Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3772137 A
Publication typeGrant
Publication dateNov 13, 1973
Filing dateJun 8, 1971
Priority dateSep 30, 1968
Publication numberUS 3772137 A, US 3772137A, US-A-3772137, US3772137 A, US3772137A
InventorsJ Tolliver
Original AssigneeDu Pont
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Polyester pillow batt
US 3772137 A
Abstract
A batt having high filling power and bulk under load comprising crimped hollow polyester filaments. Critical ranges for the percent void, denier, crimp frequency, and crimp index are defined for the fibers which interact to provide batts having higher bulk under load than would be expected by virtue of the voids alone when compared with the bulk of solid fibers. Also disclosed is a process for making the batts.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

I United States Patent 1191 1111 3,772,137

Tolliver 1 Nov. 13, 1973 POLYESTER PILLOW BATT 2,999,296 9/1961 Breen et al. 161/169 Inventor: J es w. ouive Kinston NC. 3,014,237 12/1961 Breen 18/8 [73] Assignee: E. l. du Pont de Nemours and Company, Wilmington, Del. Primary Examiner-Harold Ansher Assistant Examiner-M. E. McCamish [22] Flled' June 1971 Attorney-Norris E. Ruckman [21] Appl. N0.: 151,009

Related US. Application Data [63] Continuation-impart of Ser. No. 763,841, Sept. 30,

1968, abandoned. [57] ABSTRACT 52 us. 01 161/169, 5/337, 5/361, A ban having high filling power and bulk under load 18/8, 161/141, 161/173, 161/178 comprising crimped hollow polyester filaments. Criti- [51] Int. Cl. A47c 27/22 l r ng f r th p n void, denier, crimp r [58] Field of Search 161/169, 139, 140, q n y, n imp in r efin d for he fibers 161/141, 172, 177, 173, 178; 5/337, 361; which interact to provide batts having higher bulk 57/140; 18/8 under load than would be expected by virtue of the voids alone when compared with the bulk of solid 11- [56] References Cited bers. Also disclosed is a process for making the batts.

UNITED STATES PATENTS 3,630,823 12/1971 Bonner 161/169 2 Claims, 5 Drawing Figures Patented Nov .13, 1973 3,772,137

FIG-1 INVENTOR JAMES w. TOLLIVER MZMW ATTORNEY POLYESTER PILLOW BATT REFERENCE TO RELATED APPLICATION This is a continuation-in-part of my copending application Ser. No. 763,841, filed Sept. 30, 1968, and now abandoned.

BACKGROUND OF THE INVENTION 1. Field of the Invention:

This invention relates to filling structures and more particularly to novel filling structures containing hollow fibers.

2. Description of the Prior Art:

Synthetic hollow fibers are known to the art and the advantage of using such fibers as a filling material, i.e., essentially the same volume of fibers of the same diameter at substantially less weight, also is known. In U.S. Pat. No. 2,171,805, fibers containing bubbles are suggested for use in filling materials. U.S. Pat. No. 2,399,259 teaches that crimped hollow fibers may be converted to staple and used to prepare carded mats for filling cushions. The teachings of U.S. Pat. No. 2,999,296 include the preparation of hollow fibers that can be modified and used as a substitute for kapok fiber. The hollow-fiber filling structures of the prior art are, however, unsuitable for the production of desired, high-bulk filling structures.

In the manufacture of pillows, cushions, comforters, insulated underwear, sleeping bags and the like, a lowdensity, high bulk filling material is required. Further, it is desirable that the high bulk of the filling material possess, to the greatest extent possible, certain special characteristics. That is, the bulk of the material should be both an effective bulk and a resistive bulk. Effective bulk of a filling material is the property that permits the material to fully and effectively fill the space in which it is placed. Materials having a high level of effective bulk are said to have good filling power because of their ability to provide a high crown or plump appearance to the filled article. It is also desirable that the filling materials should resist deformation under an applied stress with the resistance increasing with increasing stress. Structures such as these will not have a padlike feeling under load and will provide some measure of resilience support even under high stresses. Materials with resistive bulk show a high bulk level under load and thus provide filled articles having good support bulk or high insulative protection.

The low-density filling structures of the prior art prepared from hollow fibers are not suitable for providing the desired properties in filled articles.

