Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3772196 A
Publication typeGrant
Publication dateNov 13, 1973
Filing dateDec 3, 1971
Priority dateDec 3, 1971
Also published asCA977736A1, DE2258966A1, DE2258966C2
Publication numberUS 3772196 A, US 3772196A, US-A-3772196, US3772196 A, US3772196A
InventorsD Clair, D Evans
Original AssigneeShell Oil Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Lubricating compositions
US 3772196 A
Lubricating oil compositions for internal combustion engines having unexpectedly wide temperature operating characteristics, contain a combination of 2-block copolymer comprising a first polymer block of an alkenyl arene, e.g., styrene and a second essentially completely hydrogenated polymer block of isoprene and certain pour point depressants in a lubricant base stock having a viscosity index of at least 85. The compositions have excellent shear stability and can be formulated to pass a number of the ASTM and SAE engine oil performance and engine service classifications.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [1 1 St. Clair et al.

[ Nov. 13, 1973 LUBRICATING COMPOSITIONS [75] Inventors: David J. St. Clair, Bethalto, 111.;

Donald D. Evans, Burlington, Ontario, Canada [52] [1.8. CI. 252/32.7 E, 252/51.5 A, 252/56 R,

252/59 [51] Int. Cl. C10m 1/48, ClOm l/16 [58] Field of Search 252/32.7 E, 33.4, 252/5l.5 A, 59, 56 R; 260/879 [56] References Cited UNITED STATES PATENTS 2,889,282 6/1959 Lorensen et al. 252/5l.5 A 3,438,897 4/1969 Henderson 3,554,911 l/1971 Schiff et a1 252/59 FOREIGN PATENTS OR APPLICATIONS 769,281 3/1957 Great Britain 252/59 Primary Examiner-Patrick P. Garvin Assistant Examiner-Andrew H. Metz Att0rneyWilliam I-I. Myers et a1.

[5 7] ABSTRACT Lubricating oil compositions for internal combustion engines having unexpectedly wide temperature operating characteristics, contain a combination of 2-block copolymer comprising a first polymer block of an alkenyl arene, e.g., styrene and a second essentially completely hydrogenated polymer block of isoprene and certain pour point depressants in a lubricant base stock having a viscosity index of at least 85. The compositions have excellent shear stability and can be formulated to pass a number of the ASTM and SAE engine oil performance and engine service classifications.

9 Claims, 1 Drawing Figure PAIENTEDIIIII I3 I975 HVI 250M MAY I HVI 80N MUST BE ADDED TO +I BE ADDED TO 3 FORMULATION FORMULATION h I I I N I N ,-I- o I F E I I :0 I O (I! A 9 I u. 0 I o I O m 4 1. (\I m I w a; I I: (I) o I O o m I 2 m 7,, I v m I 9 J, l 3 m I I E: O o (\l I m I I w I 0 I I BASE I BLEND I I SAE 5w SAE IOW SAE 20w I2p 24p VISCOSITY AT 0 F BASE BLEND CONTAINS ALL HVI MENTAL ADDITIVE PACKAGE WITHOUT VI IMPROVER.

IOON PLUS A COMPLETE SUPPLE- LUBRICATING COMPOSITIONS BACKGROUND OF THE INVENTION 1. Field of Invention This invention relates to novel lubricating compositions and the like, containing a critically defined combination of certain block copolymers and pour point depressants. Unless otherwise indicated, the terms lubricant, lubricating oil or lubricating composition refer to lubricating oils for internal combustion engines.

2. Description of the Prior Art a The art of lubricating oil formulation has become increasingly complex with the ever more stringent demands made by the developing automotive industry. One of the primary requirements is to provide an economical petroleum lubricant which can be utilized over a wide range of operating conditions, especially insofar as temperature variations are concerned. At the same time, the formulated lubricant must also possess an ability to impart oxidative stability, detergency, disper sancy, wear inhibition and corrosion inhibition during its use as well as during storage. Furthermore, the auto motive industry desireslubricants which will stay in their SAE viscosity grades'fora substantial length of time again under both use and storage conditions.

By multi-grade lubricants is meant lubricants which meet a F viscosity specification and a 210F viscosity specification, such as is shown for motor oils by the following table derived from SAE, 1300a taken from the SAE Handbook for 1969:

Viscosity at SAE Viscosity at SAE Oil Grade 0"F, poises Oil Grade 210F, SUS Spec. vSpec.

20 45-58 SW 12 maximum 30 5870 10W 12-24 40 7085 20W 24-96 50 According to the table, for example, an SAE l0W/50 oil must have a viscosity at0F between 12 and 24 poises and a viscosity at 210F of between 85 and 110 SUS.

The art has evolved a number of multi-grade oils such as SAE l0W/30 and SAE 20W/40 oils but with few exceptions has not been able to formulate wider multigrade oils such as SAE l0W/50 having low oil consumption and high shear stability. Commercially, such formulations should be economically feasible, capable of large scale production, versatile in regard to the base stock and preferably resistant to degradation under conditions of high shear.

A large variety of polymeric additives have been employed primarily as thickening agents, viscosity index (VI) improvers andpour point depressants. A common limitation of essentially all of these is shear sensitivity. This is not unexpected, since most of the these polymers are'relatively high molecular weight materials and consequently are readily subject to shear degradation. On the other hand, relatively low molecular weight polymeric materials, at least up to the present time, have proven to be relatively ineffective as thickeners or VI improvers in automotive engine lubricants, even Pat. No. 3,509,056 issued Apr. 28, 1970, shows the use though they may have reasonably good shear stability.

of styrene-olefin copolymers prepared by Ziegler catalysts as lubricating oil additives. These have proven to be surprisingly ineffective as thickening agents and VI improvers. A number of block polymers of the tapered type have been investigated such as those prepared by copolymerization of alpha methyl styrene and ethylene. For some unexplained reason, as shown in Anderson U.S. Pat. No. 3,290,414, issued Dec. 6, 1966, the tapered or random copolymerization as in the case of styrene-butadiene random copolymerization results in an unsatisfactory composition.

Certain styrene-hydrogenated butadiene block copolymers have been employed as pour point depressants or thermal degradation stabilizers in pertroleum fuels as shown in Streets U.S. Pat. No. 3,419,365 issued Dec. 31, 1968. However, since they were employed as fuel additives, they-were used in frictional percentages which were too small to appreciably affect the thickening of the oil or the viscosity index thereof. Moreover, as will be developed later, block copolymers containing hydrogenated polybutadiene blocks show essentially no response to supplementary pour point depressants, especially if the 1,2-content is low.

Fully formulated multi-grade oils of the SAE l0W/30 type are shown in Henderson U.S. Pat. No. 3,438,897 issued Apr. 15, 1969. However, the combination of lubricating oil additives disclosed by this patent, while useful for relatively narrow multi-grade oils, such as SAE 10W/30, does not provide for the possibility of compounding wider multi-grades such as SAE 5W/20, 5W/30, 10W/40, 10W/50 or SAE 20W/50.

