Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3773549 A
Publication typeGrant
Publication dateNov 20, 1973
Filing dateNov 30, 1971
Priority dateNov 30, 1971
Also published asCA981992A1, DE2258282A1
Publication numberUS 3773549 A, US 3773549A, US-A-3773549, US3773549 A, US3773549A
InventorsR Elbert, E Farrier
Original AssigneeUnion Carbide Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Ceramic coated porous metal structure and process therefor
US 3773549 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 1451 Nov. 20, 1973 Elbert et a1.

[5 CERAMIC COATED POROUS METAL 3,022,187 2/1962 Eyraud et a1. 117 127 x STRUCTURE AND PROCESS THEREFOR 3,238,056 3/1966 Pall et a1 117/99 X 3,248,266 4/1966 Rampel 117/131 X [75] Inventors: Raymond J- El rt, Mid l u g 3,353,982 ll/1967 Blaha 117 99 x Heights; Ernest G. Farrier, Parma, 2,671,955 3/1954 Grubel et 117/129 X both of Ohio 2,672,426 3/1954 Grubel et 117/129 X 2,826,512 3/1958 Rex 117 129 x Asslgnefi Unlon Carbide Corporatwn, New 2,858,235 10/1958 Rex 117 129 x York, NY 3,536,480 10 1970 Winkler 117 99x [22] Filed: Nov. 30, 1971 Primary ExaminerEdward G. Whitby [21] Appl' 203364 Attorney-Harrie M. Humphreys et a1.

[52] US. Cl. 117/129, 75/20 F, 106/3827, [57] ABSTRACT 117/5.3, 117/99 [51] Int. Cl B4411 l/02 A Porous metal Structure, and WowsS therefor, having [58] Field of Search 117/129, 99, 5.3; a thin coating of a ceramic matsrial deposited on its 75 no R, 20 p; 106/3827 surface and on the internal walls of all accessible pores which substantially improves the oxidation resis- [56] References Cited tant characteristics of the structure while effecitveiy UNITED STATES PATENTS maintaining its mechanical properties. 3,300,331 l/1967 Co11ins,Jr 117/99 15 Claims, 1 Drawing Figure k a I 6 I. 2 LIJ 3 EXPOSURE TIME (HOURS) Patented Nov. 20, 1973 WEIGHT GAIN EXPOSURE TIME (HOURS) INVENTORS RAYMOND J. ELBERT ERNEST G. FARR/ER BY 4 ZJ ATTORNEY CERAMIC COATED POROUS METAL STRUCTURE AND PROCESS THEREFOR FIELD OF THE INVENTION This invention relates to ceramic coated porous metal structures admirably suited for use in oxidation environments as abradable seals, bearings or hearing retainers, and filters.

DESCRIPTION OF PRIOR ART There are many methods presently being utilized for forming porous bodies using powdered metallurgic techniques. Generally, powder metallurgical processes involve the steps of shaping metal powder into green compacts by such techniques as loose packing, compaction, extrusion, rolling or the like, and then consolidating the green composite so formed by the mechanism of sintering. Many of these processes are described in Treatise on Powder Metallurgy by C. G. Goetzel, lnterscience Publishers, Inc., New York, NY. (1949), and Fundamental Principles of Powder Metallurgy" by W. D. Jones, Edward Arnold Publishers, London, England (1960). Further methods for fabricating porous metal sheets and the like are disclosed in U.S. Pat. No. 3,433,532, in copending U.S. application Ser. No. 798,142 by R. .l. Elbert filed Feb. 10, 1969 now U.S. Pat. No. 3,577,226, in copending U.S. application Ser. No. 164,516 by R. .l. Elbert filed July 21, 197 l, and in copending U.S. application Ser. No. 128,182 by R. J. Elbert, et aL, filed Mar. 25, 1971.

