Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3773394 A
Publication typeGrant
Publication dateNov 20, 1973
Filing dateNov 27, 1970
Priority dateNov 27, 1970
Also published asCA962563A, CA962563A1, DE2159000A1, DE2159000B2, DE2159000C3
Publication numberUS 3773394 A, US 3773394A, US-A-3773394, US3773394 A, US3773394A
InventorsGrawey C
Original AssigneeCaterpillar Tractor Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Flexible track belts
US 3773394 A
Circular support belts having internal, wound inextensible filaments encased in elastomer retain a plurality of circumferentially disposed track shoes which are attached to these support belts through an elastomeric couple in which shaped keepers are employed to compressively load the elastomer at the couple to secure the track shoes to the internal inextensible filaments of the support belts. A dense elastomer insulated joint is formed wherein direct physical contact by the track shoes and/or the keepers with these filaments is avoided and a resulting couple is obtained which prevents slipping movement between the track shoes and the filaments. The resulting track belt system can be employed about the periphery of pneumatic tire carcasses to increase traction, protect the carcass, etc.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [1 1 Grawey 1 Nov. 20, 1973 FLEXIBLE TRACK BELTS [75] Inventor: Charles E. Grawey, Peoria, 111.

[73] Assignee: Caterpillar Tractor Co., Peoria, 111.

[52 us. Cl 305/38, 156/137, 305/34, 305/19 [51 Int. Cl. B62d 55/24, B62d 55/28 [58] Field of Search 305/38, 35 EB, 37,

[56] References Cited UNITED STATES PATENTS 3,054,644 9/1962 l-lausmann 305/35 EB 2,459,737 l/l949 2,338,817 l/1944 2,273,949 2/1942 2,273,950 2/1942 3,387,897 6/1968 3,700,288 10/1972 2,392,988 l/l946 2,414,822 1/1947 2,515,128 11/1950 3,063,758 11/1962 Fikse 305/38 FOREIGN PATENTS OR APPLICATIONS 916,650 8/1946 France 305 /40 Primary Examiner-Richard J. Johnson Att0rneyFryer, Tjensvold, Feix, Phillips & Lempio [5 7 ABSTRACT Circular support belts having internal, wound inexten-.

sible filaments encased in elastomer retain a plurality of circumferentially disposed track shoes which are attached to these support belts through an elastomeric couple in which shaped keepers are employed to compressively load the elastomer at the couple to secure the track shoes to the internal inextensible filaments of the support belts. A dense elastomer insulated joint is formed wherein direct physical contact by the track shoes and/or the keepers with these filaments is avoided and a resulting couple. is obtained which prevents slipping movement between the track shoes and the filaments. The resulting trackbelt system can be employed about the periphery of pneumatic tire carcasses to increase traction, protect the carcass, etc.

14 Claims, 16 Drawing Figures PATENTEDNBVZO ms 3; 773394 SHEET 2 [IF 7 INVENTOR CHARLES E.GRAWEY ATTORNEYS PAIENTEDHHYZO I975 3. 773, 394



sum 7 [1F 7 rNvENTolg CHARLES E. GRAWEY wig-WW4 94%, M 0

ATTORNEYS FLEXIBLE TRACK BELTS BACKGROUND OF THE INVENTION mounted about the periphery of a pneumatic tire carcass.

Many of these innovations in the prior art employed metal caps, cups or shoes retained about the outer periphery of the tire through some type of circular supporting system, such as links, cables, chains, rings, etc. Typical systems are illustrated in U.S. Pat. No. 873,919 issued to Arnold, U.S. Pat. No. 1,1 14,983 issued to Grisingher, U.S. Pat. No. 1,407,529 issued to Greenfield, U.S. Pat. No. 1,566,559 issued to Prime, U.S. Pat. No. 2,679,881 issued to Gagne, and U.S. Pat. No. 2,118,776 issued to Eastwick. Most of these innovations were designed for inclement weather conditions I and are not suitable for work vehicles capable of high tractive effort wherein their utilization would be required for extended periods, especially in earth working environments. 1 Some other innovations were designed for work vehicles and include the tire tracks illustrated in U.S. Pat. No. 2,745,460 issued to Koenig and U.S. Pat. No. 2,764,209 issued to Armington. In these structures, articulated joints are employed to connect track shoes in a circle which can be placed about theperiphery of a pneumatic tire'carcass. Besides being bulky structures, these systems tend to be expensive in both initial costs and maintenance costs required for the pivoted joints. Localized loadings in the joints may often be excessive and, if the interference fit between the pneumatic tire and the circle of track is such that it radially constrains the carcass, the resulting preload on the joints is added to the tractive effort transmitted between the tire and the ground through the track and its joints. As a result, a short service-life in earth-working environments can be expected from the prior art conventional systems of this type.