SUMMARY OF THE INVENTION It is an object of the present invention to provide improved lubricating compositions. It is another object of the present invention to provide improved multi-grade lubricants. It is a particular object of the invention to provide wide multigrade compositions which will exhibit lower oil consumption due to volatility than the same viscosity multigrade oil made with conventional VI improvers. Other objects will become apparent during the following detailed description of the invention.

Now, in accordance with the present invention hydrocarbon lubricating compositions are provided comprising the following components:

a. a hydrocarbon lubricating oil having a viscosity index of at least b. a minor but effective amount of pour point depressant for said oil; and g c. 01-10 percent by weight of a block copolymer comprising 1 I. a single polymer block A, at least 75 percent of which is condensed alkenyl arene units, no more than 5 percent of the aromatic unsaturation being reduced by hydrogenation of the block copolymer, said block A having an average molecular weight between about 10,000 and about 55,000; and 2. a single hydrogenated polymer block B, said block, priorto hydrogenation, being a polyisoprene block; at least percent of the olefinic unsaturation of block B being reduced by hydrogenation of the block copolymer; same block B having an average molecular weight between about 20,000 and about 100,000;

the weight ratio of block A to block B being between about 0.45:l and 0.8:1;

remaining blocks C, if any, in the block copolymer having a total average molecular weight not exceeding about 7,500 and being selected from alkenyl arene polymer blocks, conjugated diene polymer blocks and copolymer blocks of alkenyl arenes and conjugated dienes, each having the hydrogenation limitations of blocks A and B.

DESCRIPTION OF THE PREFERRED EMBODIMENTS In accordance with this invention it has been found that block copolymers having the above limitations, when combined with a high viscosity index hydrocarbon lubricant containing a pour point depressant, exhibit outstanding physical characteristics not possessed by any other polymeric thickener investigated to date. Preferably, the block copolymer has the simple structure A-B. However, as pointed out above, it may have the alternative structure A-B-C wherein C is the relatively low molecular weight polymer block referred to above. It is preferred that each of blocks A and B be homopolymeric blocks. Moreover, it is preferred that polymer block A be essentially aromatic, e.g. less than 5 percent hydrogenated while polymer block B be at least 99 percent saturated insofar as its original olefinic unsaturation is concerned.

The monoalkenyl arenes, particularly a-alkenyl arenes, which may be used in the preparation of the subject class of block copolymers comprise styrene and methyl styrenes such as alpha methyl styrene, vinyl toluene and other ring methylated styrenes. Styrene is the preferred monomer. Mixtures of these alkenyl arenes may be used if desired.

Polyisoprene is the conjugated diene employed in preparing the precursor of block B. Preferably the polyisoprene block should have at least about 80 percent l,4 structure which may be either cis or trans and still more preferably it should have at least about 88 percent 1,4 structure.

The block copolymers may be prepared by conventional methods using lithium-based initiators, preferably lithium alkyls such as lithium butyls or lithium amyls. Polymerization is usually conducted in solution in an inert solvent such as cyclohexane or alkanes such as butanes or pentanes and mixtures of the same. The first monomer to be polymerized (which may be either mono alkenyl arene or isoprene) is injected into the system and contacted with the polymerization initiator which is added in an amount calculated to provide the predetermined average molecular weight. Subsequent to obtaining the desired molecular weight and depletion of the monomer, the second monomer is then injected into the living polymer system and block polymerization occurs, resulting in the formulation of the living block copolymer poly(alkenyl arene)- polyisoprene which is then killed, e.g., by the addition of methanol.

This precursor is then subjected to selective hydrogenation such as by the method shown in Wald et al. U.S. Pat. No. 3,595,942 issued July 27, 1971, to form the block copolymers used in the lubricating compositions of this invention. Preferably hydrogenation is conducted in the same solvent in which the polymer was prepared, utilizing a catalyst comprising the reaction product of aluminum alkyl and a nickel or cobalt carboxylate or alkoxide. A favored catalyst is the reaction product formed from triethyl aluminum and nickel octoate.

The temperatures and pressures employed in the hydrogenation step are adjusted such as shown in the last referred-to patent to cause essentially complete hydrogenation of the polyisoprene block with essentially no effective hydrogenation of the monoalkenyl arene polymer block.

The polymer may be isolated from its solvent after its hydrogenation and dispersed in lubricating oil. This may be effected, for example, by adding a lubricating oil to the solution of hydrogenated polymer and thereafter evaporating the relatively volatile solvent.

It is convenient to prepare concentrates of the hydrogenated block copolymer in lubricating oil. Such concentrates suitably contain up to about 20 percent by weight of the hydrogenated block copolymer and preferably between about 2.5 and 15 percent by weight depending on polymer molecular weight.

Wherein the present specification and claims, reference is made to molecular weights of the block copolymers, these are meant to refer to number average molecular weights as determined, for example, by tritium counting techniques or osmotic pressure methods.

Preparation of the block copolymers by anionic solution polymerization results in the desired relatively very narrow molecular weight spread as contrasted to the broad spectrum of species which results from the use of Ziegler polymerization catalysts. Broad spectrum (Ziegler) polymers, containing a substantial proportion of high molecular weight fractions, exhibit excessive shear degradation.

Preferably the polymer blocks A have molecular weights between about 25,000 and 50,000 and the polymer blocks B have molecular weights between about 35,000 and 80,000. Still more preferably, the weight ratio of A:B is from 0.521 to 0.721.

The pour point depressants utilized in accordance with the present invention and in conjunction with the block polymers as defined above are employed primarily for their pour point depressing effect although many of them may act as viscosity index improvers or thickeners. However, since they are employed in minor (pour point depressing) amounts, e.g., 0.l2.5 percent by weight preferably 0.l50.7 percent by weight, their proportion is normally too small to have an appreciable effect upon oil properties other than pour point. It is essential that the pour point depressant be present, however, since the block copolymers defined above exhibit essentially no effective pour point depressant function. On the other hand, one of the prime characteristics of the above class of block copolymers is their effective response to added pour point depressants such as high molecular weight compolymers of alkyl acrylates or alkyl methacrylates as well as nitrogen containing acrylic esters. By the term acrylic esters" is meant esters of acids of the acrylic acid series including both acrylic acid and methacrylic acid.

The nitrogen-containing acrylic ester polymers as defined can be prepared by any suitable means such as described in Hughes et al. US. Pat. No. 3,215,632 issued Nov. 2, 1965, and can be illustrated by the following examples: Nitrogen-containing polymers, namely, copolymers of vinyl pyridine and C alkyl methacrylates, having a molecular weight range of from 1,500 to 2,000,000, preferably between 200,000 and 850,000 include (1) copolymer of 25 percent 2-methyl -vinyl pyridine and 75 percent stearyl methacrylate, molecular weight 200,000; (2) copolymer of 30 percent stearyl methacrylate, 51 percent lauryl methacrylate, 14 percent methyl methacrylate and 5 percent 2-methyl-5- vinyl pyridine, molecular weight 600,000; (3) copolymer of 14 percent methyl methacrylate, 54 percent lauryl methacrylate, 27 percent stearyl methacrylate and 5 percent 2-methyl-5-vinyl pyridine in weight ratio molecular weight 830,000; (4) copolymer of lauryl methacrylate, stearyl methacrylate and 2-methyl-5-vinyl pyridine in the weight ratio of 602355, molecular weight 810,000; (5) copolymer of 2-methyl-5-vinyl pyridine, lauryl methacrylate and stearyl methacrylate in the weight ratio of 75:58:34.5, molecular weight 31,000; (6) N-vinyl pyrrolidone-alkyl acrylate copolymers; and (7) N,N-dimetyl-aminoethyl acrylate-alkyl acrylate copolymers.

