent tothe ink to compensate for the solvent which has been evaporated to restore the solution to a condition whereby the speed of sound again attains a desired value. Thie is accomplished by measuring the interval required for a sonic pulse to travel through the ink a predetermined distance. If the interval varies from a predetermined value, a value is operated to permit solvent from a source to flow into the ink reservoir.

BRIEF DESCRIPTION OF THE DRAWINGS 2 shown to assist in an understanding of the operation of the circuit arrangement, shown in FIG. 1.

DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a circuit diagram of an ink parameter monitoring arrangement for sensing the velocity of sound in the ink, together with a container l0for ink solvent, and a valve 12 which is operated when itis desired to permit ink solvent to be metered from the container 10 into an ink reservoir 14. Theink reservoir 14 is connected through a pipe 16, shown in fragmentary fashion to theink nozzle, (not shown).which comprises the ink jet writing system. Ink jet writing systems of the type with which this invention is concerned, are briefly shown and described in the aforementioned US Pat. No.3,683,396, and US. Pat. No. 3,512,172, amongst others.

In accordance with this invention, a clock pulse generator 20, which may bethe clock pulse generator for the ink jet writing system, applies a clock pulse to a transducer driver 22, and to an inverter amplifier 26. The transducer driver 22, applies a pulse to a sonic transmitting transducer 25, in response to the'clock pulse.

FIG. 2 is a waveform diagram shown to assist in an understanding of the invention. Waveform A represents the clock output of inverter amplifier 26. Waveform B is a sound pulse or acoustic pulse output from transducer driver 22 which is applied to the transducer 25, upon the occurrence of each leading edge of a clock pulse.

The sonic transducer 25, transmit a pulse through the ink to a second sonic receiving transducer 28. The received pulse, shownin FIG. 2 as waveform C, is supplied to the receive amplifier 38 and is a positive going pulse to AND gate 30. A second input to the AND gate 30 is an output of the inverter amplifier 26. Accordingly, if the pulse received by the receiving transducer 28, as represented by waveform C, is received before the negative going trailing edge of the clock pulse A, has occurred then, gate 30, under these circumstances is enabled, that is, with the input from the receive amplifier 38 being positive, before the clock pulse positive going trailing edge occurs, and the gate then applies an output to the one-shot circuit 32. One-shot circuit 32 applies a pulse of a predetermined duration, exemplified by microseconds, to a delay circuit 34. The

output of the delay circuit is applied through an amplifler driver 36 to the valve 12, and maintains it open for the interval determined by the interval of the one-shot. Thereby, a predetermined amount of solvent is added to the ink in the ink reservoir 14.

If the receive pulse coming from transducer 28 occurs simultaneously with or after the occurrence of the trailing edge of the clock pulse A, then AND gate 30 is not enabled, and the valve will not be opened. If the receive pulse coming from transducer 28 occurs before the trailing edge of the clock pulse A, the valve will be opened. Accordingly, when the time required for the sonic pulse to. travel between the two transducers through the ink is less than the interval of the clock pulse, it is known that enough solvent is evaporated so that the speed of sound through the ink is not proper for operation of the nozzle at the fluid resonance region desired. If the interval measured by the speed of the sonic pulse over the distance between the two transducers is greater than the interval of the clock pulse, then there is too much solvent in the ink and the system will not operate to add solvent until a sufficient amount is evaporated to bring the circuit that adds solvent into operation.

It should be appreciated from the foregoing that the width of the clock pulse or the interval over which it occurs is adjusted to be equal to the time required for sound to travel through the ink between transducers 25 and 28, when the ink has a consistency which provides a desired velocity of sound.

The reason for the use of the delay circuit 34 is to insure that the system does not operate to add solvent again, once solvent has been added until such time as the solvent which has just been added has had a chance to be mixed throughout the ink in the reservoir. A suitable delay interval is readily determined from this mixing interval."

There has accordingly been described and shown herein, a novel and useful arrangement for maintaining a predetermined substantially constant velocity of sound for the ink.