Replaceable, flexible belt structures also were developed for use with pneumatic tires. Some of these belt structures are shown in U.S. Pat. No. 1,234,193 issued to Mass, U.S. Pat. No. 1,311,750 issued to Brashear, and U.S. Pat. No. 2,609,026 issued to Luchsinger- Caballero, some of which include metal track shoes or elements in the belts as shown in U.S. Pat. No. 1,262,01 l issued to Bruce. Some of these systems were designed for use with track laying vehicles as well as over penumatic tire carcasses, as illustrated in U.S. Pat. Nos. 2,273,949 and 2,273,950 issued to Galanot et al., U.S. Pat. No. 2,728,612 issued to Howe et al, and US. Pat. No. 3,387,897 issued to Reid.

It is useful to distinguish for classification between the pivoted or hinged track shoes as illustrated in the above-referenced U.S. Pat. No. 2,764,209 and those structures employing flexible connections between the track shoes that offer more freedom of movement between the adjacent track shoes, not being restrained to the pivot axis.

The current invention is. primarily related to the latter type having limited universal relative movement between adjacent track shoes and is designed to overcome many of the troublesome problems experienced with the prior art syste'rns.

Difficulties in theprior artstructures of this type' are often experienced inrachieving-the desired flexibility in the support system along with adequatestrength and service-life when these devices are employed in earthworking vehicles. Another major problem is the connection mechanisms between the belt support and the track shoes or elements which often deteriorate quickly leading to failure of thesestruct uresj In particular, an object of the instant: invention is the provision of a highly flexible support belt system that has sufi'icient strength to adequately hold the circumferentially disposed track shoes and radial preloads from the supporting pneumatic carcass while also providing the needed service-life required in earthworking vehicles.

Another important object is the provision of an elastomeric couple between the inextensible reinforcing filaments in the flexible support belts and the track shoes which provides insulation between these parts without slippage therebetween. I

Also, it is an object to provide flexible track belt which is compatible withlarge earth-working vehicles having considerable drawbar horsepower that require considerable tractive effort be developed across-the track belts.

Another object is provision of a flexible track belt which can be manufactured economically in all sizes.

SUMMARY OF THE INVENTION A flexible track belt includes several flexible circular support belts with each belt having internal inextensibl e reinforcing filaments wound therein and encased in elastomer, a plurality of track shoes circumferentially arranged about the circular support belts and oriented transversely thereto and attaching means for each track shoe to couple it to the support belts, the attaching means having shaped retaining means for receiving the support belt and clamping means to compressively load the elastomer encasing the reinforcing filaments whereby a dense elastomeric couple between the track shoes and the filaments is formed through the attaching means without direct physical contact due to the insu-- lation provided by the elastomer. The retaining means for the support belts must be shaped in a manner to prevent the extrusion of the elastomer when it undergoes compressive loading in the area of the elastomeric couple so adequate density is achieved to prevent slippage of the attaching means relative to the reinforcing filaments in the support belts.

The resulting flexible track belts can be employed about the periphery of a pneumatic tire carcass to form a reliable track encircled tire combination for work vehicle. Radially reinforced tire carcasses are preferred in such a track encircled tire combination, with filament wound tube tire carcasses combining with the track belts to form the most preferred and superior perfonning arrangement when the track belts are used in this manner.

Other applications of these track belt systems are also possible.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective of a work vehicle with the flexible track belts mounted on its pneumatic tires illustrating an earth-working environmental application thereof;

FIG. 2 is a section through a belted tire of one of the wheels of the work vehicle shown in FIG. 1 with parts broken away;

FIG. 3 is a broken away elevation of the belted tire shown in FIG. 1;

FIG. 4 is an exploded section of an alternate embodiment of the flexible track belt;

FIG. 5 is an elevation of the flexible track belt in which the retaining member or keeper is extended to limit the travel of an adjacent track shoe due to an overlapping relationship;

FIGS. 6 and 6A are perspectives illustrating another embodiment of the flexible track belt in which only two support belts are employed;

FIG. 7 is an enlarged section of a sidewall retention device which can be employed in place of the centering lugs illustrated in FIGS. 6 and 6A with the two support belt embodiments;

FIG. 8 is a broken away perspective of an individual support belt illustrating some of its internal construction details;

FIG. 9 is a perspective of a filament winding machine for fabricating the support belts;

FIG. 10 is a section of a support belt having fabric disposed between the layers or plies of reinforcing filaments;

FIG. 11 is a broken away perspective of a portion of the drum of the machine illustrated in FIG. 9 showing the simultaneous application of multiple reinforcing filaments;

FIGS. 12 and 13 illustrate in section and elevation, respectively, a belleville spring clamping device to compressively load the elastomer in the elastomeric couple;

FIG. 14 is an elevation of an arcuate retaining means which will shorten the support belts as the track shoes with a compatible surface are tightened against the retaining means; and

FIG. 15 is a perspective of a filament wound tube-tire carcass providing the most preferred carcass with which the track belt can be combined.