The oil component of the lubricating compositions according to the present invention is especially designed for the preparation of multi-grade lubricants although single grade lubricants may be compounded as well. Still more specifically, the present combination of block copolymer and pour point depressant is especially beneficial in Wax-containing lubricating oil cuts such as found in Mid Continent oils, West Texas Ellenburger crudes, East Texas crudes, Oklahoma crudes, Pennsylvania crudes and California crudes and similar waxy crudes which may be referred to as paraffin base crudes, naphthenic crudes or mixed base crudes as distinguished from asphalt base crudes. While lubricating oils of any viscosity may be used as the base for the present compositions, the preferred oils are referred to as High Viscosity Index (HVl) 100 Neutral, HVI 250 Neutral and PW! Bright Stock as well as combinations of the same. Also included in this general term l-lVI for the purpose of this description, are very high viscosity index (VHVl) oils such as those prepared via hydrocracking of poor quality oils, such as low viscosity index (LVI) oils. More volatile oils may be employed for special purposes such as(HVI) 80N. These neutral oils are produced by well-known refining methods, such as distillation, dewaxing, deasphalting, dearomatizing, etc, as may be needed, dependant largely on the crude oil used. Typical properties of these HVI oils are the following:

PROPERTIES OF BASE OILS HVI HVI HVI HVI VHVI Designation 80 N 100 N 250 N 150 BS 100 N VlS 210F (SUS) 38.0 39.8 50.0 157 38.6 VIS 100F (SUS) 82 107 265 2775 32.7 VI 103 93 93 95 126 Gravity (lb/gal) 7.08 7.20 7.33 7.44 7.21 Four Point (F) 5' 20 20 0 Flash Point (F) 360 405 430 575 400 Aniline Cloud Point 203 213 220 260 226 ll: Aromatics by UV 15 l1 14 27-40 5 w S 0.05 0.09 0.05 0.16 0.05 ASTM Color L05 L0.5 L10 L45 L05 The present invention, in part, comprises the discovery that the block polymers as defined hereinbefore are only effective in hydrocarbon lubricants having a viscosity index of at least and preferably of at least as defined by ASTM test D227064. Data given hereinafter will establish the criticality of the present invention in this respect by showing the block copolymers of the invention either have little or no effect on Vl on low and medium VI oils, or actually reduce the VI in such oils.

One of the primary aspects of the present invention comprises the discovery of the unique capability of these compositions for the provision of wide multigrade lubricants having relatively low tendency toward oil consumption during use. It has been wellestablished that oil consumption is directly related to the relative volatility of the lubricant base. With most thickeners and VI improvers as well as most pour point depressants it is essential to formulate an SAE l0W/50 lubricant containing a substantial amount of relatively high volatility oils such as 80N or even lighter. This is due to the basic fact that most polymers alter the viscosity/temperature slope to only a moderate degree. However, as shown by FIG. I forming a part of this specification, it will be seen that the block copolymers of the present invention have an unexpected effect in providing a unique viscosity/temperature slope between 210F and 0F. The practical result of this is that multi-grade oils such as SAE l0W/30, l0W/4O and 10W/50 oils may be compounded with the present combination of additives utilizing as the oil base the relatively heavier oils, e.g., fractions having a viscosity at 100F of at least about SUS such as HV] or heavier, rather than resorting to thinning the composition with the more volatile lubricants. The second commercially important implication of this is that a single mixture of relatively heavy lubricant base stocks may be kept in storage for the preparation of a number of multi-grade oils which may be prepared simply by varying the block copolymer concentration. Thus, by the use of the present invention it is possible not only to simplify manufacturing requirements but also to reduce oil consumption during engine operation.

As will be seen in the working examples which follow, other types of polymers which may provide a certain degree of oil thickening or VI improving at temperature between 100+F and 210F, do not have the unique and strong effect upon the viscosity/temperature slope between 0F and 210F as is experienced with the particular'block copolymers of this invention. The unexpectedly low viscosities at 0F of the SAE l0W/50 compositions of this invention are unique and cannot be achieved with other polymers. The working examples furthermore demonstrate that even within the area of polymers having the structure polystyrenehydrogenated polyisoprene, the block molecular weights and weight proportions of thetwo blocks must be within the limits specified hereinbefore if the block copolymer is to impart a substantial increase inviscosity index.

The present invention not only provdes wide range multigrade lubricant compositions but also provides compositions having relatively low ash content, e.g. less than about 1 percent by weight sulfated ash, which are especially suitable for gasoline engines.

The basic composition as described above may be used as such but preferably is modified by the presence of supplementary additives combined with the block copolymer and pour point depressant to provide the necessary stability, detergency, dispersancy,antiwear and anticorrosion properties required of modern lubricants according to increasingly severe automotive specifications.

Among such supplementary additives are polymeric succinic acid derivatives used as detergent-dispersants. These can be made by the process described in U.S. Pat. Nos. to Hughes 3,215,632 issued Nov. 2, 1965; to Rense 3,215,707 issued Nov. 2, 1965; to Stuart et a1. 3,202,678 issued Aug. 24, 1965, or Le Suer et al. Canadian 681,235 issued Mar. 3, 1964, and can be illustrated by examples (1) succinimide of mono(polyisobutylene) succinic anhydride and tetraethylene pentamine, the polyiso-butylene radical having a molecular weight of about 1,000, (2) amine derivative of polyisobutyl monocarboxylic acid and tetraethylene pentamine having a molecular weight of about 1,000, (3) succinimide of mono(polypropylene)succinic anhydride and diethylene triamine, the polypropylene radical having a molecular weight of 800-1,500, (4) diimide of mono(polyisobutylene)succinic anhydride and tetraethylene pentamine, the polyisobutylene radical having a molecular weight of 800-1500.