In accordance with the present invention there is provided novel filling structures of hollow fibers that are eminently suited for providing filled articles having a high level of initial height while providing good support bulk under load. In addition, these novel filling structures show good bulk durability and do not readily mat m use.

SUMMARY OF THE INVENTION tral continuous longitudinal void throughout the length which comprises 13 to 25 per cent of the volume of the filament and is free from collapse at crimp points.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a three-slot spinneret orifice as viewed from either top or bottom which is suitable for producing a round filament having a triangular void as shown in FIG. 2.

FIG. 3 shows a four-slot spinneret orifice as viewed from either top or bottom which is suitable for producing a round filament with a square void as shown in FIG. 4.

FIG. 5 shows a preferred form of four-slot spinneret orifice.

DESCRIPTION OF PREFERRED EMBODIMENTS The hollow filaments used in the practice of the present invention are characterized as having a round cross-section with a hole centrally located in the filament and forming a hollow core extending throughout the length of the filament. A hollow core having a nonround cross section which approximates the shape of a triangle or square is illustrated as making possible the best filling power and support bulk values, but the present invention also provides unusually high values when the hollow cores are approximately circular in cross section. The percent void content of the hollow fiIa ment is the percent of the filament cross section that is hollow or, alternatively, it is times the ratio of the cross-sectional area of the hollow core to the crosssectional area of the entire filament. The fibers of this invention have a void content of about 13 percent to about 25 percent.

In order to provide suitable filling structures, the hollow fibers of this invention must be crimped. The hollow fibers can be crimped using gear crimping means or a stuffer-box crimper so as to provide fibers having at least five crimps per inch (two crimps per centimeter), e.g., from about seven to about 12 crimps per inch (2.8 to about 4.8 crimps per centimeter) and preferably from about six to about nine crimps per inch (2.4 to about 3.6 crimps per centimeter). By crimps per inch is meant the number of crimps imparted to each inch of uncrimped filament wherein a crimp is one cycle of deformation of the fiber, similar to the cycle of a sine wave, and will usually have peaks in a sawtoothed type of configuration. In determining crimps per inch, the total number of crimps in a staple fiber is found and the fiber length measured when the fiber is extended to just straighten out the crimps. The crimps per inch of extended fiber is then calculated. Filling structures prepared from hollow filaments having less than five crimps per inch (two crimps per centimeter) are deficient in support bulk.

The crimp index of the hollow fibers used in the practice of this invention markedly affects the bulk properties of the filling structures. Crimp index relates the length of the crimped fiber to the length of the extended fiber and thus it is influenced by crimp amplitude, crimp frequency, and the ability of the crimps to resist deformation. Crimp index is calculated from the formula wherein 1.. represents the extended length (fibers having under an added load. of 0.13 :02 gpd. for a period of 30 seconds) and represents the crimped length (length of the same fibers hanging under no added weight after relaxing for 60 seconds from the first extension). Fibers suitable for this invention have a crimp index of at least about 23 and preferably from about 25 to about 35. When the crimp index of the fibers is low. both the effective bulk and the support bulk of the filling material drop to undesirable levels.

In addition to the crimp characteristics of the hollow fibers. the denier of the fibers also is important. Fibers having a denier per filament greater than have much less filling power than do fibers having values in the range of 4 to 6 denier.

While the applicant does not wish to be held thereto, it is believed that the improved results provided by the hollow fibers of this invention are associated with the stiffness properties of crimped hollow fibers. It is postulated that at relatively low void content hollow fibers and solid round fibers of the same diameter have essentially the same properties, but that as the void content increases and the fibers become more tube-like, the fibers tend to collapse at the crimp points. Such a weak ened fiber would then be less capable of resisting deformation under stress. Also, as the void content increases much beyond 30 percent, it becomes increasingly difficult to produce high-quality fibers. Conceivably, variations in the fiber, such as in the shape of the hollow core, could also give rise to crimped fibers having a reduced tendency to resist an applied stress.

A preferred method for melt spinning the hollow filaments utilizes spinneret orifices of the type illustrated in FIGS. 1, 3 and 5. The molten filament segments exhibit bulging as they leave the face of the spinneret and coalesce to form the desired hollow filament. Air which enters the filament around the filament segments prior to coalescing prevents the filament from collapsing and thus maintains a hollow core. In practicing the invention, care should be taken to provide appropriate spinnerets since their dimensions are critical. Changes in the void content can be made by changing dimensions of the spinning orifice. Changes in void content can also be made by changing other process variables, e.g., void content increases with increased quenching and increased relative viscosity and decreases with increasing spinning temperature.