DESCRIPTION OF AN EMBODIMENT An earth-working machine is illustrated in FIG. 1 wherein flexible track belts 21 have been assembled on its pneumatic tire carcasses 22. This is one of the principal environmental applications for which the current flexible track belts were designed. Depending on the aggressiveness of the grousers on the track shoes of the track belt and soil or roadbed conditions, the flexible track belts may appreciably increase the tractive effort capability of such a vehicle. In some situations, this increased capability can exceed the structural capability of the drive train. Of course, in other environments, such as smooth concrete surfaces, the tractive effort may be much less than a contemporary vehicle with conventional rubber tires. Therefore, it should be appreciated that the flexible track belts of this invention, which employ a unique elastomer couple, are usually employed in specialized applications wherein large economies can be experienced through their use, for

example in rock work where conventional rubber tires are often cut and punctured, or situations whererubber tires do not give adequate traction due to the surface conditions.

Besides acting as a shield in certain environments, the track belt provides increased machine stability, improved floatation, and better steering response in many applications. Better load distribution in the footprint also is achieved which contributes their many advantages.

Prior art devices have traditionally been incapable'of attaching or retaining the individual track shoes'on flexible belts for extended periods of time without resulting in belt failure due to slippage between the shoes and the support systems or wear in the support system. If the support reinforcing such as cables are physically gripped with sufiicient force to prevent slippage, it is often crushed, flattened or nicked encouraging its failure contiguous to such attachments. If the support system is not physically secured, the track shoes tend to slip causing excessive wear and/or flexure therein. In addition, the prior art designs, because of the above factors and others, are normally incapable of achieving some uniform load distribution on the reinforcing members or filaments of the support systems. Because the reinforcing flexible support system must be substantially inextensible in order for the track belt to be retained on tire carcass, if combined therewith, and provide sufficient strength to allow the transfer of torque between the tire carcass and the track shoes, prior art devices often employed large cables or wires which resulted in poor load distribution causing failures.

In FIG. 2, the different construction of the instant invention can be seen in detail wherein track shoe 30 with grousers 31 is attached with tap bolts 32 to a retainer member or a keeper 33 having channels 34 for receiving the supporting belts 35, which in this embodiment are connected together by a thin elastomer web between the channels in the keepers, but are shown as independent belts in FIG. 4, an alternate embodiment.

The space A between the track shoe base 30a and the tops of the ridges 36 of the keeper 33 is critical with reference to the thickness of the individual belts, since it would be impossible to obtain the desired preload or compressive loading on the elastomer surrounding the reinforcing filaments of the support belts 35 for the elastomeric couple necessary to join the track shoes and the support belts in a manner which is compatible with the small diameter inextensible reinforcing employed in this invention, if this space or gap was not present.

In the elastomeric couple, high torques can be transferred between the inextensible reinforcing filaments within the belts and the individual track shoes without direct physical contact by placing the encasing elastomer under high compressive loading, preferably from l,500-5,000 psi, in the area of the couples. Since the elastomer is substantially incompressible and exhibits resiliency through elastomer flow, it is necessary that the couple employ means to prevent the flow (extrusion) of the elastomer if a satisfactory couple is to be achieved. The individual channel 34 in the keepers closed by the cooperating base 30a of the track shoe 30 contains the elastomer, except along the generally parallel axes of its internal reinforcing filaments (the open ends of the channels). The adhesion of the elastomer to the reinforcing filaments and the friction developed due to a high ratio of reinforcing filaments to elas= tomer by cross sectional area in the support belt prevents the extrusion of the elastomer from the open ends of the channels. The filaments are preferably brass plated to improve elastomer adhesion thereto,