Porous metal structures, such as porous sheets, are admirably suited for use in such applications as filters, abradable seals, sound suppression structures, bearings and bearing retainers, energy absorbing material and the like. One disadvantage of porous structures, however, is that the metal component of the structure, while being relatively oxidation resistant when present in the bulk state in the temperature range of up to lOC, is subject to oxidation when fabricated into a porous state because of its fine structure and extensive surface area. Thus, porous metal structures are somewhat limited in their applications to uses wherein they will not be exposed to high temperature oxidizing environments. Abradable seals and bearing materials which are designed for aerospace applications or the like are intended to 'be subjected to oxidation environments thus curtailing their useful and functional life. This limited life usage for porous metal structures intended for use in oxidation environments necessitates the additional expenditure of time and money for replacing such structures after a relatively short period of operational time and consequently weakens the reception accorded these structures in the aerospace or like industry. To compensate for this limited life usage, it has been recommended that oxidation coatings, such as metal oxides, be applied to the porous structures. However, if the commercially available oxidation coatings deposited by known techniques are employed on these porous metal structures, the abradability of such structures will be seriously affected when they are intended for use in abradable seal applications, and likewise, the lubricant filling characteristics of bearings, and bearing retainers will also be affected.

One of the primary objectives 'of this invention is' to provide an oxidation resistant coating for porous metal structures composed of a ceramic-containing material which will not adversely affect the abradability of porous metal structures when intended for abradable seal applications and will extend the maximum oxidation protection temperature of porous structures intended for bearing applications.

SUMMARY or THE INVENTION Broadly stated, the invention relates to an oxidation resistant ceramic-containing coating for porous metal structures that will not substantially affect the abradability of such structures when intended for abradable seal application usage, nor substantially affect the characteristics required of porous structures intended for bearing application or filter usage.

Basically, the process for applying an oxidation resistant ceramic coating on a porous metal structure would initially entail preparing a colloidal-like suspension of a finely ground ceramic-containing material in a liquid suspending vehicle. The colloidal-like suspension can then be deposited on a porous metal structure to be coated, after which the coated structure is dried to substantially remove the liquid suspending vehicle thereby leaving a dispersed deposition of the ceramiccontaining material on the walls of the accessible pores throughout the structure. Thereafter, the ceramiccontaining material dispersed on the porous metal structure is heated to a temperature below the melting point of the metal components of the porous metal structure, but sufficient to cause the ceramiccontaining material to fuse and wet the wall surfaces of the pores in the structure. Thus, the porous metal structure will have a ceramic coating which will act as a barrier so as to minimize attack of foreign gases, such as oxygen, on the metal.

The above process of depositing and drying the colloidal-like suspension on the porous metal structure can be repeated so as to obtain a desired degree of coating or to increase the coating-thickness. A ceramiccontaining coating on porous structures usually between about 0.01 micron and about 10 microns thick and preferably between about 0.01 micron and about 5 microns thick would be admirably suited for abradable seal applications. For bearings and bearing retainer applications, a ceramic-containing coating on porous structures between about 1 micron and about 30 microns would be suitable. The exact coating thickness on a porous metal structure for a particular application can be determined by any artisan, familiar with porous materials, using the process of this invention.

Colloidal-like suspension is intended to mean a suspension of finely ground particles wherein said particles are substantially uniformly dispersed throughout the suspending liquid and are sized to less than 10 micron particle size.