In crimping the hollow fibers, it is desirable to use an elevated temperature since the temperature of the yarn in the crimper influences the crimp index. The yarn temperature should be about 35-l00 C. and, if desired, this temperature may be obtained by running the crimper with hot (e.g., 90 C.) finish or steam. When the crimped filaments are dried, and relaxed, relaxation at 130200 C. yields a crimp index within the range needed for the product of this invention.

The filling material of the present invention may be formed in ways known to the art for producing lowdensity structures. Preferably the low-density structure will be a batt produced by forming a web, e.g., as by garnetting, and cross-lapping the web onto a moving apron to form the batt. The batt may, for example, then be cut into sections of such a length that it will provide a sufficient mass for filling a pillow ticking in the desired manner. When such a batt section is rolled and inserted in a ticking, a pillow of outstanding aesthetics is obtained. The ticking may be of the down-proof type and can be treated with a fire retardant.

For some purposes, a more desirable pillow will be obtained if the rolled batt is first encased in a net-type ticking before the batt is inserted in the regular ticking. The net-type ticking may be of a woven, knit, or nonwoven fabric. Preferably the net-type ticking will be of a marquisette fabric.

Ordinarily, an oriented web is produced continuously on a garnetting machine and is folded or cross-lapped on an apron moving across the direction of web delivery, to build up a layered batt containing usually from about two to sixteen layers. Because of the relative motions of web and apron, the successive layers of web cross each other at angles. In general practice, the size of the angle depends somewhat on the width of the batt to be made and the number of web layers desired. The angle formed will generally be in the range of from about 30 to 50", the angle being measured with reference to a line perpendicular to the side (edge) of the apron.

If desired, the layers may be of different widths so as to provide a greater quantity of fiber at the center scc tion than at the edge. Such batts will, of course, result in pillows having tapered ends and are a preferred structure. Such tapered batts can be formed by any conventional means. For example, in the cross-lapping, constant long strokes and constant short strokes in a periodic sequence can be utilized. Alternatively, the means used can be to progressively reduce the size of the strokes in a repeat fashion.

The batts for pillows will normally be prepared in a width of about 2 feet so as to correspond to the length of a standard-size pillow ticking of 20 X 26 inches. Since machine settings of the garnett have a pronounced effect on the thickness of the web and relatively little effect on the amount of web, batting weights are commonly expressed on a weight per unit of area basis rather than density. For example, a batt weighing 0.8 ounces per square foot (0.024 grams per square centimeter) may be about 1.5 to 3.0 inches (3.8 to 7.6 centimeters) in thickness. Suitable batts for pillows have a weight of about 0.3 to 1.5 ounces per square foot (0.0092 to 0046 grams per square centimeter) and a density of about 3.2 to 6.4 ounces per cubic foot (3.2 to 6.4 kilograms per cubic meter). Preferably, the batt will have a weight of about 0.4 ounces per square foot (0.012 grams per square centimeter) and will be about 0.9 to about 1.1 inches (2.29 to about 2.79 centimeters) in thickness.

In some instances, it may be desirable to augment the favorable properties of batts of this invention, for instance as by spraying or otherwise treating them, so as to provide the batts with a small quantity of a flexible, non-tacky resinous substance. For example, it may be desirable to spray the batt with an emulsion of an acrylic resin, such as those formed by the addition poly merization of acrylic esters, to minimize fiber movc ment and thus reduce the migration of fibers from the batt through the ticking. If desired, the acrylic resin binder may be used in conjunction with a lubricant such as a polysiloxane, for example, a dimethyl polysiloxane, a rnethylhydrogen polysiloxane and/or a polysiloxane/polyoxyethylene copolymer.