As a result of this arrangement, as the tap bolts 32 are tightened, a compressive loading on the elastomer in each couple can be developed so long as the necessary relationship of gap A and the thickness of the supporting belt is present. Normally, the tap bolts are torqued to achieve at least 1,500 psi compressive load in the intervals to maintain the desired compressive loading on the elastomer in the elastomeric couples. In FIGS. 12 and 13, the desired loading on the couple is maintained continuously by a belleville retaining system. Rivets 40 replace tap bolts 32 in this embodiment, and extend from the track shoe 30 through bores 41 in the keeper 33 so they project from the outer surface of the keeper. Each rivet has an integral head 43 and is assembled in its bore with belleville springs 44'nested thereon so they can be compressed against the outer surface of the keeper as the head is moved toward the keeper. The rivets which fit loosely in their respective bores are positioned to extend through apertures 45 in the associated track shoe after the support belts 35 are placed in channels 34 of the keeper. A press is then employed to compress the belleville springs and the ends of the rivets extending through track shoes are peenedto secure the rivets in their associated track shoes, after which the assembled parts are removed from the press. The belleville springs will maintain the desired compressive loading in the elastomer couple and compensate forany stress relaxation in the elastomer as it occurs. Thus, this arrangement eliminates the necessity of torquing the tap bolts 32at periodic intervals. Obviously, the belleville springs and rivets can be counter sunk in the keeper to provide a smooth undersurface where keeper engages the supporting pneumatic carcass.

In FIGS. 6 and 6A wherein. only two support belts are employed, centering lugs 46' are utilized in the central portion of each track shoe 30 on its base surface 30a which are received in a cooperating groove (not shown) in the supporting pneumatic tire carcass. Be-

cause-the frictional engagement of the base surfaces of the track shoes against the periphery of the tire carcass may not be sufiicient to prevent transverse shifting of the track belt on the tire carcass under certain loading conditions, a centering lug or device is desirable in some environmental applications.

An alternate centering device which cooperates with the sidewall of the pneumatic tire carcass 22 is illustrated in FIG.'7'. In this device, the retaining member or keeper 33 having the shaped channel 34 for the flexible support belt 35, includes a radially inwardly projecting: leg 33a which engages the sidewall of the tire carcass 22 at point B which is well below the crown C of the tire carcass with the track belt assembled thereon. This'arran'gernent 'will also'prevent transverse displacement of the track belt" on the tire-carcass under 9, 10 and 11. As indicated"previously; th ese support belts have internal inextensible reinforcing fiIa'ments SO which are encased in elastomer 51. In prior art devices, the reinforcing typically has been large diameter cables or wires; By coii trast, the instant invention employs very small diameterwires, or cables by'comparison, usually brass" plated, to improve the adhesion of the elastomer thereto, which are preferably wound in a helical manner in the belts forming a series of connected loops. Mono-filament steel wires having high tensile strength and a diameter from 0.005 to 0.050 inch are normally utilized to form the helically wound reinforcing filaments in the support belts. Several of these fila ments may be first twistedloosely together and applied in thesame manner as a single filament. v I

In the drawings, the diameters of the reinforcing filaments 50 are exaggerated for purposes of illustration and their density in the cross-section reduced for clarity. The flexible support belts can be fabricated on the winding machine shown in FIG. 9. A motor 61 drives a drum 62 of an appropriate diameter on which a thin layer of elastomer is applied to its peripheral flat surface 63. Thereafter, a layer or ply of reinforcing is applied by helically winding the wire 50 from spool 64 on the previously-applied elastomer layer through the level winding guide 65. After the reinforcing ply or layer is completed, another thin ply or layer of elastomer is placed over the resulting wire ply and the helical wire winding operation is repeated. Reference is now made to FIG. 10 where the layers or plys E of elastomer 51and layers or plys W of the wires 50 are clearly illustrated in the resulting laminated or sandwich structure of the support belts 35. In FIG. 11, a bobbin 66 is employed to helically wind multiple wires 50 to speed the fabrication of the belts, and it should also be appreciated that the thickness of -the elastomer plys E are exaggerated for the purpose of illustration. Normally, the elastomer layers will be in the range of 0.050 to 0.250 inches and will lose their individual identity when the belts are fabricated due to fusion with adjacent layer through the'wire plies.

It is improtant to recognize that the belts are fabricated so the wire filaments 50 will be insulated from oneanother by the elastomer as graphically illustrated in FIG. 10 wherein layers F of fabric have been placed between the wire plies W to make the belts somewhat more resistant to elastomer flow. Even if several wires are applied loosely twisted together, the elastomer will still tend to insulate them from one another. Generally, the elastomer is applied in an uncured condition, and after the belt is finished, the drum can be wrapped with shrink tape'if desired, and the belt is then cured by removing the drum from the winding machine 60 and placing it in an autoclave.

By employing the small diameter wires 50 to form the reinforcing filaments in the support belts 35, excellent flexibility is obtained with adequate strength since these individual wires have tensile strengths from 275,000 to 425,000 psi. Because of their small diameters, the wires in the belts develop little internal stress during bending in contrast to large diameter, prior art wires or cables wherein the outside diameter (CD) of the cable reinforcing rings are under tension while the inner diameter (ID) is under compression as the track belt passes through the footprint of the tires. This condition causes loads to be unevenly distributed in larger diameter reinforcing filaments causing failure.