The most preferred ashless dispersants to be used in the lubricants of the present invention are achieved by providing oil-soluble compositions prepared by reacting under esterification conditions (A) at least one substituted poly carboxylic acid acylating agent containing an average of at least about 30 aliphatic carbon atoms per substituent with (B) at least one polyhydric alcohol in amounts such that there is at least one equivalent of polyhydric alcohol for each equivalent of substituted carboxylic acid acylating agent to form an estercontaining first reaction mixture and thereafter intimately contacting this first reaction mixture with (C) from about 0.025 to about 0.15 equivalent of at least one hydroxy-substituted primary amine per equivalent of (A). These reaction products and their preparation are described in Widmer et a1. U.S. Pat. No. 3,576,743, issued Apr. 27, 1971. Still more preferably, (A) is further characterized in that it is a substantially saturated acylating agent produced by reacting ethylenically unsaturated carboxylic acidic reactant of the formula Itocoon or the corresponding carboxylic acid halides, anhydrides, and esters where R is characterized by the presence of at least one ethylenically unsaturated carbonto-carbon covalent bond and n is an integer of two to six, with an ethylenically unsaturated hydrocarbon or chlorinated hydrocarbon containing at least thirty aliphatic carbon atoms at a temperature within the range of l00-300C with the proviso that said acylating agent may contain polar substituents to the extent that such polar substituents do not exceed percent by weight of the hydrocarbon portion of the acylating agent excluding the weight of the carboxylic acid groups. The use of such detergents results in a substantial reduction (e.g., -50 percent) in the ash level compared to the use of other detergents which may otherwise be effective and satisfactory, such as the succinimides of high molecular weight mono(polyolefin)- succinic anhydride and polyalkylene polyamines.

Alkaline earth metal overbased petroleum sulfonates also may be employed. The highly basic alkaline earth metal (Mg, Ca and/or Ba) petroleum sulfonate can be made by suitable means known in the art such as described in British Patents 790,471 and 818,323 or Ellis et a1. U.S. Pat. No. 2,865,956 issued Dec. 23, 1958. The basic calcium petroleum sulfonates (M.W. 300-800) are preferred. By basic sulfonate is meant that the end product has a basicity in excess of 20 percent and up to 1,800 percent and preferably between 40 percent and 1,400 percent in excess of that normally required to neutralize the acid to produce the normal salt. Other types of sulfonic acids in the molecular weight range of 350 to 800 and derived from olefinic polymers, alkyl aromatic compounds, e.g., alkylated benzene, or alkylated naphthalene also can be used in forming the basic magnesium, calcium and/or barium sulfonate salt, such as basic calcium diwax benzene sulfonate, basic diwax naphthalene sulfonate and the like, the basicity being in excess of about 50-180 percent and the molecular weight of the compound between 450 and 750. Similar alkaline earth metal alkyl phenates and alkyl salicylates also are useful.

Furthermore, dithiophosphates may be included as supplementary additives, e.g., Ca, Zn, Pb salts of alkylthiophosphates, as well as their thio derivatives, Zn bis (2-ethylhexyl)dithiophosphate, Zn dioctyl dithiophosphate Zn bis(alkylphenyl)dithiophosphate, P 8 terpene reaction product, phosphonates such as dibutyl methane phosphate, dibutyl trichloromethane phosphonate, dibutyl monochloromethane phosphate, dibutyl chlorobenzene phosphonate, and the like. The full esters of pentavalent phosphorus acids may be used, such as triphenyl, tricresyl, trilauryl and tristearyl orthophosphates or potzlssium salt of P S -terpene reaction products or zinc above, like Zn di(C alkyl)dithiophosphate, e.g., Zn bis(2-ethylhexyl)- dithiophosphate, Zn bis(alkylphenyl)dithiophosphate. Corresponding dithiocarbamates, preferably zinc salts, also may be employed.

Anti-foaming agents such as silicone polymers, e.g., dimethyl silicone polymer, can also be used.

When desired, additional improvements with respect to oxidation stability and scuffing inhibition can be imparted to the oil compositions of the invention by incorporating small amounts (0.01 %2%, preferably 0.1%-1%) of phenolic antioxidants such as alkylphenols, e.g., 2-6-ditert.butyl-4-methylphenol or p,p'- methylene bisphenols such as 4,4-methylene-bis(2,6- ditert.butylphenol) or arylamines such as phenylalphanaphthylamine; dialkyl sulfides and mixtures thereof, e.g., dibenzyl disulfide or didodecyl sulfide. Anti-scuffing agents include esters of metal salts or organic phosphites, phosphates, phosphonates and their thio derivatives, such as C trialkyl phosphites, or phosphonates, e.g., tributyl-, trioctyl-, trilauryl-, tristearyl-, tricyclohexyl-, tribenzyl-, tricresylor triphenyl phosphites or phosphates.

A preferred formulation incorporating the present invention is as follows:

Components by Weight Block Copolymer 0.1-10 Pour Point Deprcssant 0.1-5 Oil Soluble Metal Thiophosphate 0.01-0.11 Ashless detergent 0.1-8.5 Overbased alkaline earth metal alkaryl sulfonate (Basis sulfated ash) 0.0S-3.5 Oil Balance EXAMPLE 1 Response of Various Block Polymers to Pour Point Depressants The basic compounded oil in this example was a W base oil (47 SUS at 210F) containing sufficient acrylic pour point depressant to reduce its pour point to -F; the VI of the base oil (including acrylic additive) was 117 (Sample A in Table I). The acrylic pour point depressant was a copolymer of cetyl methacrylate (50%w), lauryl methacrylate (%w) and octyl methacrylate (25%w), used in amount of 0. 1 7%w), based on the oil.

The block polymers tested are identified in Table I. The polymer column identifies the types of blocks and the mol wt column shows the molecular weight of each block.

When the polymers of Table I were tested in the uncompounded base oil'they showed no pour point depressant effect. The polymers must therefore be used in combination with a pour point depressant to be useful as low temperature lubricant compositions.

In the tests recorded in Table I, the amount of each polymer employed was that required to thicken the oil blend from 47 SUS to 65 SUS at 210F. Table I summarizes the data obtained:

(Samples C, D, F and G) had substantially higher pour points than that of the compounded base oil without block copolymer. Further data indicate that this pour point problem may be solved by randomly copolymerizing styrene with the butadiene block or by including higher 1,2-content (about 70 percent) in the butadiene block. Both remedies, however, have an adverse effect on the thickening efficiency of the polymer and thus require either higher polymer concentrations to thicken the oil or higher polymer molecular weights.

EXAMPLE II Comparison of Polymers TABLE I Polymer Mol wt conc. Polymer x 10- percentw point, P V1 None 20 l 17 Polystyrene-hydrogenated polyisoprene..... 28-44 1.2 -20 171 Polystyrene-hydrogenated polybutadiene 23-53 1.0 +20 147 Hydrogenated polystyrene-hydrogenated 23-53 1.4 +25 146 polybutadiene. Hydrogenated polystyrene-hydrogenated 21-107 1.0 25 147 polyisoprene Hydrogenated polybutadiene-polystyrene- 61-140-61 1.4 15 160 hydrogenated polybutadiene. Polystyrene-(styrenelhydrogenated buta- 19-(35/10) 1.5 +25 102 diene random copolymer). Hydrogenated polystyrene-hydrogenated 13-70-13 1.3 147 polyisoprene-hydrogenated polystyrene.