in the examples that follow, pillows are prepared from low density filling structures and subjected to tests for determination of their bulk properties. The pillows are prepared by producing a batt of a cross-lapped web. The batt is cut to suitable lengths for providing the desired weight and rolled and inserted into a cotton ticktioning cycle under a load of 2 pounds) for heights at loads of 0.01 (H,) and 0.2 (H,,) pounds per square inch (0.0007 and 0.014 kilograms per square centimeter) gage. H, is the initial height and is a measure of filling grams). The stack height is recorded (after one condiing measuring 20 x 26 inches (50,8 x 66,0 5 power and H is the height under load and is a measure centimeters) when flat. The values for measurements of pp r bulkon the filling structures reported in the examples are n h EXamplC the p r ent void is measured by an averaged values. apparent density method in carbon tetrachloride-N- Pillows fabricated from filling material having the heptane 5011150113- most effective bulk or filling power will have the great- EXAMPLE I est center height. The center height of the pillow under no load, H0, is determined by mashing in the Opposite This example illustrates how a filling structure of this corners of the pillow several times and placing the pilinvention may be used to P e Piiiews with low on the load-sensitive table of an lnstron tester and Proved bulk Properties at iess Weight f greaiiy measuring its height at zero load. The lnstron tester is proved bulk Properties at equiveieht Weight as equipped with a metal-disc presser foot that is 4 inches pared to a fining Structure of soild fibers' (10.2 centimeters) in diameter. The presser foot is then Hollow round filaments of polyethylene terephthai' caused to apply a load of 10 pounds (4.54 kilograms) ate i have a Percent vciid F h are Spun from to the center section of the pillow and the height of the f Splnneret cntammg 199 W i orifices of the type pillow at this point is recorded as the load height, H illustrated m which filmensions B c Before the actual H and H measurements, the pillow are 0025 "W (0'064 centimeters)j 0019 inches is subjected to one cycle of 20 pounds (9.08 kilograms) f centimeter) and 0003 inches (0076 compression and load release for conditioning. A load cenglmehers) respecmfeiy The filaments are Spun at of 10 pounds (4.5 kilograms) is used for the HL f i g' g ygg g g l rg i ggz igtg measurement because it approximates the load applied minute) P filamzms s a relative viscosit ofpzs to a pillow under conditions of actual use. lillows havand con'tain O 3% z a delustram) The zelativa mg i highest vahies are the most reslsnve to defer viscosity refers to the ratio of the viscosity of a solution manon and i i Provlde h greatest PP of 2.15 grams of the polyester polymer in question dis- Bulk durability is determined by submitting the filling 3O structure to repeated cycles of compression and load solved m 20 Ofa mixture of 10 parts of phenol and seven parts of 2,4,6-trichlorophenol to the viscosity of release' repeated l or p of the pm the phenol trichlorophenol mixture per se, measured in lows are carried out by placing the pillow on a turntable the Same units at C The hollow Spun filaments are assofiiated with. two pairs of 4 X 12 inch (102, X hot-wet drawn 3.7 times undrawn length at 95 C., mecentlmeter) powered feet which are chanically crimped in a stuffer box crimper in the presmounted above the turntable in such a fashion that durence of Steam relaxed at C. and cut to 20 inch ing one revolution essentially the entire contents are (51 centimetrs) Stap1e subjected to compression and release. Compression is Corresponding Solid round filaments are spun in a accomplished by powering the Worker feet with 80 conventional manner and processed to 2.0 inch (5.1 pounds per square nch (5.62 kilograms per squar 40 centimeter) staple under conditions similar to that decenilmeter) gauge pressure such that they exeljt a scribed above for the hollow filaments. The solid fibers Static iead of appreiiimaieiy 125 Pounds (56-6 kilo are prepared at a slightly higher denier per filament so grams) when in contact with the turntable. The turntathat the two kinds of fibers have approximatdy the ble rotates at a speed of l revolution per 110 seconds Same diameter some typical tow properties for these and each of the worker feet compresses and releases two fibers are shown in Table L the filling material 17 times per minute. After being re- These fibers are the used to prepare bans for pip P y Compressed for Specified Period of time, the lows. Four similar kinds of pillows are prepared and Piiiew is refiuffed y mashing in the pp comers tested as described hereinabove. One kind of pillow Severai times As before, the pillow is Subjected to 3 contains 17.8 ounces (504 grams) of the hollow fibers, conditioning eyeie and the o and L yaiiies deter one kind contains l7.8 ounces (504 grams) ofthe solid mined. fibers, one kind contains 19.8 ounces (56l grams) of The buik Properties of baits of this invention are the solid fibers, and the remaining kind contains 19.8 iem'iihed y compressing the fiiiihg Structure on an ounces (561 grams) of the hollow fibers. Properties stron tester and determining the height under load. The d results b i are Show in Table 1 TABLE i Tenacity, Elonga Boil-oil Percent Denier/ grams/ Lion, shrinkage, Crimp Crlmp/ Fiber void filament denier percent percent index inch (cm) Solid round 0 4.85 4.0 37 0.0 25 8 (a. 2) Hollow round 15 4. 27 3.3 41 0.7 27 8 (3. 2)