By contrast, the wire plies W of the reinforcing filaments of the support belt of this invention are parallel to the bending axis as the track belts pass through the footprint and are also very close to the neutral bending axis. Generally, it is preferred that these wire plies be located close to the neutral bending axis of the support belts 35 so that more even load distribution on all of the plies can occur. As a result, thick support belts are less desirable than the thinner belts.

Because of the small diameter of the wires 50 forming the reinforcing filaments, it can be appreciated that a physical connection between the track shoes and the reinforcing filaments would be difficult without damaging the latter. However the previously described elastomeric couple enables this attachment to be accomplished without damage to the reinforcing filaments and in joints that eliminate slippage between the shoes and the reinforcing filaments.

The elastomer 51 protects and insulates the reinforcing filaments from the track shoes and their associated keepers while the compressive loading on the elastomer forms a non-slip couple between them. While many compositions are suitable, the elastomer generally employed in the support belts is a natural rubber composition having the following characteristics:

Modulus 300% i519 Tensile Strength 4023 Elongation 562% Durometer (Shore A) 63 Compression set (25%) 22 hrs. at 158F. 31.3 Specific Gravity 1.10

A suitable composition is:

Substance Parts by Weight Natural Rubber 100.00 N285 40.0 Textract 2 5.0 Flexone 3C 1.0 Thcrmoflex A 1.0 Stcaric Acid 3.0 Zinc Oxide 5.0 Di ac 1.0 Su fur 2.5 Total: l 58.5

This composition is cured at 280F. from 2.5 to 8.0 hours, depending on thickness.

The composition of the elastomers employed between the support belts in some embodiments (see FIGS. 2 and 3) can vary from that set forth above.

Track belts made according to this invention have been successfully field tested in earth-working environments, and were found suitable for rock work on a loader having a 64-inch tire carcass.

In some applications where full drawbar loads may be transmitted through a single track shoe coupled to the belt supports, it may be desirable to bond the elastomer in the support belts 35 to the channels 34 in the retainer elements or keepers 33 (see FIGS. 2 and 3).

Such a bond increases the capacity to transfer torqueplied as a loosely twisted cable having several strands.

Such small cables are substantiallyinextensible in com-'" parison to large cable or wire; rope, 'used in the prior art, and function substantially the same as the individual wires, especially when their individual wires are insulated from each other by the elastomer so the fatigue life of the wires will not be reduceddue to fretting.

Normally, the completed track belt is assembled on a pneumatic tire carcass having a design profile somewhat larger than the ID of the track belt, by partially collapsing the conventional tire carcass. After the track belt is in place, the tire is inflated and the radial growth of the carcass is constricted by the track belt to a diameter under its normal design profile. In a tire carcass employing radial reinforcing, a similar technique may be employed by also restricting its radial growth with the track belt.

In particular the instant track belt can be advantageously combined with a radially reinforced tire carcass, such as disclosed in US. Pat. No. 2,874,742 issued to Lugli when the track belt of this invention is employed in place of the tread belt shown in Lugli. Like the tread belt shown in Lugli the track belt of this invention will be sized to constrict the carcass to an oval configuration when assembled thereon. The pressure in the carcass will adequately secure the track belt on the tire preventing both circumferential and transverse slippage on the carcass. The disclosures of Lugli concerning the carcass construction is incorporated herein by reference.

The most desirable combination of the track belt of this invention with a pneumatic tube tire carcass is with a filament reinforced, helically wound tube tire carcass disclosed in the assignees U.S. cop'ending Pat. application Ser. No. 835,499 filed June 23, 1969 by Charles E. Grawey. When the instant track belt is combined with the tube tire carcass disclosed in the referenced patent application a superior wheel unit is formed for heavy duty application in work vehicles which can be easily converted for lighter duty application by removing the track belt and replacing it with the tread belt disclosed in that application. The disclosure of the above-referenced patent application is incorporated herein by reference for disclosing the full details of this superior tube tire carcass.

With the above type carcasses the track belts are preloaded and, therefore, must be strong enough to accept the torque through the track shoes along with the preload which in a 64-inch tire could be in the range of 100,000 pounds. Using the small diameter steel wires wound helically in the belts, the necessary belt strength can be obtained for the required service condition with thesetypes of carcasses.