What is claimed is:

l. A system for maintaining the velocity of sound through an ink contained in a reservoir, which is used in an ink jet writing system, substantially constant, said system comprising:

means for generating a sonic pulse,

transmitting transducer means for applying said sonic pulse to said ink,

receiving transducer means positioned a predetermined distance away from said transmitting transducer means for producing an output pulse responsive to receiving the pulse applied to said ink, means for measuring the interval elapsed between the application of said sonic pulse by said transmitting transducer-to said ink, and the time said receiving transducer provides an output pulse, a source of solvent, and means responsive to said interval differing from a predetermined time interval for adding a predetermined amount of solvent from said source to said ink.

2. A system as recited in claim 1 wherein said means for generating a sonic pulse includes means for generating a clock pulse having a duration equal to said predetermined interval, and

said means for measuring the interval elapsed between the application of said sonic pulse by said transmitting transducer to said ink and the time said receiving transducer provides an output pulse comprises,

gate means to which said clock pulse and output pulse of said receiving transducer are applied for producing a gate output pulse when said output pulse of said receiving transducer occurs prior to the termination of said clock pulse, and

means for applying said gate output pulse to said means for adding a predetermined amount of solvent to enable it to add solvent from said source to said ink for a predetermined interval.

3. In an ink drop writing system wherein it is desired to maintain the speed of sound through the mixture of ink-solvent which is used, substantially constant, a system comprising:

a sonic transmitting transducer positioned within said ink-solvent mixture,

a sonic receiving transducer positioned a predetermined distance from said transmitting transducer within said ink solvent,

a source of solvent,

normally closed valve means for permitting, when opened, a predetermined amount of solvent from said source, to be added to said ink and solvent mixture,

means for applying a pulse signal to said transmitting transducer to be transmitted through said inksolvent mixture and received by said receiving transducer, which produces a transducer signal responsive thereto,

means for measuring the interval required for said pulse signal to travel between said transmitting transducer and said receiving transducer, and producing an output signal when said interval is less than a predetermined value, and

means responsive to said output signal for opening said valve means for a predetermined interval, whereby a predetermined amount of solvent is added to said ink and solvent mixture.

4. A system as recited in claim 3 wherein said means for measuring the interval required for said pulse to travel between said transmitting transducer and said receiving transducer comprises:

an AND gate comparator,

means to apply said pulse signal which drives said transmitting transducer also to said AND gate comparator, and

means for applying said transducer signal receiving transducer to said AND gate comparator whereby the output of the AND gate comparator is indicative that the interval required for said pulse signal to travel from said transmitting to said receiving transducer through said ink-solvent mixture is less than a predetermined interval.

5. Apparatus as recited in claim 3 wherein said means for opening said valve means over a predetermined interval when the interval for a pulse to travel between said transmitting and receiving transducer is less than a predetermined interval includes:

a two input AND gate,

means for applying a clock signal to one input of said AND gate simultaneously with the application of a pulse signal to said transmitting transducer, and

means to apply the transducer signal of said receiving transducer to the other input of said AND gate to enable said AND gate when it occurs in the presence of said clock signal,

a one-shot circuit providing an output for a predetermined interval in response to an input pulse,

means to apply the output of said AND gate to said one-shot circuit, and

means to apply the output of said one-shot circuit to said valve means.

6. Apparatus as recited in claim 5 wherein said means to apply the output of said one-shot circuit to said valve means includes:

a delay circuit, for delaying the application of the output of said one-shot circuit to said valve means for a predetermined interval.

