Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3774244 A
Publication typeGrant
Publication dateNov 27, 1973
Filing dateFeb 8, 1972
Priority dateFeb 8, 1972
Also published asCA991803A1, DE2304988A1
Publication numberUS 3774244 A, US 3774244A, US-A-3774244, US3774244 A, US3774244A
InventorsWalker P
Original AssigneeRelief Ruptured And Crippled S
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Knee-joint prosthesis
US 3774244 A
Abstract
A knee-joint prosthesis comprises a femoral condyle component and a tibial condyle component secured, respectively, to the femoral and tibial condyles by a cement in resected areas of the bones. The femoral component is an elongated, doubly-curved member that extends from the anterior to the posterior of the femoral condyle and has an external surface shaped to match closely the anatomical shape of the femoral condyle. The tibial component is an elongated member extending from adjacent the anterior extremity to adjacent the posterior extremity of the tibial condylar plateau and positioned for engagement by and support of the fmoral component. The external surface of the tibial component closely matches in transverse cross-sections along its length the transverse shape of the external surface of the femoral component and is generated by a generally straight, anterior-posterior line moved along said transverse curvature. The prosthesis may be duo-condylar, or it may be made uni-condylar by provision of the components on only one pair of condyles.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Walker .Nov. 27, 1973 KNEE-JOINT PROSTHESIS [75] Inventor: Peter S. Walker, New York, N.Y.

[73] Assignee: New York Society for The Relief of The Ruptured and Crippled, New A X05121 N [22] Filed: Feb. 8, 1972 [21] Appl. No.: 224,479

OTHER PUBLICATIONS Vitallium Surgical Appliance (Catalog), Austenal Medical Div., Howmet Corp., New York, N.Y., 1964, page 62, M.G.I-I. Femoral Condyle Replacements/No. 6662.

Primary Examiner-Richard A. Gaudet Assistant Examiner-Ronald L. Frinks Att0rney-Granville M. Brumbaugh et a1.

[57] ABSTRACT A knee-joint prosthesis comprises a femoral condyle component and a tibial condyle component secured, respectively, to the femoral and tibial condyles by a cement in resected areas of the bones. The femoral component is an elongated, doubly-curved member that extends from the anterior to the posterior of the femoral condyle and has an external surface shaped to match closely the anatomical shape of the femoral condyle. The tibial component is an elongated member extending from adjacent the anterior extremity to adjacent the posterior extremity of the tibial condylar plateau and positioned for engagement by and support of the fmoral component. The external surface of the tibial component closely matches in transverse crosssections along its length the transverse shape of the external surface of the femoral component and is generated by a generally straight, anterior-posterior line moved along said transverse curvature. The prosthesis may be duo-condylar, or it may be made uni-condylar by provision of the components on only one pair of condyles.

10 Claims, 6 Drawing Figures Patented Nov. 27, 1973 3,774,244

2 Sheets-Sheet l Patented Nov. 27, 1973 2 Sheets-Sheet 2 FIG. 6

BACKGROUND OF THE INVENTION This invention relates to a knee-joint prosthesis and, in particular, to a prosthesis that provides for replacement of the inter-engaging surfaces of the femoral and tibial condyles by which the weight of the body above the knee is transmitted from the femur to the tibia.

The knee joint is the largest joint of the body and is also subject to the greatest stresses of any joint in the body. It supports the entire weightof the body above the knee and does so in various relative angular positions of the femur (thighbone) and the tibia (legbone) upon articulation of the joint. In addition to sustaining high stresses, the knee joint must also provide freedom of articular movement. Injury or disease of the knee joint can, of course, be extremely painful and prevent functioning of the joint.

At present, asfar as is known to the inventor, two forms of knee-joint prosthesis of a form generally similar to the invention are being used. In one form, large metal and plastic components occupying most of the surface areas of the extremities of the femur and tibia, respectively, and shapedto match the surfacesof the extremities are implanted. This form requires considerable resection of the extremities of the bones and removalof the cruciate ligaments. The removal of the cruciate ligaments can seriously impair joint durability and function.

The otherrtype of knee-joint prosthesis consists of femoral and tibial components in the form of metal and plastic bands received on the femoral and tibial condyles. The components are arcuate in. both the length- 2 tibial condyle in a position for engagement by and sup port of the femoral component of the prosthesis. The supporting or external surface of the tibial component is shaped closely to match, in transverse cross-sections along its length, the transverse shape of the external surface of the femoral component and is a surface genwise and transverse directions. Substantial bone resection is required for placement of both components, and the matching curvatures in both the anterior'posterior and lateral directions significantly restrict flexiblity of joint movement and only partially duplicate natural articular function.