test hereinafter referred to as the total b ulk range mea- TABLE 1A surement (TBRM) test, is carried out by cutting 6-inch Pillow proinirtius (15.25-centimeters) squares from a carded web andmuwmm' fl adding tham to a Stack i a l d manner il Fiber ounces (grams) inches ((Im inulns (Cm their total wei ht is 20 grams. The entire area is then 17.8 (50 7.7 (nits 2.8 7.1 compressed ur ider a load of 50 pounds (22.7 kiloh g3 $58 258: 10.8 (561) 8.3 1 1) 1.3 (10.9

From the above it can be seen that filling structures of this invention have bulk properties superior to filling structures of round fibers at percent less weight and highly superior bulk properties at equivalent weight.

The 17.8-ounce (504-gram) pillows are then subjected to the bulk durability test previously described for 1 hour and again the H and H, values are deter mined. The l! values are 7.0 inches (17.8 centimeters) and 7.1 inches (18.0 centimeters) and the H values are 2.1 inches (5.3 centimeters) and 2.7 inches (6.9 centimeters) for the solid and the hollow fibers, respectively. It is thus seen that the filling structures of this invention have good bulk durability.

EXAMPLE 11 This example illustrates the improved bulk properties that the fibers of this invention yield when in the form of carded batts.

The fibers are used to prepare webs that are crosslapped to produce batts. Pillows are prepared from each batt and tested as described above. Results ob tained are shown in Table 3.

As can be seen from reference to Table 3, bulk properties increase with increasing void content at about the same batt weight. It also can be seen that the support bulk begins to deteriorate as the void content approaches percent.

EXAMPLE 1V This example illustrates the bulk properties of batts of this invention and also provides a comparison with batts having unsatisfactory bulk properties.

In eight separate runs, hollow round fibers are prepared as in Example 111, using spinneret orifices of the type illustrated in FlG. 3. The conditions are altered somewhat in each run so as to provide fibers having TABLE 2 various levels of void content, crimps per inch and Filament Description TBRM heights (inches) at load of crimp index.

Pg-52 U04 0 2 (H 30 The above-produced fibers are then used to prepare Solid 6 carded webs which are used for providing 6-inch (15.3 Hollow centimeters) squares for testing as described above. Calculated Increase in v Suppl," Bulk liarncnt properties and the results obtained are given Actual Increase 0.52 0 31 in T ztble 4.

TABLE 4 T8 RM livights at load 0l ltrcr-nt Crimp/inch Crimp Denier 0.01 p.s.i. (lli), 0.2 p.s.i. (11), ltun void (cuntimvivrl index filament in. (our) in. (cm) 1 0 r. s 11 4.31; 3.40 04.153) 0.77 1.00 1 1:1 s.1 :1 1.60 3.13 s70) 0.s0 03) :5 17 0s "1 32 1.73 4.02 (10.02) (is: 2.0s 20 7. 1 I 27 .1.s.-t 1.30 (10.00) use 2.11) 5 :0 11. 1 .01 '17 t. 011 3.25 251 1. 011 2. 54) 0 10 7.7 0.01 12 4. 0 2. -14 0.20 0. (1.40) 7 20 .5) 211 4.111 3.40 3.03 0.50 1.42

- u i 15 a1 (3.2) as 12.1 2.50 (0.35) 0.110 (2. 2s)

EXAMPLE lll This example illustrates the effect of filament void content on pillow bulk properties.

In four separate runs, hollow round fibers are prepared using procedures similar to those described in Example I, but using spinneret orifices of the type illustrated in HS. 3 to give void contents of 9 percent, 13 percent, 23 percent and 27 percent. In all other significant aspects, the fiber characteristics are essentially equivalent.