Since it may be difficult to collapse the tire carcass to assemble a heavy track belt thereon, it is possible to assemble the track shoes and belts on the tire carcass if the keepers 33 include arcuate surfaces in their channels to shorten the belts as the tap bolts 32 are tightened to achieve the compressive loading. An example of a suitable arrangement is illustrated in FIG. 14. Since carcass 2 2. In such an embodiment, the coefficient of friction between the mating rubber surfaces is generally sufficient to prevent transverse movement of the track belt on the carcass and insure adequate drive to transmit the necessary torque. In FIG. 4, a lug 71 is employed: in. the central portion of each keeper 33 and is received a circumferential groove 72 in the tire carcass 7 v hen, the instant track belts are usedover conventionalbias angled tire carcasses which shortentheir circumference when deflected, thetrack belts, having a I QQHStfintcircumference,' may tend to shift laterally .(transversely) on these type carcasses. As a result the centering devices described above will be typically 'employeclwith bias angle tire carcasses, aiid notwith the hon belted radial carcasses. On bias angle tire carcasses and belted radial tire carcasses the drive between track belt and the carcass may not be so'positive. Thus some small amountof slippagernay be-expected be weenthesecarcasses and the track belt. Positivedrive may be enhanced by a mechanical lug connection (not shown) between the track belt and these carasses fzd redt Inthe embodiment illustrated in FIG. 5, the keepers 33=have extended portions 33b in between the flexible supportbelts 35 which, with the underside of'the associated track shoe 30, form a limiting stop that limits the degreeof'movement' of adjacent track shoes, preventing a shearing action on the support belts when high radial deflecting loadings act on a single track shoe. Similarstructures may be, utilized with the dual support belt is illustrated by a broken line in FIG. 8 and is essentially in the middle of each support belt. When bending occurs along this axis, some shifting of both the bending. axisand the, individual wires in the belt matrix can beexpected as the load distributes on these reinforcing fil- IHQI tS. It is suspected that through elastomer flow the individual wires shift slightly to. redistribute the load the, outer ply W moving toward the bending axis, through theelastomer since this requires no net volume changewithin; the elastomeric couple. Since each reinforcing: filament; or groups thereof can, be consideredindependently, the above analysis may be somewhat;-

si rnplistic, but it does. serve to; illustrate, that the. couple isjnot rigid in .thesense of metal physically clamped against; the filament. In'this; couple, the; wires canand do. move to some; extent-along their axisduring bending of the beltsjthereby lessening-high localized tension:-

andjor compressive loading on individual; wires,

The construction of the-preferred; tire-carcass 8011's.: shown-in, FIG. l;=;. 'It1ha8;an. oval; shape with aninexten-t ten of the invention.

sible filament 81 helically'iwound around a 1 torusshaped elastomer liner 82 andthe resultingloopsl'covered with an outer elastomer casing 83. The air chambet is inflated through valve stem 84. and when thecar-..

cass is mounted on a rim with the track belt encircling its outer periphery the oval configurationis maintained as the tire is pressurized'isince'the track belt is inextensible. Deflection of this't'ube' tire-carcass' occurs in the sidewalls and allows the outer circumference of the carcass to remain substantially constant, becoming less oval in the portions of the carcass away from the deflection point. Thus the track belt is -tigh'tly' retained on the carcass. An internal bumper 85 maybe employed 7 to limit the deflection and a centering rib86 may be employed with cooperating rim structures to position the tire carcass thereon. Roll restraining hoops 87 at the base of the sidewalls and positioned'inside the helically wound reinforcing prevent the carcass from rolling off the rim dueto lateral loadings.

In the above description reference has been made repeatedly to inextensible reinforcing filaments, such as high tensile strength steel 'wires having diameters from 0.005 to 0.050 inches,.which are employed in the track belt. Other filaments meeting the tensile strength requirements' can be employed if they have a'total elongation of less than 5 percent. For thepurposes' of this description a filament or small cable formed of such filaments which have a total elongation of less than 5 percent shall be considered to be inextensible in the con What is claimed is:

1. A flexible track belt comprising:

at least one flat elastomer endless support belt having a centrally disposed inextensible reinforcing ply of circularly wound inextensible reinforcing filaments in a side-by-side relationship therein to form connected loops of substantially equal diameters forming at least one cylindrical ply with filaments individually encased by elastomer;

plurality of removable oblong track shoes circumferentially arranged about the outer peripheral surface of said flat support belt at spaced intervals, said track shoes oriented transversely across said support belt and transverseto the axes of said reinforcing filaments in said support belt, and plurality of attaching means coupling said track shoes to said support belt, each of said attaching means having an outer belt engaging member and an inner keeper member, each of said inner keeper members having a-belt conforming channel recess with a uniform recess cross-section therein, said keeper members arranged at circumferentially v spaced intervals about the inner peripheral surface of said support belt and integrally formed with said support belt so elastomer portions of said support belt separate adjacent edges of said keeper means from one another thereby providing a continuous inner surface, each of said keeper members confincouple formed therebetween as the elastomer is densified by said force.