SUMMARY OF THE INVENTION There is provided, in accordance with the invention, a knee-joint prosthesis that provides partial or total replacement of the engaging surfaces of the femoral and tibial condyles, afi'ords relief from pain and restores function and load-bearing capability-to the knee-joint. Although the knee-joint prosthesis of the invention rep resents an appropriate appliance for correction of various injuries and diseases of the knee joint, its use is particularly advantageous in cases of arthritis.

The prosthesis comprises a femoral condyle component and a tibial condyle component mounted, respectively, on the femoral and tibial condyles in positions so that the two components match and provide load transfer and motion capability. The femoral component includes an elongated, doubly curved member that is secured to one of the femoral condyles and extends from the anterior to the posterior of the femoral condyle. It has an external surface that is shaped in the anteriorposterior direction to match closely the anatomical shape of the femoral condyle and has in transverse cross-sections along its length a laterally outwardly located, essentially flat zone and a laterally inwardly located curved zone that is externally convex. The tibial component is an elongated member that extends from adjacent the anterior extremity to adjacent the posterior extremity of the tibial plateau and is secured to the erated by a generally straight, anterior-posterior line moved along a line matching the external transverse shape of the femoral component. The components are secured to the femoral and tibial condyles by cementlike bonding medium, the condyles beingresected in the areas occupied by the components so that the components are received with their external surfaces generally contiguous to the anatomical surfaces of the condyles.

Preferably, the femoral component has a multiplicity of projections extending from its internal surface to enhance the anchoring of the component in place on the femoral condyle. Such projections may take various ties disposed in generally transverse zones to provide a mechanical locking between the post and a layer or zone of cement between the post and the resected bone.

It is also advantageous to provide a mechanical interlock between the tibial component and the tibial condyle to augment the bond provided by the cement. A mechanical interlock may be obtained, for example, by forming undercut grooves in the internal surface of the tibial component. In addition, undercut grooves or oblique holes may be cut or drilled in the bone in positions underlying the undercut grooves in the tibial component of the prosthesis. A body of cement received in the undercut grooves in the tibial component and in the grooves or holes in the bone affords a strong and durable mechanical connection between the prosthesis component and the bone. t

The knee prosthesis of the invention may be placed in either one or both femoral-tibial condyle pairs, as may be required for a given patient. In a duo-condylar prosthesis, which will usually be preferred, it'is desirable that the two femoral condyle components be interconnected by a crossbar extending between them and curved in the transverse direction to match the anatom ical shape of the anterior intercondylar notch, the crossbar holding the spacing and a parallel relationship between the two femoral members. 'I'I'he femoralcomponent of a duo-condyler prosthesisis preferably of one-piece construction and symmetrical so that it can be installed in either the right or left knee joint. Similarly, the tibial component for both the internal and external condyles of both left and right joints may be identical; in other words, only one'form of tibialcomponent need be provided, and two identical pieces used in a duo-condylar prosthesis.

Although various materials may be used for the pros thesis, the preferred materials are Type 3l6-L Stainless Steel or surgical cobalt-chrome alloy for the femoral component and a high-molecular weight polyethylene or other appropriate high-molecular weight plastic for the tibial component. The femoral component should have a highly-polished surface to reduce friction to a minimum and provide minimum wear and thus long useful life.

A knee-joint prosthesis, in accordance with the invention, provides various significant advantages. For one thing, only the load-bearing surfaces of the joint are replaced, and the remainder of the joint is left intact. For example, the collateral and cruciate ligaments are not disturbed and afford retention of joint stability. There is a minimum of resection of the bone for placement of the prosthesis. Accordingly, in the event of failure of the prosthesis, which, though unlikely, is possible, there is still adequate bone available for another procedure. The areas of the load-bearing surfaces of the femoral and tibial components closely match those in either internal or external condyles of one knee joint in the case of a uni-condylar placement. (It is evident, of course, that various sizes of the components will be required to accommodate various sizes of joints for different patients.) The prosthesis components are securely fixed to the bones and are of strong, durable and long-wearing construction. The flatness in the anteriorposterior direction of the external or supporting surfaces of the tibial component pennits anatomical movement of the femur on the tibia while the curvatures and orientations of the curvatures of the components limit rotational and lateral laxity. The result is a prosthesis that closely duplicates natural function.