A porous metal structure having a nominal pore size of l00 microns or less can be fabricated by known techniques using any metal or metal alloy that is available in powdered, flaked, or fibrous-form and that can be sintered with substantially uniformly controlled pore sizes ranging anywhere from submicronic to 100 microns and higher. Examples of alloy compositions suitable for porous metal abradable'seals include such alics, glass and glass ceramics, in any and all proportions and combinationsjCeramics are basically a class of inorganic, nonmetallic substances as opposed to organic or metallic substances. All ceramic materials will not be suitable as coatings for porous metal structures but only those which have a melting point below that of the particular metal or metal alloy used in the fabrication of the porous metal structures and which adhere to the surface during thermal cycling. Thus, once the metal or metal alloy component of a porous metal structure is determined, a suitable ceramic-containing material can be selected as the coating material. For example, when at least one base component of a porous metal structure is selected from the group consisting of nickel, chromium, cobalt, and iron, a suitable ceramiccontaining material could be selected from at least one material selected from the group consisting of silicon dioxide, chromium oxide, titanium oxide, aluminum oxide, boron oxide, sodium oxide, and potassium nitrate. Depending on the particular component selected for the porous metal structure, various other ceramic groups can be used such as the oxides, carbides, borides, nitrides, and silicides of such materials as aluminum, magnesium, sodium, lithium, beryllium, cesium, titanium, zirconium, hafnium, tungsten, molybdenum, iron, cobalt, and the like.

A preferred method of coating porous metal structures is to first pulverize the ceramic-containing material and then suspend it in a liquid suspending vehicle to form a colloidal-like suspension. The liquid suspending vehicle with the substantially dispersed ceramiccontaining material can then be deposited on the surface of a porous structure by any conventional technique such as painting, spraying, rolling, or dipping the structure into the colloidal-like suspension. The technique for depositing the colloidal-like suspension on and in the porous structure should be adequate so that a layer of the solution is applied to the surface of the porous structure including the internal walls of accessible pores. The coated porous metal structure can be slightly heated, or dried at room temperature, so as to substantially remove the liquid suspending vehicle from the ceramic-containing material so that the latter will be left adhering to the surface of the porous structure. Thereafter, the structure is subjected to a heated environment at a temperature sufficient to cause the ceramic-containing material to assume a molten state whereupon it will fuse and wet the surface of the porous structure providing the substantially uniform layer thereon. Thus, in the operational mode of the coated porous metal structure, the walls of the internal pores will be substantially protected against the penetration of foreign gases, such as oxygen.

In order to achieve a ceramic-containing coating which can be deposited as a thin layer on a porous metal structure, it is necessary to initially pulverize the ceramic-containing material to a size smaller than about microns and preferably less than about 1 micron. It is to be understood that the exact size of the pulverized ceramic-containing material is somewhat dependent on the pore size of the porous metal structure to be coated. Thus, when coating a porous metal structure having a nominal pore size of about 100 microns, it will be desirable to pulverize the ceramiccontaining material to less than about 10 microns, while coating a porous metal structure with a nominal pore size of 10 microns will preferably require the ceramic-containing material to be pulverized to less than about 1 micron. The purpose for pulverizing the ceramic-containing material to a fine fraction is to enable the material to be deposited within the walls of accessible pores in the porous metal structure without substantially plugging the pores.

The liquid suspending vehicle can be any liquid capable of suspending the selected pulverized ceramic containing material in a substantially uniformly dispersed manner and which is capable of wetting the metal or metal alloy of the porous structure. The liquid suspending vehicle is added in a sufficient amount to form a slurry with the pulverized ceramic-containing material so that when the colloidal-like suspension is deposited on and in the porous metal structures, it will be substantially removed from the porous metal structure thereby leaving the pulverized ceramic-containing material dispersed on the wall surfaces of the accessible pores in the porous metal structure. It is recommended that the viscosity of the colloidal-like suspension be about centipoises or less and preferably about 10 centipoises. Suitable liquid suspending vehicles are alcohol, alcohol containing liquids, methanol, acetone, heptane, and kerosene.

A preferred embodiment of this invention would be to select a ceramic-containing material which has a softening range rather than a melting temperature, such softening temperature range being the preferred operating temperature of the coated porous metal structure. Thus, glass type ceramics are admirably suited for use in this invention and preferably those materials having a soft or molten state at temperatures between about l600F and 2300F. Once the ceramiccontaining material having good oxidation resistant properties is selected, it is finely pulverized and suspended in a slurry or colloidal-like suspension which will wet and fill the pores of the porous structure. For example, ceramic-containing materials can be pulverized to a submicron particle size in a liquid suspending vehicle using nickel base alloy balls in a nickel based alloy container so as to minimize contamination. The mixture can be ball milled for a time sufficient to cause the resulting mixture to approach a colloidal suspension, that being evidenced by no visible separation of the ceramic-containing material in the liquid. The colloidal-like suspension can then be diluted with a liquid suspending vehicle, preferably the same used in the mill operation, to obtain a viscosity of between about 100 centipoises and about 1 centipoise and preferably about 10 centipoises. The viscosity of the colloidal-like suspension can be varied depending on the porous metal structure to be coated.