2. The flexible track belt as described in claim 1 wherein several equal diameter support belts are eniployed therein with said belts connected together with elastomer webs.

3. The flexible track belt defined in claim 1 wherein the keeper members are bonded to the elastomer endless support belt.

4. The flexible track belt as defined in claim 1 wherein the elastomer is loaded with at least 1,500 PSI to enhance the couple.

5. The flexible track belt as defined in claim 1 wherein the cylindrical ply is disposed within the support belt adjacent to the neutral bending axis of said support belt.

6. The flexible track belt as defined in claim 1 wherein the inner surfaces of the oblong track shoes form the outer belt engaging member of the attaching means.

7. The flexible track belt defined in claim 1 wherein each of the attaching means is adjustable and operable to vary the force on the portion f the elastomer belt within its keeper member.

8. The flexible track belt as defined in claim 1 wherein the inextensible reinforcing filaments are composed of steel wires having diameters from 0.0005 to 0.050 inches.

9 A flexible track belt asdefined in claim 1 wherein ward for engagement with the sidewalls of a supporting pneumatic carcass.

11. The flexible track belt as defined m1 elem 21f wherein the elastomer endless supportbelt has at least wo cylindrical plies.

12. The flexible support belt defined in claim 11 wherein fabric layers are disposed between adjacent cylindrical plies'of the inextensible reinforcing loops.

13. The flexible track belt defined in claim 1 wherein the reinforcing filaments are brass plated and bonded to the surrounding elastomer.