The height at 0.01 p.s.i. is a measure of the initial bulk, while the height at 0.2 is a measure of support bulk.

As can be seen from comparing Runs 1-5 with Runs 68, high denier fibers, and fibers with low crimp index and crimps per inch values produce a loss in one or more of the measured bulk properties. More specifically, comparing Runs 2 and 6 shows that a low crimp index l2 in Run 6 vs. 23 in Run 2) gives low initial and support bulk. Applicants desired range of crimp index is from about 25 to 35. Likewise, comparing Runs 7 and 4 shows that whenever the crimp frequency is below applicants range of 5-12 crimps per inch, the bulk properties drop. A comparison of Runs 8 and 1 shows the undesirable effect of high denier per filament on initial bulk properties.

EXAMPLE V This example illustrates the desirable bulk properties of fibers of this invention spun from spinneret orifices of the type illustrated in FIG. 5.

Hollow round filaments of polyethylene terephthalate are spun from a spinneret containing 450 spinning orifices of the type illustrated in FIG. in which dimensions A, B, C, D and R are 0.003 (0.0076 centimeter), 0.0067 (0.017 centimeter), 0.033 (0.084 centimeter), 0.004 (0.0102 centimeter) and 0.008 (0.020 centimeter) inches, respectively. The filaments are spun at 275 C. into quench air at room temperature and are wound up at 930 yards (850 meters) per minute. The relative viscosity of the filaments is about 27. The hollow, spun filaments are hot, wet drawn 3.67X at 95 C., mechanically crimped in a stuffer box crimper in the presence of steam, relaxed at 180 C. and cut to 2.0-inch (5.1- centimeter) staple. Samples of the fibers so produced are characterized and found to have a denier per filament of about 4.8 and a void content of 131 5 percent. Crimping conditions are varied to provide different crimp indices. Fibers produced to have 7.1 crimps per inch and a crimp index of 35 are found to have TBRM heights of 3.95 inches H,- and 0.90 inches 11,. Fibers produced to have 7.1 crimps per inch and a crimp index of 26 are found to have TBRM heights of 3.85 inches H,- and 0.90 inches 11,.

I claim:

l. A polyethylene terephthalate pillow batt which has high filling power and bulk under load, consisting of intermingled hollow round filaments having a denier per filament within the range of 4 to 6, a saw-toothed type of crimped configuration, a crimp frequency within the range of five to 12 crimps per inch, and a crimp index within the range of 25 to 35; the filaments being characterized by a central continuous longitudinal void of nonround cross section throughout the length which comprises 13 to 25 percent of the volume of the filament and is free from collapse.