DESCRIPTION OF THE DRAWINGS For a better understanding of the invention, reference may be made to the following description of an exemplary embodiment, taken in conjunction with the figures of the accompanying drawings, in which:

FIG. 1 is an anterior view of a right knee joint having an embodiment of the knee prosthesis of the invention in place, the extremities of the femur and tibia being shown in cross-section;

FIG. 2 is a lateral view of the right knee joint, the view also showing the bone extremities in cross-section, with the cross-section taken'at the outside edge of the prosthesis on the external side of the joint;

FIG. 3 is a pictorial view of the femoral component, viewing it from generally above, anteriorly of, and laterally inward of the component, as it would be positioned in the joint;

FIG. 4 is a pictorial view of the femoral component, the view being taken from generally below, posteriorally of, and laterally outward of the component, as it would be installed in a right knee joint;

FIG. 5 is a pictorial view of the tibial component, viewed from above, in front of, and laterally inwardly of a component placed at the internal condyle of a right knee joint; and

FIG. 6 is a pictorial view of the tibial component viewed from a posterior position, below and laterally inwardly of a tibial component in the internal position of a right knee joint.

The relative orientations of FIGS. 3 to 6 may be further understood by comparing them with FIGS. 1 and 2.

DESCRIPTION OF AN EXEMPLARY EMBODIMENT Referring to FIGS. 1 and 2 of the drawings, the reference numerals 10 and 12 designate generally the femur (thighbone) and the tibia (legbone) of a human leg. Only the lower end of the femur and the upper end of the tibia are shown in the figures. Although the drawings illustrate the general outline of the portions of the femur and the tibia at the knee joint, the details of the bone shapes are not illustrated. Reference may be made to various appropriate standard references for descriptions and illustrations of the anatomy of a knee joint. For purposes of general orientation, reference numerals l4 and 16 designate, respectively, the external condyle and internal condyle of the right femur, reference numerals l5 and 17 designate, respectively, the exterior and interior tibial condyles, reference numeral 20 is applied to the lateral ligaments, and reference numeral 22 is applied to the cruciate ligaments. In FIG. 2 of the drawings, the anterior of the joint is to the right and the posterior is to the left.

The embodiment shown in the drawings is of the duocondylar form. The femoral piece of the prosthesis (see FIGS. 3 and 4), which is designated generally by the reference numeral 30, is composed of a pair of spacedapart, doubly curved femoral condyle components 32 and 34 interconnected by a crossbar 36. The components 32 and 34 are of identical shape, but are reversed in orientation so that the piece is symmetrical about a vertical, anterior-posterior bisector plane. In transverse cross-sections along its length, each component 32 and 34 is generally flat along a laterally outward zone (relative to the center of the joint) and is externally convexly curved in a laterally inward zone. Viewed from the side, each member 32 and 34 is of varying curvature, with a relatively flat curvature along the anterior and bottom portions and a greater curvature in the posterior portion. The lateral profile of the femoral component thus conforms rather closely to the anatomical shape of the femoral condyles, which means that it may be placed with a minimum resection of the bone. Moreover, it provides articulation of the joint in a manner closely resembling the anatomical joint. The major axes or planes of the members 32 and 34 are parallel to each other and parallelism and proper spacing as placed are assured by the crosspiece 36.

As may be seen in FIGS. 1 and 2 of the drawings, the femoral piece is shaped and dimensioned such that the members 32 and 34 occupy the tibial-engaging surfaces of the femoral condyles, in other words, the areas of the femoral condyles that engage and are supported by the tibial plateaus in the anatomical joint. The condyle components 32 and 34 are spaced apart so that there is no interference between the femoral piece and the cruciate ligaments.

The crosspiece 36 is curved to present outwardly concave and inwardly convex surfaces, the curvature generally matching the intercondylar notch between the femoral condyles so that the crosspiece 36 is recessed into the intercondylar notch, such that it does not materially afiect the action of the patella when the joint is in a flexed position.

Each of the condyle ccomponents 32 and 34 of the femoral piece 30 has a relatively massive, elongated post or pin 40 projecting from its internal surface and positioned and oriented so that its longitudinal axis is formed with several shallow concavities 42 located in zones oriented transversely of the longitudinal axis of the post. A number of small pins 43, say l/l6 inch-in diameter and 1/16 inch high, project from the internal surfaces of the components 32 and 34 at appropriate spacing.