14. The flexible track belt defined in claim 13 wherein cross sectional ratio of reinforcing filaments to elastomer in the support belt is controlled to prevent extrusion of elastomer from the open ends of the keeper members whereby the elastomer confined by each keeper member can be densified to enhance the couple between the attaching means and the individual reinforcing filaments.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2273949 *Nov 19, 1938Feb 24, 1942Galanot Camille PTraction device for motor vehicles
US2273950 *May 14, 1940Feb 24, 1942Galanot Camille PTraction device
US2338817 *May 9, 1942Jan 11, 1944Goodrich Co B FSelf-laying track mechanism
US2392988 *Jul 15, 1942Jan 15, 1946Wingfoot CorpTractor and tank track
US2414822 *Jun 25, 1943Jan 28, 1947Dayton Rubber Mfg CoWire reinforced belt
US2459737 *Jul 9, 1943Jan 18, 1949Firestone Tire & Rubber CoAirplane landing gear
US2515128 *Jan 10, 1946Jul 11, 1950Wingfoot CorpBelt type vehicle track
US3054644 *Nov 18, 1959Sep 18, 1962Schlepperwerk Nordhausen VebVehicle track
US3063758 *Aug 26, 1960Nov 13, 1962Harold Fikse TymanStrung section flexible band vehicle track
US3387897 *Apr 12, 1965Jun 11, 1968Abitibi Paper Co LtdTrack shoe
US3700288 *Dec 31, 1969Oct 24, 1972Blaw Knox Constuction EquipmenPaving machine
FR916650A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3902765 *Jul 26, 1974Sep 2, 1975Us ArmyTension control for flexible tire connectors
US3902766 *Jul 26, 1974Sep 2, 1975Us ArmyTraction control for vehicles equipped with orbiting tires
US3948707 *Feb 13, 1974Apr 6, 1976Caterpillar Tractor Co.Flexible sealed track belt
US4010789 *Sep 2, 1975Mar 8, 1977International Harvester CompanyAnchor plate tire
US4013112 *Sep 2, 1975Mar 22, 1977International Harvester CompanyAnchor plate tire having a sub-lug equipped anchor plate
US4043609 *Oct 6, 1975Aug 23, 1977International Harvester CompanyArmored tire having a flexible tapered belt arrangement
US4056288 *Mar 1, 1976Nov 1, 1977Caterpillar Tractor Co.Endless track for crawler vehicles
US4057302 *Jan 5, 1976Nov 8, 1977The Goodyear Tire & Rubber CompanyRemovable tread belt
US4059313 *Sep 27, 1976Nov 22, 1977Caterpillar Tractor Co.Track belt assembly
US4070071 *Feb 9, 1976Jan 24, 1978The Goodyear Tire & Rubber CompanyTraction element for removable track
US4075048 *Oct 31, 1975Feb 21, 1978Owens-Corning Fiberglas CorporationMethod for producing a bead for a pneumatic tire
US4081013 *Jan 5, 1976Mar 28, 1978The Goodyear Tire & Rubber CompanyTraction shoe seal
US4132258 *Nov 14, 1977Jan 2, 1979International Harvester CompanyArmored tire
US4230511 *Jan 24, 1979Oct 28, 1980The Goodyear Tire & Rubber CompanyCuring a replaceable tread for a big tire
US4241956 *Jun 12, 1978Dec 30, 1980Caterpillar Tractor Co.Track assembly for crawler-type vehicles
US4258768 *Dec 26, 1979Mar 31, 1981The Lamson & Sessions Co.Fastener assembly
US4368929 *Oct 28, 1981Jan 18, 1983Caterpillar Tractor Co.Sealed track belt arrangement
US4480670 *Dec 29, 1980Nov 6, 1984The Goodyear Tire & Rubber CompanyTrack belt assembly
US4844560 *Jan 20, 1988Jul 4, 1989Edwards, Harper, Mcnew & CompanyEndless drive track joint assembly
US4861120 *May 14, 1987Aug 29, 1989Edwards, Harper, Mcnew & CompanyModular endless track drive system and methods of making, installing and repairing same
US4884852 *Oct 25, 1988Dec 5, 1989Edwards, Harper, Mcnew & CompanyDouble V-shaped endless track drive system
US4906054 *May 20, 1987Mar 6, 1990Edwards, Harper, Mcnew & CompanyEndless track drive system
US5005921 *Dec 18, 1989Apr 9, 1991Edwards, Harper, Mcnew & CompanyEndless track drive system
US5005922 *Sep 22, 1989Apr 9, 1991Edwards, Harper, Mcnew & CompanyDouble V-shaped endless track drive system
US5020865 *Sep 2, 1988Jun 4, 1991Edwards, Harper, Mcnew & CompanyEndless drive track joint assembly
US5040282 *Jun 16, 1989Aug 20, 1991Edwards, Harper, Mcnew & CompanyMethod of making a modular endless track drive system
US5131215 *Mar 2, 1989Jul 21, 1992Williames Geoffrey AllanTrack support for agricultural machines
US6217125 *Feb 16, 1999Apr 17, 2001Louis Raymond TubettoSafety wheel assembly
US6287498 *Dec 15, 1999Sep 11, 2001Xerox CorporationProcess of making flexible belts by pultrusion
US6299265 *Dec 27, 1999Oct 9, 2001Ronald J. HoffartReplaceable tire gripping system for endless track
US6561241Apr 23, 2001May 13, 2003The Goodyear Tire & Rubber CompanyTwo piece tire with improved tire tread belt and carcass
US6652043 *Apr 29, 2002Nov 25, 2003Caterpillar IncReduced sound transmitting idler for track-type vehicles
US7516949Aug 10, 2005Apr 14, 2009First Data CorporationSideways sheet feeder and methods
US9211922Aug 17, 2012Dec 15, 2015Cardinal Gibbons High SchoolRobotic vehicle having traction and mobility-enhanced wheel structures
US20030098110 *Jan 9, 2003May 29, 2003The Goodyear Tire & Rubber CompanyTwo piece tire with improved tire tread belt and carcass
US20070035077 *Aug 10, 2005Feb 15, 2007First Data CorporationSideways sheet feeder and methods
US20140345761 *May 24, 2013Nov 27, 2014Ontario Drive & Gear LimitedWheel
USRE33324 *May 13, 1987Sep 4, 1990Edwards, Harper, McNew & Co.Endless drive system
DE2608795A1 *Mar 3, 1976Sep 16, 1976Caterpillar Tractor CoGleiskettenschuh mit greifrippen
EP0025183A2 *Aug 27, 1980Mar 18, 1981Caterpillar Tractor Co.Track belt with flexible track shoes and/or anchor plates
EP0493875A1 *Oct 10, 1991Jul 8, 1992Bridgestone CorporationRubber track
WO1989008041A1 *Mar 2, 1989Sep 8, 1989Williames Hi-Tech International Pty. Ltd.Track support for agricultural machines
WO1995005947A1 *Aug 15, 1994Mar 2, 1995Airboss LimitedGround-engaging means
U.S. Classification152/185.1, 305/34, 305/19, 156/137
International ClassificationB60C11/02, B60C27/20, B60C27/00, B60B15/20, B60B15/04, B62D55/24, B60B15/00
Cooperative ClassificationB62D55/24, B60C27/20, B60B15/20, B60B15/04, B60C11/02
European ClassificationB60C27/20, B62D55/24, B60C11/02, B60B15/04, B60B15/20
Legal Events
Jun 12, 1986ASAssignment
Effective date: 19860515