TABLE II Sonic shear Conc. Visc. percent Mol wt (percent at 0 F, loss at Sample Polymer X 10 w) VI poises 210 A None B Hydrogenated polyisoprene. 88 1.95 C Polystyrene-hydrogenated po y opren 21-21 4.0 D ..d 19-51 2.6 21-107 1.75 F 28-44 1.85 G 29-51 1.70 11.. Polystyrene-hydrogenated polybutadiene 16-47 4.0 I Hydrogenated polystyrene-hydrogenated 20-(25/25) 7 4,6

(butadicne/styrene)-copolymer J Ethylene/propylene copolymer 1.2 173 14.8

The above screening comparison illustrates several points: Ethylene/propylene random copolymer (Sample I) had poor shear stability. This particular ethylene/propylene copolymer was chosen for investigation because of its moderately good low temperature flow properties. In general, ethylene/propylene random copolymers are very poor in low temperature flow. The hydrogenated block polymer containing a styrene/- butadiene random copolymer block (Sample I) had 11 poor thickening efficiency, less than the desired effect on V1 and relatively high viscosity. The block copolymer including a hydrogenated polybutadiene block (prepared by 72 percent 1,2 addition) (Sample H) showed virtually no VI enhancement effect. The set of Other block copolymers, e.g., a 3-block copolymer having the structure:

hydrogenated polystyrene-hydrogenated polyisoprene-hydrogenated polystyrene did not show this critical feature, being about equally effective in all types of lubricants regardless of V1. However, as the Figure shows, such 3-block copolymers requires the addition ofa relatively light lubricant (80N) in order to meet broad spectrum multi-grade viscosity requirements, such as SAE l0W/50.

EXAMPLE IV Oil Base Stock Requirements for Multigrade Oils the two types of blocks and the molecular weights come within the limits specified for this invention The primary objective, as discussed hereinbefore, (Samples F and G), then the lubricating oil composiwas to design a multgrade lubricant having relatively tion exhibits high polymer thickening efficiency and low volatility. The Figure shows graphically the effect high VI response. of a number of types of polymers upon the oil base stock allowable for multigrade oils. All polymers were EXAMPLE added to a base blend containing HVI 100N plus a rep- Rheological Properties: Relationship to Base Oil resentative additive combination. At a given viscosity The viscosity index was determined for lubricating at 2100}?! h lower the viscosity 00F measured i the compositions comprising a block copolymer (same as cold crahklhg slmulamrg the h f y the 011 me polymer of Sample F, Table II of Example [1), ployed for a given multigrade oil. It is readily apparent 02%, of a pour point depressant (Same as used in from the Figure that the polymers fall into two classes, ample II), and four lubricating oils differing in VI. those cohtalhlhg Polystyrene and thos cohtalhlhg y- Table n presents the results obtained: drogenated polystyrene or no styrene at all. It 15 also apparent that the polystyrene-containing polymers TABLE show a steeper slope in the Figure and thus show superior performance. gr: at glg at 3, 1 These data have been converted into actual polymer Base Oil SUS SUS v1 concentrations and base oil compositions allowed in LVl 100M 0 38.2 106 6 Lvl 100M L0 456 2M 70 SAE 1OW/50 motor oils. Results are shown in Table LVl 100N 2.0 55.4 564 19 IV. The lettered curves on the Figure refer to the corre- LVl WON sponding samples listed in Table IV. It is apparent from Mvl lOON 0 38.2 100 38 My 100M 20 591 638 35 these data that polystyrene-hydrogenated polyisoprene MVI MON 30 98.2 2092 33 is the only polymer which can be used to make an ac- :gg: 8 32% g; :28 ceptable SAE 10W/50 lubricant. The ethylene propyl- HVI 100N 2.0 75.9 423 176 ene random copolymer is much too susceptible to deg- HVI WON 1246 186 radation by shear to remain an SAE 1OW/5O under norvHvt IOON 0 38.7 84 129 VHVI WON L0 483 I58 184 mal service. Except with polystyrene-hydrogenated VHVl IOON 2.0 0.2 39 205 polyisoprene polymers, in order to obtain an SAE 2120 200+ l0W/50 lubricant it was necessary to use substantial As the above data show, the present invention applies am u of HVI 80 Oil in the blend 0f higher to the use of high viscosity index, including very high amounts of polymer. If an 80 neutral oll IS requ viscosity index lubricating oils, since the polystyrene- Inmate result 15 g 011 cohshmphoh dunhg hhydrogenated polyisoprene block polymers were either f a l g amount Ph y needed, the 'hp ineffective or even detrimental in low or medium VI 15 at ah ecohomlc dlsadvahtage compared Wlth the oils. more efficient polymers.

TABLE IV Conc. Ratio Ratio (percent HVI HVI Sample Polymer Mn X 10- w) 100 N 250 N A Hydrogenated polyisoprene 41 P S- sible B 98 2.4 10/90 C.... 2.1 25/75 D... Polystyrene-hydrogenated polyisoprene..... 29-51 1.9 75/25 15.... 32-54 1.7 75/25 F.... 38-70 1.5 72/28 6.... 40-69 1.8 77/23 H Hydrogenated polystyrene-hydrogenated 21-107 2.7 25/75 polyisoprene. l 38-70 3.1 lO/90 J 40-69 3.2 10/90 K Hydrogenated polystyrene-hydrogenated 13-70-13 2.8 25/75 polyisoprene-hydrogenated polystyrene. L Ethylene/propylene random copolymer 1.5 70/30 M Polymethacrylate 6.8 35/65 From comparison, an expert in lubricating oil formulation can see that only the polystyrene-hydrogenated polyisoprene block copolymers are the suitable choice: 1) they are effective at relatively low concentrations; 2) they do not require any high volatility (80 neutral) oil; and 3) a range or oils (e.g. SAE 10W/30, 10W/40 and 10W/50) can be made from the same oil base by varying the polymer concentration.

EXAMPLE V Effect of Partial Hydrogenation of Aromatic Block TABLE V Aromatic Polymer Viscosity Saturation Concentration at 210F (sus) V1 Unexpectedly, these data show that even a small degree of aromatic hydrogenation renders the polymer less desirable as a V1 improver.

EXAMPLE V1 Performance Features of Fully Formulated SAE W/50 Motor Oil A representative SAE 10W/50 lubricating oil formulation in accordance with this invention is shown herewith:

Component %w HVl 100 neutral oil (Mid-Continent 65.66 l-lVl 250 neutral oil (Mid'Continent) 21.89 Polystyrene-hydrogenated polyisoprene (29,000-5l,000 mol wt) 1.95 Zince dialkyl dithiophosphate 2.00 Polyisobutylene succinimide (0.34% total nitrogen. Basic nitrogen nil) 7.00 overbased Ca petroleum sulfonate (1400% excess basicity as CaCO;,) 1.00 Copolymer of 2-methyl-5-vinyl pyridine (5%),

lauryl methacrylate) (60%) and stearyl methacrylate (35%) 810,000 mol wt) 0.50 Dimethyl silicone, ppm 10 Typical properties for this formulation are the following:

Tested Oil Viscosity at 210F, SUS 108.8 Viscosity at 100F, SUS 756.0 Viscosity at 0F (cold cranking 21.2

' simulator), poise Viscosity index 174 Pour Point, F -30 Flash Point, F 405 TBN-E Total Base Number electrometric 5.15 TAN-E Total Acid Number electrometric 2.60 Initial pH 7.5 Sulfated Ash, %w 0.89

Gravity, AP1 29.1 Zinc, %w 0 Phosphorus, %w 5 Calcium, %w 0.17 Magnesium, %w N ASTM Foam Test, ml Sequence 1 1 0/0 Sequence 2 :10/0 (Foam Tendency/Foam Stability Sequence 3 0/0 The formulation was subjected to the series of tests designated ASTM-SE, which were set as standard to satisfy automotive requirements. Reference to these tests may be found in the ASTM special Technical Publication No. 315-E. The set of engine tests are those proposed as additions to Technical Report .1183 of the 1971 SAE Handbook. The more important results of the tests, all of which were passed by the above formulation, are summarized as follows:

Sequence 111 C This is an oxidation thickening test, designed to simulate conditions such as those encountered by a car pulling a trailer at mph.