After depositing the coating material, the colloid coated porous structure is then exposed to ambient so as to evaporate substantially all of the liquid suspending vehicle thereby leaving the ceramic-containing material substantially uniformly disposed on the wall surface of the pores in the structure. The ceramic-containing coated porous structure is then heated to the molten state temperature of the ceramic-containing material whereupon the ceramic-containing material substantially fuses and wets the wall surfaces of the accessible pores in the porous structure thus forming a thin protective coating on and within the structure. Ceramiccontainin'g materials having a softening range between about l600F and 2300F should be heated to between about 1800F and 2400F. As stated above, this temperature should be below the melting temperature of the metal components in the porous metal structure. The coated porous structure is thereafter cooled and ready for its intended application.

When the porous metal structures are intended for abradable seal applications, a ceramic-containing material having good oxidation resistant properties at between about 1200F and about 2000F and being soft or molten at temperatures between 1600F and 2000F is ideally suited. It is to be understood that the ceramiccontaining material selected has to be compatible with the metal components of the porous metal structure so that detrimental reactions do not occur. Ceramic mixtures containing SiO Cr O A1 and TiO are admirably suited for this purpose.

For applying a thick oxidation preventive coating to a porous metal structure, the above process can be repeated so in effect we have a multiple layer build-up which upon being heated in the final stage will form a substantially homogeneous coating.

The following examples will serve to illustrate the concept of this invention and are not intended to restrict the invention in any way.

EXAMPLE 1 A porous metal abradable seal, commercially available as Type AB-l measuring 2 inches by 6 inches and being 0.06 inch thick on an lnconel 600 backing sheet (0.06 inch thick) was obtained from Union Carbide Corporation. This commercial abradable seal, fabricated by a diffusion-sintered bonding ofNi alloy (nominal 80% Ni-20% Cr) as disclosed in U. S. copending application Ser. No. 128,182, had a void fraction of 0.65 nominal, a bulk density of 3 grams per cubic centimeter, a tensile strength of 500 pounds per square inch nominal, and a hardness of 91 nominal based on a Rockwell B scale of inch diameter ball at a 15 kilogram load.

The abradable seal material was coated with a ceramic mix (cermet) of the following composition:

100 grams of frit (commercially available as No. 6210 from the Ferro Composition, Cleveland, Ohio).

40 grams of technical grade titanium dioxide 6 grams of green label clay grams of chromium oxide 1% gram of potassium nitrate Prior to coating the porous metal abradable seal, the dry powders of the ceramic mix were loaded into a one quart lnconel 600 ball mill jar containing 8 pounds 1% full) of nickel base alloy balls (Type RA 103) along with sufficient liquid methanol to cover the balls. This mixture was ball milled for three weeks to produce a near colloidal suspension of the ground and blended powder with the methanol. The colloidal-like suspension was thereafter separated from the nickel alloy based balls, and then adjusted to 700 grams (21.5 percent solids) to provide a stock solution. The viscosity of this solution was 9 centipoises. The solution was then diluted with additional methanol to 8 percent solids.

The abradable seal material was then impregnated with the solution which was applied by a roller technique. The coated abradable seal material was allowed to dry at room temperature for about 8 hours after which it was furnaced in a continuous belt furnace at 1 150C for a period of 30 minutes in a hydrogen atmosphere. The coating material which was applied to the abradable seal material amounted to 0.8 percent of the weight of the coated material.