2. A polyethylene terephthalate pillow batt which has high filling power and bulk under load, consisting of intermingled, hollow, 4 to 6 denier filaments crimped in a saw-toothed type of configuration to impart a crimp frequency of six to nine crimps per inch of uncrimped filament and a crimp index within the range of 25 to 35; the filaments being characterized by a round cross section with a single hole of square shape centrally located in the filament and forming a hollow core extending throughout the length of the filament, the hollow core being 13 to 25 percent of the volume of the filament and free from collapse.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2999296 *Mar 25, 1957Sep 12, 1961Du PontNovel filaments and fabrics
US3014237 *Mar 25, 1957Dec 26, 1961Du PontSpinneret
US3630823 *Sep 16, 1969Dec 28, 1971Du PontCocarded blend of microcellular and conventional fibers
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3892909 *May 10, 1973Jul 1, 1975Qst IndustriesSynthetic down
US3905057 *Jul 6, 1973Sep 16, 1975Cww Research And Dev CompanyFiber-filled pillow
US3924988 *May 24, 1972Dec 9, 1975Du PontHollow filament spinneret
US3981948 *Jan 2, 1975Sep 21, 1976Eastman Kodak CompanyArrangements in spinnerets of spinning orifices having significant kneeing potential
US4129675 *Dec 14, 1977Dec 12, 1978E. I. Du Pont De Nemours And CompanyProduct comprising blend of hollow polyester fiber and crimped polyester binder fiber
US4167604 *Jun 30, 1978Sep 11, 1979Warnaco Inc.Natural down and crimpep hollow polyester
US4281042 *Aug 30, 1979Jul 28, 1981E. I. Du Pont De Nemours And CompanyPolyester fiberfill blends
US4288494 *Mar 12, 1979Sep 8, 1981Extracorporeal Medical Specialites, Inc.Non-uniform cross-sectional area hollow fibers
US4304817 *Feb 28, 1979Dec 8, 1981E. I. Dupont De Nemours & CompanyCured polysiloxane coating
US4336307 *Jul 14, 1980Jun 22, 1982Teijin LimitedHollow water absorbing polyester filaments and a process for producing the same
US4376746 *Sep 17, 1981Mar 15, 1983Ametek, Inc.Formation of hollow tapered brush bristles
US4850847 *May 10, 1988Jul 25, 1989E. I. Du Pont De Nemours And CompanySpinneret for hollow fibers having curved spacing members projecting therefrom
US4933084 *Jan 11, 1985Jun 12, 1990Akzo NvDifference of distance to the outer and inner wall surfaces measured from fiber mid point varies along periphery
US5104725 *Apr 30, 1990Apr 14, 1992E. I. Dupont De Nemours And CompanyContaining voids
US5224292 *Apr 11, 1990Jul 6, 1993E. I. Du Pont De Nemours And CompanyLayer of hollow polyester fibers containing water soluble plant adjuvants
US5277976 *Oct 7, 1991Jan 11, 1994Minnesota Mining And Manufacturing CompanyOriented profile fibers
US5484650 *Jun 2, 1995Jan 16, 1996E. I. Du Pont De Nemours And CompanyHollow fiber identification
US5527611 *Jun 2, 1995Jun 18, 1996E. I. Du Pont De Nemours And CompanyRelating to hollow fiber identification
US5538735 *Feb 19, 1993Jul 23, 1996Ahn; Sam S.Method of making a drug delivery system using hollow fibers
US5540993 *Jun 2, 1995Jul 30, 1996E. I. Du Pont De Nemours And CompanyRelating to fiber identification
US5540994 *Jun 2, 1995Jul 30, 1996E. I. Du Pont De Nemours And CompanyFiber identification
US5723215 *Feb 3, 1997Mar 3, 1998E. I. Du Pont De Nemours And CompanyBicomponent polyester fibers
US5731248 *May 28, 1996Mar 24, 1998Eastman Chemical CompanyShaped fibers
US5837625 *Jan 28, 1997Nov 17, 1998Eastman Chemical CompanyInsulation material
US5882794 *Nov 14, 1997Mar 16, 1999E. I. Du Pont De Nemours And CompanySynthetic fiber cross-section
US5891568 *Oct 1, 1997Apr 6, 1999E. I. Du Pont De Nemours And CompanyPolyester fiber
US6329051Apr 27, 1999Dec 11, 2001Albany International Corp.Blowable insulation clusters
US6329052Jun 14, 1999Dec 11, 2001Albany International Corp.Blowable insulation
US6458455Aug 22, 2001Oct 1, 2002E. I. Du Pont De Nemours And CompanyPoly(trimethylene terephthalate) tetrachannel cross-section staple fiber
US6599850 *Feb 10, 2000Jul 29, 2003Raphael HeifetzFlexible reflective insulating structures
US6746230May 8, 2001Jun 8, 2004Wellman, Inc.Apparatus for high denier hollow spiral fiber
US6752945Aug 22, 2001Jun 22, 2004E. I. Du Pont De Nemours And CompanyVia lowering relaxation temperature to obtain maximum crimp take-up