SE Requirement Tested Oil Average Sludge (10=clean) 9.0 min. 9.8 Average Piston Skirt Varnish (l0=clean) 9.5 min. 9.8 Average Ring Land Varnish (10=c1ean) 6.0 min. 8.3 Viscosity Increase at F,

at 40 hours 400 max. 4 at 64 hours Must complete 18 Cam and Lifter Wear, in.

Average 0.0010 0.0006 Maximum 0.0020 0.0013

Sequence VC This is a low temperature sludge and varnish test to indicate effect of the oil formulation on engine cleanliness.

SE Requirement Tested Oil AverageSludge (l0=clean) 8.5 min. 9.6

Average Varnish (10qrlean) 8.0 min. 8.7 Average Piston Skirt Varnish (l0=clean) 8.7

Oil Screen Clogging, 5 max. 0

Oil Ring Clogging, 5 max. 0

Compression Ring Sticking None None L-38 This is a high temperature test to indicate copperlead bearing corrosion under operating conditions.

Bearing weight loss, mg at 40 hours 40 max. 12.2

Sequence 118 This test is designed to establish the rust protection properties of the oil formulation under dynamic operating conditions.

Average Engine Rust (10=clean) 8.9 min. 8 9

Summarizing the above formulation and engine test results, the SAE 10W/50 formulation having low base stock volatility and low oil consumption in service is made possible by the unique thickener, polystyrenehydrogenated polyisoprene. The low temperature properties are enhanced by the vinyl pyridinemethacrylate copolymer, while oxidation inhibition and anti-wear protection are obtained by the dithiophosphate. Anti-rust and engine cleanliness are promoted by the overbased calcium sulfonate and the ashless dispersant (polybutylene succinimide). The entire formulation typically has only 0.8 percent sulfated ash.

As shown by the engine test results, the above formulation provides excellent sludge, varnish and wear control as indicated by the Sequence 111C, VC and L-38 tests. The rust rating in the Sequence 118 test assures adequate rust protection under the most severe operating conditions.

In addition to these laboratory engine test results which should assure excellent performance in the field, the oil satisfies current shear stability requirements: that is, it stays within the SAE 10W/50 viscosity grade after (a) 1,000 simulated miles in a Ford 302-C1D shear stability test (60 mph for 17 hours) and (b) 10 hours in the L-38 engine test.

An additional advantage of the present invention lies in the ease of hot starting, enabled by the use of, for example, a lW/50 oil of this invention. It is a fairly common occurrence that cars experience, hot starting problems when, for example, after a high speed trip on a freeway they are stopped to refill the gas tank. A comparison was made between the SAE 10W/50 oil of Example VI and a SAE 10W/30 oil as described in the Henderson patent US. Pat. No. 3,438,897. The tests were carried out on a 1972 Chevelle with a 307-CID V-8 engine to determine cranking speed as a function of coolant temperature in the jacket next to the inder wall. Results of this comparison clearly indicated at least a 10F increase in the temperature at which the engine could be started when using the SAE 10W/50 oil of this invention over the [OW/30 oil of the Henderson patent.

EXAMPLE VII In order to determine if three-block polymers having terminal polystyrene blocks attached to a hydrogenated rubber center block could be used in the compositions of the present invention, the gelling tendencies of such polymers in lubricating oils were examined.

Polystyrene-hydrogenated polybutadienepolystyrene polymers having the block molecular weights as shown below, were dispersed in I-IVI 100 neutral lubricating oil at 2%w concentration and observed at room temperature.

Sample Block Mol WtXlO" Room Temp. Gel Results A 3534 no gel B 5255 no gel gelled Anti-Rust Characteristics of Formulated Oil %w 100 HVl neutral 65.24 250 HVl neutral 21.75 Block copolymer 1.85 Zinc dialkyl dithiophosphate 1.5 Polyisobutylene succinimide of trimethylolaminomethane 7.00 Overbased magnesium sulfonates 2.16 Vinyl pyridine-acrylate copolymer 0.50 Dimethyl silicone, ppm Total sulfated ash, %w 1.0

The above SAE l0W/50 formulation was run in the Sequence I18 and gave an engine rust rating of 9.0. The above formulation had essentially the same components in different concentrations as the formulation of Example V1, except that magnesium sulfonates (800 percent overbased) were used in place of calcium sulfonates.

EXAMPLE IX Diesel Cleanliness of Formulated Oil %w 100 l-IVl Neutral 34.0 250 HVl Neutral 29.0 150 HVI Bright Stock 14.0 Polystyrene-hydrogenated polyisoprene Block Copolymer 0.8 Tetraethylene pentamine derivative of polyisobutylene 6.0 Zinc diaryl dithiophosphate 3.4 Overbased calcium salicylate 1 1.7 Acrylate polymer 0.1 Isooctyl phenoxytetraethoxyl ethanol 1.0 Silicone fluid, ppm +10 Total sulfated ash, %w 1.8

The above SAE 20W/40 formulation was run in the Caterpillar l-G test for 240 hours. The results were excellent with very little top-ring groove carbon filling (2 percent) and very little lacquer deposit. This performance is almost identical to an SAE 30 oil with the same additive package except without the block copolymer. A comparable oil containing a polymethacrylate polymer gave poorer clenliness ratings with about 25 percent top-ring groove filling.

We claim as our invention:

1. A lubricating oil composition comprising a. a major amount of a mineral lubricating oil having a viscosity index of at least b. a minor but effective pour point depressing amount of a pour point depressant for said oil of the group consisting of copolymers of alkyl acrylates, copolymers of alkyl methacrylates and copolymers of nitrogen-containing esters of the acrylic acid series; and

c. 0.1 l0 percent by weight of a block copolymer comprising 1. a single polymer block A, at least about 75 percent of which is condensed alkenyl arene units, no more than about 5 percent of the aromatic unsaturation being reduced by hydrogenation, said block A having an average molecular weight between about 10,000 and 55,000;

2. a single hydrogenated polymer block B, said block, prior to hydrogenation, being a polyisoprene block; at least about percent of the olefinic unsaturation of block 13 being reduced by hydrogenation; said block B having an average molecular weight between about 20,000 and about 100,000; the weight ratio of block A to block B being between about 0.45:1 and about 0.8:1; any remaining blocks in the block copolymer having a total average molecular weight not exceeding about 7,500, being selected from alkenyl arene polymer blocks and conjugated diene polymer blocks each having the monomer identity and hydrogenation limitations recited for blocks A and B.