The coated abradable seal material was then subjected to an oxidation environment within a furnace at a temperature of 1600F. The percent weight gained after various exposure times is indicated as Curve 1' on the graph of the drawing. A similar abradable seal material, except lacking the coating of this invention, was also subjected to the same oxidation environment and showed a substantial weight increase over that of the coated abradable seal for similar time periods. Curve 1 on the graph represents the uncoated abradable seal material. A comparison of Curves 1 and l demonstratively reveals the increase in the oxidation resistant characteristics of a porous metal structure coated in accordance with this invention.

The coated and uncoated abradable seal materials specified above were subjected to an abradability test utilizing a tester composed of a 7% inch diameter rotating knife edge having a peripheral speed of revolutions per second and designed to plunge at a depth of 0.001 inch per second until a scar ofa 0.030 inch depth was imparted in the material being tested. The horsepower required to produce this 0.030 inch scar in both the coated and uncoated materials was compared and found to be essentially the same, that being about 0.1 of a horsepower. This abradability test was conducted on the materials both before and after the materials were subjected to the oxidation environment. Thus, the ceramic oxidation coating on the abradable seal material produced no detrimental effects to the abradability characteristics of the material.

EXAMPLE 2 Abradable seal material similar to that as in Example 1 except that it had a hardness of 85 nominal as measured by a Rockwell B scale with a 54 inch diameter ball under a 15 kilogram load. This material was also fabri cated as disclosed in U. S. copending application Serial No. 128,182 and was commercially obtained from Union Carbide Corporation as Type AB-2 abradable seal material. The abradable seal material measured 2 inches by 6 inches and was 0.06 inch thick on an lnconel 600 backing sheet (0.06 inch thick).

A ceramic mix identical to that specified in Example 1 was applied to the abradable seal material as also disclosed in Example 1. The coated abradable seal material was then allowed to dry at room temperature for about 8 hours after which it was subjected to a hydrogen atmosphere in a heated environment of a continuous belt furnace at a temperature of 1 C for a period of 30 minutes. The coating material which was added to the abradable seal material amounted to 0.8 percent of the weight of the coated material.

The coated abradable seal material was then subjected to an oxidation environment within a furnace at a temperature of 1600F. The percent weight gained after various exposure times is indicated as Curve 11' on the graph of the drawing. A similar abradable seal material, except lacking the coating of this invention, was also subjected to the same oxidation environment and showed a substantial weight increase over that of the coated abradable seal for similar time periods. Curve 1 1 on the graph of the drawing represents the uncoated abradable seal material. A comparison of Curves 11 and 11 demonstratively reveals the increase in the oxidation resistant characteristics of a porous metal structure coated in accordance with this invention.

The coated and uncoated abradable seal materials specified above were subjected to an abradability test utilizing a tester composed of a 7% inch diameter rotating knife edge having a peripheral speed of 100 revolutions per second and designed to plunge at a depth of 0.00] inch per second until a scar ofa 0.030 inch depth was imparted in the material being tested. The horsepower required to produce this 0.030 inch scar in both the coated and uncoated materials was compared and found to be essentially the same, that being below 0.1 of a horsepower. This abradability test was conducted on the materials both before and after the materials were subjected to the oxidation environment. Thus, the ceramic oxidation coating on the abradable seal material produced no detrimental effects to the abradability characteristics of the material.

The oxidation resistant coating of this invention is also admirably suited for use on porous metal structures having a bimodal pore distribution, that is, a porous structure having two nominal pore sizes. The colloidal-like suspension of ceramic-containing material could be deposited on the structure in a state that would permit the smaller pores to be filled with the coating by capillary action. After drying, the bimodal porous structure would be heated so that the ceramiccontaining material would substantially fuse and wet the walls of the larger pores while substantially filling the cavities of the smaller pores. This would provide the porous structure with a good oxidation resistant coating while not substantially affecting the mechanical properties of the structure.