US6754919May 24, 2001Jun 29, 2004Kimberly-Clark Worldwide, Inc.Protective cover article
US6797209Feb 12, 2003Sep 28, 2004Wellman, Inc.Method and apparatus for high denier hollow spiral fiber
US6835339Jun 24, 2002Dec 28, 2004E. I. Du Pont De Nemours And CompanyUse in woven and knit fabrics, with excellent wicking and/or pilling performance
US6872352Aug 22, 2001Mar 29, 2005E. I. Du Pont De Nemours And CompanyPolytrimethylene terephthalate is melt spun into filaments; quenching and drawing and mechanically crimped to a crimping filaments; relaxing and carding, forming web and cross-lapping the web to form a batt
US7001664Sep 27, 2004Feb 21, 2006Wellman, Inc.Method and apparatus for high denier hollow spiral fiber
US7229688Sep 13, 2005Jun 12, 2007Wellman, Inc.Method and apparatus for high denier hollow spiral fiber
US7244444Mar 30, 2005Jul 17, 2007Cook IncorporatedGraft material, stent graft and method
US7790639Dec 23, 2005Sep 7, 2010Albany International Corp.random shaped blowable clusters which are comprised of natural fibers or material; wool, cotton, flax, animal hair, silk, down; man-made component of the batt generally comprises from 70 to 95 weight percent of synthetic polymeric microfibers; blowable and have desired down-like qualities
US7874624 *Mar 29, 2007Jan 25, 2011Ts Tech Co., Ltd.Cushion body, seat, and method of manufacturing the same
US7887576May 19, 2009Feb 15, 2011Cook IncorporatedA stent comprising a tubular graft supported by the stent having a proximal opening, a distal opening, and a synthetic material; a tubular bioremodelable material having two open ends extending the length of the first tubular graft beyond the proximal or distal openings of the first tubular graft
US8025495Aug 27, 2007Sep 27, 2011Cook Medical Technologies LlcApparatus and method for making a spider occlusion device
US8211168Feb 20, 2007Jul 3, 2012Cook Biotech IncorporatedGraft material, stent graft and method
US8291730Oct 31, 2008Oct 23, 2012Certainteed Insulation Canada, Inc.Spinner for manufacturing dual-component irregularly-shaped hollow insulation fiber
US8308752Aug 27, 2007Nov 13, 2012Cook Medical Technologies LlcBarrel occlusion device
US8480707Jul 31, 2009Jul 9, 2013Cook Medical Technologies LlcClosure device and method for occluding a bodily passageway
US8614154 *Oct 5, 2004Dec 24, 20133M Innovative Properties CompanyCellulose fibre based insulation material
US8617205Jun 10, 2010Dec 31, 2013Cook Medical Technologies LlcClosure device
US8734483Aug 27, 2007May 27, 2014Cook Medical Technologies LlcSpider PFO closure device
US20070209307 *Oct 5, 2004Sep 13, 2007Carsten AndersenCellulose Fibre Based Insulation Material
US20100239839 *Mar 5, 2008Sep 23, 2010Invista North America S.A.R.LContinuous filament tow for fiber batts
DE2937280A1 *Sep 14, 1979Apr 2, 1981Warnaco IncWaermeisoliermaterial
DE3034340C2 *Feb 14, 1980Jan 17, 1991E.I. Du Pont De Nemours & Co., Wilmington, Del., UsTitle not available
DE4119441A1 *Jun 13, 1991Dec 17, 1992Heimbach Gmbh Thomas JosefPaper making blanket - is composed of hollow monofilaments with pressure sealed inner gas volumes to absorb or eliminate vibration at the web
EP0544167A1 *Nov 14, 1992Jun 2, 1993Thomas Josef Heimbach GmbH & Co.Papermaking fabric, in particular dryer felt
EP0677601A1 *Apr 12, 1995Oct 18, 1995Ems-Inventa AgPolyester fibres with improved bulk and process for their production
EP0783607A1 *Sep 28, 1995Jul 16, 1997E.I. Du Pont De Nemours And CompanyImprovements in pillows and other filled articles and in their filling materials
EP2345376A1Sep 28, 2006Jul 20, 2011Cook IncorporatedCoated vaso-occlusion device
WO1980001031A2 *Feb 14, 1980May 15, 1980Du PontPolyester fiberfill blends
WO1993011292A1 *Nov 25, 1992Jun 10, 1993Du PontNew fiberfill battings
WO1997013896A1 *Oct 12, 1995Apr 17, 1997Du PontImprovements in and relating to hollow fiber identification
WO2002067731A1Feb 22, 2002Sep 6, 2002Du PontFilled articles comprising blown fibers
WO2004063434A1 *Dec 16, 2003Jul 29, 2004Procter & GambleHollow fiber fabrics
Classifications
U.S. Classification428/369, 5/952, 425/382.2, 428/398
International ClassificationA47C27/22, D04H1/42, A47C27/12, B68G1/00, D01D5/24
Cooperative ClassificationD04H1/42, B68G1/00, Y10S5/952, D01D5/24, A47C27/22, A47C27/12
European ClassificationD04H1/42, A47C27/22, B68G1/00, D01D5/24, A47C27/12