2. A lubricating oil composition according to claim 1 comprising a. a major amount of a mineral lubrication oil;

b. a minor but effective amount of a pour point depressant for said oil; and

0. 0.1-10 percent by weight of a block copolymer having the structure wherein l. A is a polymer block comprising at least about 75 percent by weight of condensed styrene units, no more than 25 percent of the aromatic unsaturation in said block being reduced by hydrogenation; and 2. B is hydrogenated polymer block comprising, prior to hydrogenation, at least 75 percent by weight of condensed isoprene units, at least 95 percent of the olefinic unsaturation in said block being reduced by hydrogenation.

3. A lubricating oil composition according to claim 2 wherein the pour point depressant is an oil-soluble copolymer of (l) a monovinyl-substituted pyridine of the group consisting of pyridines substituted on one of the ring carbon atoms with, as the sole substituted substituent, a vinyl group, and derivatives of the aforedescribed vinyl pyridines having a lower alkyl group substituted on a ring carbon atom and (2) a mixture of a C to C alkyl ester of an acrylic acid of the group consisting of acrylic acid and methacrylic acid and a C to C alkyl ester of an acrylic acid of the group consisting of acrylic acid and methacrylic acid in mole ratios varying from 1:4 to 4:1, said copolymer having the monoviiiyl pyridine and the combined acrylic acid esters in a mole ratio varying from 1:2 to 1:10, respectively, and a molecular weight from 5 X to 2.5 X 10.

4. A lubricating oil composition according to claim 3 wherein the block copolymer has the structure AB wherein 1. A is a homopolymer block of styrene having an av- I erage molecular weight between about 25,000 and about 50,000.

2. B is a hydrogenated homopolyisoprene block having an average molecular weight between about 35,000 and about 80,000; the weight ratio of A18 being between 0.511 and 0.721.

5. A lubricating oil composition according to claim 3 wherein the pour point depressant is a copolymer of 2-methyl-5-vinyl pyridine, lauryl methacrylate and stearyl methacrylate.

6. A lubricating oil composition according to claim 1 wherein the composition has a viscosity of less than 24 poises at 0F and more than 58 SUS at 210F.

7. A lubricating oil composition according to claim 6 wherein the composition has a viscosity more than SUS at 210F.

8. A lubricating oil composition according to claim 6 wherein the lubricating oil consists essentially of fractions having a viscosity of at least about SUS at i 9. A composition according to claim 7, which comprises in addition:

a. 0.1-3.0 percent oil-soluble metal thiophosphate;