What is claimed is:

l. A process for coating porous metal structures having a nominal pore size no greater than 100 microns with an oxidation resistant ceramic-containing material comprising the steps:

a. preparing a colloidal-like suspension of a finely ground ceramic-containing material in a liquid suspending vehicle;

b. depositing a layer of the colloidal-like suspension of step (a) on the surface of the porous metal structure;

c. removing substantially all of the liquid suspending vehicle, thereby leaving the ceramic-containing material substantially dispersed on the wall surfaces of the porous structure; and

d. heating the ceramic-containing deposited porous metal structure to a temperature below the melting point of the metal components of the porous metal structure but sufficient to cause said ceramiccontaining material to fuse and wet the wall surfaces of said porous metal structure.

2. The process as in claim 1 wherein the steps (a) through (d) are repeated at least once.

3. The process as in claim 1 wherein the steps (a) through (c) are repeated at least once before step (d) is performed.

4. The process as in claim 1 wherein in step (c) said liquid suspending vehicle is substantially removed at room temperature.

5. The process as in claim 1 wherein in step (a) said ceramic-containing material is selected from at least one of the groups consisting of oxides, carbides, borides, nitrides, and silicides of aluminum, magnesium, sodium, lithium, beryllium, cesium, titanium, zirconium, hafnium, tungsten, molybdenum, iron and cobalt.

6. The process as in claim 1 wherein in step (a) said ceramic-containing material is selected from at least one of the groups consisting of silicon dioxide, chromium oxide, titanium oxide, aluminum oxide, boron oxide, sodium oxide, and potassium nitrate.

7. The process as in claim 5 wherein in step (a) said ceramic-containing material has a softening range at a temperature between about 1600F and about 2300F; and wherein in step (d) said porous metal material is heated to a temperature between about 1800F and about 2400F.

8. The process as in claim 5 wherein in step (a) said finely ground ceramic-containing material is sized be tween about 0.01 micron and about 10 microns.

9. The process as in claim 5 wherein in step (a) said liquid suspending vehicle is selected from at least one of the groups consisting of alcohol, an alcoholcontaining liquid, methanol, acetone, heptane, and kerosene.

10. The process as in claim 5 wherein the colloidal suspension of step (a) has a viscosity of between about centipoises and about 1 centipoise.

11. The process of claim 5 wherein said coated porous metal structure is intended for abradable seal applications and wherein in step (d) said layer of ceramic coating material is between about 0.01 micron and about 10 microns.

12. The process in claim 5 wherein said coated porous metal structure is intended for bearing applications and wherein in step (d) said ceramic-containing material is between about 1 micron and about 30 microns thick.

13. A porous metal structure having a nominal pore size no greater than 100 microns and having an oxidation resistant coating of a ceramic-containing material, said coating being deposited substantially on the wall surfaces of the pores in said porous metal structure thereby providing a barrier which substantially minimizes the attack of gases on the metal.

14. The porous metal structure of claim 13 intended for abradable seal applications wherein said oxidation resistant coating is between about 0.01 micron and about 10 microns thick.

15. The porous metal structure of claim 13 intended for bearing application wherein said oxidation resistant coating is between about 1 micron and about 30 microns thick.

Patent No. 3 .773 ,549

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Issue Date November 2Q. 1973 I Inventor) Raymond J. Elbert and Ernest G. Farrier It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 2 line 63 is changed to read as follows:

'"loys as Haste lloy 24*, Haynes 25*, Haynes 188*, DH 242**,"

and the following footnote is added at the bottom of column 2:

Trademark of Trademark: of

Cabot Corporation the Driver-Harris Corporation".-

Column 2, line 64, NiCrBl is changed to "NiCrAl".

Signed and sealed this 16th day of April 197k.