7. In an ink drop writing system wherein it is desired to maintain the velocity of sound through an inksolvent mixture contained in a reservoir substantially constant, apparatus comprising:

a sonic transmitting transducer positioned within said ink-solvent mixture,

a sonic receiving transducer positioned within said ink-solvent mixture at a predetermined distance from said transmitting transducer,

normally closed valve means for enabling solvent to be added from said source to said ink solvent mixture when open,

a source of clock pulses having a predetermined width,

means responsive to the leading edge of a pulse from said source to apply a pulse to said transmitting transducer, whereby said receiving transducer-will provide a transducer pulse at an interval thereafter determined by the time required for the pulse from said transmitter transducer to travel through said ink-solvent mixture to said receiving transducer,

AND gate means,

means for applying a clock pulse from said source to said AND gate means,

means for applying said transducer pulse to said AND gate means whereby said AND gate means provides an output when said pulse from said receiving transducer for providing a transducer pulse occurs during the interval of saidclock pulse, and

means responsive to said AND gate means output for enabling said valve means to be opened for a predetermined interval.

8. Apparatus as recited in claim 7 wherein said means for applying said AND gate means output to said valve means includes:

a delay circuit for delaying application of subsequent pulses to said valve means until the solvent which has been added by the last operation of said valve means has been dispersed through said solvent ink mixture.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3451409 *Jun 3, 1966Jun 24, 1969Gen ElectricFluidic systems
US3473367 *May 4, 1965Oct 21, 1969Bird Machine CoViscosity sensing means and related systems
US3491784 *Aug 26, 1966Jan 27, 1970Harold Brown CoControl apparatus for use in distribution systems
US3498307 *Jun 28, 1967Mar 3, 1970Moore Products CoFlow control apparatus
US3529615 *Jun 12, 1968Sep 22, 1970Weston Instruments IncFluid apparatus for detecting acoustic signals
US3538931 *Oct 2, 1967Nov 10, 1970Sperry Rand CorpFluidic control systems
US3541959 *Oct 19, 1967Nov 24, 1970Miehle Goss Dexter IncFluid amplifier in ink control arrangement for printing presses
US3590843 *Oct 23, 1969Jul 6, 1971Gen ElectricMultiple-jet liquid level detector
US3612084 *Oct 31, 1969Oct 12, 1971Technicon CorpHigh reliability flow regulator
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4190846 *Dec 6, 1977Feb 26, 1980Sharp Kabushiki KaishaInk liquid concentration control in an ink liquid supply system for an ink jet system printer
US4555709 *Apr 12, 1984Nov 26, 1985The Mead CorporationInk reconstitution system and method for ink drop printer
US4580143 *Jun 25, 1984Apr 1, 1986Ricoh Systems, Inc.Viscosity control of ink-jet inks
US4772900 *Oct 17, 1986Sep 20, 1988Canon Kabushiki KaishaInk-jet recording apparatus
US5182580 *Feb 26, 1991Jan 26, 1993Canon Kabushiki KaishaInk jet recording apparatus with abnormal state detection
US5319389 *Oct 7, 1992Jun 7, 1994Canon Kabushiki KaishaMethod of abnormal state detection for ink jet recording apparatus
US7710124 *Feb 8, 2005May 4, 2010Nexense Ltd.Method and apparatus for detecting panel conditions
EP0229978A2 *Dec 10, 1986Jul 29, 1987Metromedia CompanyApparatus and method for dynamically varying the pressure of writing fluid supplied to an ink jet printer head
Classifications
U.S. Classification137/805, 347/7, 137/827
International ClassificationH04N1/23, B41J2/07, B41J2/12, G06K15/10, G06K15/02, B41J2/17, F15C1/04, B41J2/175, B41J2/195, F15C1/00
Cooperative ClassificationB41J2/195, F15C1/04
European ClassificationB41J2/195, F15C1/04
Legal Events
DateCodeEventDescription
Mar 25, 1985AS02Assignment of assignor's interest
Owner name: A. B. DICK COMPANY A CORP OF DE
Owner name: VIDEOJET SYSTEMS INTERNATIONAL, INC., 2200 ARTHUR
Effective date: 19850320
Mar 25, 1985ASAssignment
Owner name: VIDEOJET SYSTEMS INTERNATIONAL, INC., 2200 ARTHUR
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:A. B. DICK COMPANY A CORP OF DE;REEL/FRAME:004381/0140
Effective date: 19850320