b. 0.18.5 percent oil-soluble essentially ashless detergent; and

c. a rust-inhibiting amount of an oil-soluble basic alkaline earth metal hydrocarbon sulfonate.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2889282 *Sep 17, 1956Jun 2, 1959Shell DevLubricating oil compositions
US3438897 *Oct 10, 1966Apr 15, 1969Shell Oil CoEngine lubricating compositions
US3554911 *Nov 30, 1967Jan 12, 1971Phillips Petroleum CoViscosity index improvers
GB769281A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3903003 *Mar 6, 1974Sep 2, 1975Shell Oil CoLubricating compositions containing an amido-amine reaction product of a terminally carboxylated isoprene polymer
US3965019 *Dec 19, 1974Jun 22, 1976Shell Oil CompanyLubricating compositions containing hydrogenated block copolymers as viscosity index improvers
US4014794 *Mar 11, 1974Mar 29, 1977E. I. Du Pont De Nemours And CompanyOil filter adapter
US4032459 *Jan 29, 1976Jun 28, 1977Shell Oil CompanyLubricating compositions containing hydrogenated butadiene-isoprene copolymers
US4073737 *Apr 19, 1976Feb 14, 1978Exxon Research & Engineering Co.Hydrogenated copolymers of conjugated dienes and when desired a vinyl aromatic monomer are useful as oil additives
US4194057 *May 17, 1978Mar 18, 1980Orobis LimitedIsoprene-sytrene tapered or block copolymer, ethylene-propylene copolymer, mineral oil
US4358565 *Oct 31, 1980Nov 9, 1982Shell Oil CompanyGraft polymerization of hydrogenated star polymer with nitrogen-containing polar compound
US4402843 *Oct 23, 1981Sep 6, 1983Phillips Petroleum CompanyViscosity index improvers with dispersant properties prepared by reaction of lithiated hydrogenated copolymers with 4-substituted aminopyridines
US4402844 *Oct 23, 1981Sep 6, 1983Phillips Petroleum CompanyViscosity index improvers with dispersant properties prepared by reaction of lithiated hydrogenated copolymers with substituted aminolactams
US4409120 *Aug 2, 1982Oct 11, 1983Shell Oil CompanyProcess for forming oil-soluble product
US4412087 *Dec 16, 1981Oct 25, 1983Phillips Petroleum CompanyHydrogenated random block polymer of conjugated diene and monovinylarene monomers
US4788361 *Oct 30, 1987Nov 29, 1988Shell Oil CompanyPolymeric viscosity index improver and oil composition comprising the same
US4849481 *Jul 10, 1987Jul 18, 1989Shell Oil CompanyStar shaped asymmetric block copolymer of monoalkenyl aromatic hydrocarbon and conjugated diene
US4877836 *May 24, 1988Oct 31, 1989Shell Oil CompanyViscosity index improver and composition containing same
US4900875 *Jan 23, 1989Feb 13, 1990Shell Oil CompanySelectively hydrogenated star polymer of a monoalkenyl aromatic hydrocarbon-conjugated diolefin block copolymer arm a homo-or copolymer of a conjugated diolefin arm, and a poly (polyalkenyl coupling agent) nucleus
US4922045 *Aug 3, 1987May 1, 1990Texaco Inc.Graft addition polymers
US4983673 *Dec 22, 1988Jan 8, 1991Shell Oil CompanyBlend of polyamide with block polymer of hydrogenated alkyenyl arene and conjugated diene
US4988765 *Dec 22, 1988Jan 29, 1991Shell Oil CompanyHigh impact resistant blends of thermoplastic polyamides and modified diblock copolymers
US4992529 *Oct 29, 1987Feb 12, 1991Shell Oil CompanyContacting with an aqueous solution of inorganic acid in presence of carboxylic acid; separation of hydrogenation catalysts
US5049294 *Oct 13, 1989Sep 17, 1991Shell Oil CompanyModified dispersant V.I. improver
US5209862 *Jan 30, 1991May 11, 1993Shell Oil CompanyCarboxylated Hydrogenated Vinylaromatic-Conjugated Polyene Block Polymer
US5223579 *Jan 28, 1991Jun 29, 1993Shell Oil CompanySolid viscosity index improvers which provide excellant low temperature viscosity
US5278252 *Mar 22, 1993Jan 11, 1994Shell Oil CompanySolid viscosity index improvers which provide excellent low temperature viscosity
US5310490 *Mar 13, 1991May 10, 1994Exxon Chemical Products Inc.Hydrogenated block copolymers of butadiene and another diene; lubricating oils, internal combustion engines
US5310814 *Mar 15, 1991May 10, 1994Exxon Chemical Patents Inc.Viscosity modifier polybutadiene polymers
US5360564 *Jul 30, 1993Nov 1, 1994Shell Oil CompanyDispersant viscosity index improvers
US5458791 *Jul 1, 1994Oct 17, 1995Shell Oil CompanyOil additives
US5458792 *Aug 11, 1994Oct 17, 1995Shell Oil CompanyIsoprene-styrene
US5458807 *May 6, 1994Oct 17, 1995Idemitsu Kosan Co., Ltd.Engine oil composition
US5460739 *Sep 9, 1994Oct 24, 1995Shell Oil CompanyStar polymer viscosity index improver for oil compositions
US5543469 *Jan 20, 1995Aug 6, 1996Exxon Chemical Patents Inc.Hydrogenated block polymer containing butadiene
US5616542 *Apr 3, 1996Apr 1, 1997Shell Oil CompanyOil with asymmetric radial polymer having block copolymer arm
US5747433 *Jul 15, 1996May 5, 1998The Lubrizol CorporationOil concentrates of polymers with improved viscosity
US5945485 *Mar 25, 1996Aug 31, 1999Exxon Chemical Patents IncViscosity modifier polybutadiene polymers
US6034040 *Aug 3, 1998Mar 7, 2000Ethyl CorporationMixture of mineral oil and polymer; lubricant for manual transmission, axles
US6750305 *Feb 23, 2001Jun 15, 2004Institut Francais Du PetroleAcrylic copolymers as additives for inhibiting paraffin deposit in crude oil, and compositions containing same
US6989417 *Mar 16, 2001Jan 24, 2006Landec CorporationUniform dispersion of crystalline polymer
US7101928 *Sep 17, 1999Sep 5, 2006Landec CorporationPolymeric thickeners for oil-containing compositions
US7208543Aug 15, 2005Apr 24, 2007Polimeri Europa S.P.A.Ethylene-propylene copolymers with an improved shape stability suitable for modifying lubricating oils and process for the preparation thereof
US7407918Dec 11, 2003Aug 5, 2008Afton Chemical CorporationOil additives contains an ashless dispersant and a viscosity index improver, a block copolymer of isoprene and styrene; polymerization product of a raffinates and isobutylene; molecular weight range; heat resist at high temperature and improve low temperature characteristics
US7439301Mar 1, 2005Oct 21, 2008Kraton Polymers U.S. LlcBlock copolymers having high flow and high elasticity
US7449511Aug 8, 2005Nov 11, 2008Landec Corp.Polymeric thickeners for oil-containing compositions
US7625851Mar 7, 2007Dec 1, 2009Kraton Polymers Us LlcViscosity index improver for lubricating oils
US8193135Feb 12, 2007Jun 5, 2012Polimeri Europa S.P.A.Ethylene-propylene copolymers suitable for the modification of lubricating oils and process for the preparation thereof
CN1837339BAug 26, 2005Jan 11, 2012波利玛利欧洲股份公司Ethylene-propylene copolymers with an improved shape stability suitable for modifying lubricating oils and process for the preparation thereof
CN101379170BFeb 12, 2007Jul 10, 2013波利玛利欧洲股份公司Ethylene-propylene copolymers suitable for the modification of lubricating oils and process for the preparation thereof
DE2603034A1 *Jan 28, 1976Aug 11, 1977Basf AgSchmieroel-gemische
DE2716390A1 *Apr 13, 1977Nov 10, 1977Exxon Research Engineering CoSchmieroelzusammensetzung
DE102007032120A1Jul 9, 2007Jan 15, 2009Evonik Rohmax Additives GmbhUse of comb polymer comprising polyolefin-based macro-monomer derived from repeating units and repeating units derived from low molecular monomers comprising e.g. styrene monomer, to reduce the fuel consumption in motor vehicles
DE102007046223A1Sep 26, 2007Apr 2, 2009Evonik Rohmax Additives GmbhUse of comb polymer comprising repeating units derived from polyolefin-based macro-monomer and repeating units derived from low molecular monomers comprising e.g. styrene monomer, to reduce fuel consumption in motor vehicles
DE102009001446A1Mar 10, 2009Sep 23, 2010Evonik Rohmax Additives GmbhVerwendung von Kammpolymeren als Antifatigue-Additive
DE102009001447A1Mar 10, 2009Sep 16, 2010Evonik Rohmax Additives GmbhVerwendung von Kammpolymeren zur Verbesserung des Lasttragevermögens
DE102010028195A1Apr 26, 2010Oct 27, 2011Evonik Rohmax Additives GmbhSchmiermittel für Getriebe
EP0314251A2 *Oct 26, 1988May 3, 1989Shell Internationale Research Maatschappij B.V.Oil composition comprising a polymeric viscosity index improver
EP0344836A1 *May 19, 1989Dec 6, 1989Shell Internationale Research Maatschappij B.V.Viscosity index improver and composition containing same
EP0629689A2 *Jun 7, 1994Dec 21, 1994Exxon Research And Engineering CompanyGrease composition
EP0690082A2Jun 30, 1995Jan 3, 1996Shell Internationale Research Maatschappij B.V.Star polymer viscosity index improver for oil lubricating compositions
EP0698626A1Aug 10, 1995Feb 28, 1996Shell Internationale Research Maatschappij B.V.Asymmetric triblock copolymer, viscosity index improver for oil compositions
EP0700942A2Sep 4, 1995Mar 13, 1996Shell Internationale Research Maatschappij B.V.Star polymer viscosity index improver for lubricating oil compositions
EP0819755A2 *Jul 9, 1997Jan 21, 1998The Lubrizol CorporationOil concentrates of polymers with improved viscosity
EP1433800A1 *Nov 3, 1999Jun 30, 2004Shell International Research Maatschappij B.V.Copolymers
EP1548092A1 *Dec 13, 2004Jun 29, 2005Afton Chemical CorporationLubricating oil compositions
EP1632504A2 *Aug 15, 2005Mar 8, 2006Polimeri Europa S.p.A.Ethylene-propylene copolymers with an improved shape stability suitable for modifying lubricating oils and process for the preparation thereof
EP1783198A2 *Oct 11, 2006May 9, 2007Infineum International LimitedLinear diblock copolymers as anti-wear additives for lubricants of internal combustion engine crankcases
WO2007093446A1 *Feb 12, 2007Aug 23, 2007Polimeri Europa SpaEthylene-propylene copolymers suitable for the modification of lubricating oils and process for the preparation thereof
WO2007106346A2Mar 7, 2007Sep 20, 2007Kraton Polymers Us LlcViscosity index improver for lubricating oils
WO2010102903A1Feb 25, 2010Sep 16, 2010Evonik Rohmax Additives GmbhUse of comb polymers as antifatigue additives
WO2011134695A1Feb 24, 2011Nov 3, 2011Evonik Rohmax Additives GmbhTransmission lubricant
WO2013182581A1Jun 5, 2013Dec 12, 2013Evonik Oil Additives GmbhFuel efficient lubricating oils