(SEAL) Attest:

c. MARSHALL mum Commissioner of Patents EDWARD M.FLETCHER,JR. Atte sting Officer

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3922458 *Nov 29, 1973Nov 25, 1975Curran Oils LtdVitreous enamelling
US3963502 *Sep 27, 1974Jun 15, 1976P. R. Mallory & Co., Inc.Refractory metal oxide or acid
US4059707 *Aug 29, 1975Nov 22, 1977Rca CorporationMethod of filling apertures with crystalline material
US4059712 *Jan 26, 1976Nov 22, 1977Bothwell Bruce EMetal-ceramic composite and method for making same
US4251272 *Dec 26, 1978Feb 17, 1981Union Carbide CorporationComposed of structured alloy of aluminum and chromium and at least one other metal selected from nickel, cobalt, or titanium
US4276331 *Nov 16, 1977Jun 30, 1981Repwell Associates, Inc.Thermal insulation
US4713300 *Dec 13, 1985Dec 15, 1987Minnesota Mining And Manufacturing CompanyGraded refractory cermet article
US4738874 *Dec 26, 1985Apr 19, 1988Commissariat A L'energie AtomiqueProcess for the production of porous, permeable mineral membranes
US4743511 *Sep 21, 1987May 10, 1988Minnesota Mining And Manufacturing CompanyGraded refractory cermet article
US5364586 *Aug 17, 1993Nov 15, 1994Ultram International L.L.C.Process for the production of porous membranes
US5996497 *Jun 12, 1998Dec 7, 1999Eastman Kodak CompanyMethod of making a durable hydrophilic layer
US6416871May 26, 2000Jul 9, 2002Sandvik AbHeat and oxidation resistant iron, chromium and aluminum materials having a coating layer of silicon compounds
US6998009Jun 10, 2003Feb 14, 2006Ut-Battelle, LlcFilter and method of fabricating
US7118777Oct 26, 2005Oct 10, 2006The Regents Of The University Of CaliforniaStructures and fabrication techniques for solid state electrochemical devices
US7351488Jun 20, 2006Apr 1, 2008The Regents Of The University Of CaliforniaStructures and fabrication techniques for solid state electrochemical devices
US8283077Feb 6, 2008Oct 9, 2012The Regents Of The University Of CaliforniaStructures and fabrication techniques for solid state electrochemical devices
US8343686Jul 28, 2006Jan 1, 2013The Regents Of The University Of CaliforniaJoined concentric tubes
US8445159Nov 28, 2005May 21, 2013The Regents Of The University Of CaliforniaSealed joint structure for electrochemical device
US8486580Jun 12, 2008Jul 16, 2013The Regents Of The University Of CaliforniaIntegrated seal for high-temperature electrochemical device
US20100126133 *Nov 25, 2009May 27, 2010Curtis Robert FeketyCoated Particulate Filter And Method
WO1989011342A1 *May 22, 1989Nov 30, 1989Ceramem CorpPorous inorganic membrane with reactive inorganic binder, and method of forming same
WO1995005256A1 *Jul 14, 1994Feb 23, 1995Ultram International L L CProcess for the production of porous membranes
WO2000073530A1 *May 26, 2000Dec 7, 2000Sandvik AbSurface modification of high temperature alloys
WO2008046785A2Oct 12, 2007Apr 24, 2008Bosch Gmbh RobertMethod for stabilizing and functionalizing porous metallic layers
Classifications
U.S. Classification428/357, 427/247, 427/376.5, 106/38.27, 427/376.4, 428/433
International ClassificationC23F15/00, C23C30/00, C23C24/00, B22F3/11, C23C24/08, B22F5/00
Cooperative ClassificationC23F15/00, C23C24/00
European ClassificationC23F15/00, C23C24/00
Legal Events
DateCodeEventDescription
Mar 21, 1988ASAssignment
Owner name: CHROMALLOY GAS TURBINE CORPORATION, BLAISDELL ROAD
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CHROMALLOY AMERICAN CORPORATION;REEL/FRAME:004862/0635
Effective date: 19880311
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHROMALLOY AMERICAN CORPORATION;REEL/FRAME:004862/0635
Owner name: CHROMALLOY GAS TURBINE CORPORATION, A DE. CORP., N