For strength and durability, it is best for the femoral piece 30 to be made of metal, such as Type 316-L Stainless Steel or surgical colbalt-chrome alloy. The external surfaces of the components 32 and 34 should be highly polished to ensure low friction and minimum wear.

The femoral piece is placed in the joint by resecting small amounts of bone in the regions that will underlie the condyle components 32 and 34 so that the external surfaces of the components 32 and 34 will be generally contiguous to the anatomical surfaces of the femoral condyles. In addition, a hole 44 is formed to receive the post 40, and holes 46 and 48 are also formed near the posterior and anterior extremities of the components 32 and 34 and extending generally perpendicular to the surface of the condyles at these points (see FIG. 2). The component is secured to the bone by an appropriate cement, such as polymethyl methacrylate. A layer of cement is applied at the interface between the internal surfaces of the components 32 and 34, and bodies of cement are packed in the holes 46 and 48 at the extremities of the components as well as in the hole 44 that receives the post 40. The cement in the holes 46 and 48 and around the post locks the femoral piece securely in place on the femur.

A duo-condylar prosthesis has two identical tibial condyle components 50, one for each tibial condyle, mounted in reverse orientation, laterally, on the respective medial and lateral tibial condyles. Each tibial component is generally rectangular in plan, although (as shown) it has rounded corners 51 that are located near the respective lateral extremities of the tibial plateau, when thecomponent is in place. Each tibial component is mounted with its longer axis oriented in the anterior-posterior direction in the joint. The bottom surface 52 and the interiorly located side surface 54 of each component are generally flat. The upper surface 56 is a surface generated by moving a substantially straight line along a curve that matches the curve of the external surface of the femoral condyle component 32 (or 34) of the femoral piece. An undercut groove 58 is formed in the longitudinal direction along the center of the bottom of the tibial component, and two spaced apart, similarly undercut grooves 59 extend generally laterally across the bottom. The bone at the tibial plateau is resected to receive the respective tibial components so that their upper surfaces are generally contiguous to the anatomical surfaces of the tibial plateau. Holes 60 are drilled into the tibia in positions generally underlying the groove56 near each end of each component, the holes being oblique to the bottom surface of the component. The tibia] components are secured to the tibia by cement, bodies of cement extending into the undercut grooves 58 and 59in the component and the holes 60 in the bone and providing cement keys to enhance the securing of the components in place.

In use, the flatness of the tibial components in the anterior-posterior direction allows relatively free sliding and rolling of the femoral component on the tibial component in a manner resembling the function of the anatomical joint. The transverse curvatures of the respective tibial components and the matching of the cross-sectional shapes of the tibial and femoral components in the areas in engagement limits rotation and lateral laxity in the joint. The tibial components provided relatively large surface areas for seating on the tibial plateau to ensure strength and durability in the joint and to provide a substantial load-bearing area, but these features are achieved without any undesirable restriction in the freedom of articulation.

The above-described embodiment of the invention is intended to be merely exemplary, and numerous variations and modifications may be made by those skilled in the art without departing from the spirit and scope of the invention. Allsuch variations and modifications are intended to be included within the scope of the invention as defined in the appended. claims.

I claim:

1. A knee-joint prosthesis comprising a femoral condyle component adapted to be secured mom of the femoral condyles, and a tibial condyle component adapted to be secured to thetibial condyle corresponding to said femoral condyle, the femoral condyle component being an elongated, doubly curved member shaped and dimensioned to extend from the anterior to the posterior of the femoral condyle and having a varying curvature in the anterior-posterior direction closely matching the anatomical shape of the femoral condyle and having in transverse cross-sections along its length a laterally outwardly located essentially flat zone and a laterally inwardly located curved zone that is externally convex, the tibial condyle component being an elongated member shaped and dimensioned to extend from adjacent the anterior extremity to adjacent the posterior extremity of the femoral-engaging surface of the tibial condylar plateau and adapted to be positioned for engagement by and support of the femoral component, and the tibial component having an external surface closely matching in transverse cross-sections along its length the transverse shape of the external surface of the femoral component and being a surface generated by a substantially straight anterior-posterior line moved along said transverse shape.

2. A knee-joint prosthesis according to claim 1 and further comprising a cement bonding medium adapted to secure the femoral and tibial components to the femoral and tibial condyles.

3. A knee-joint prosthesis according to claim 1 wherein he femoral condyle component further includes a multiplicity of projections extending from its internal surface and adapted to be received in a resected area of the condyles to anchor the femoral component in place thereon.

9. A knee-joint prosthesis according to claim 8 wherein the crossbar is integral with the said condyle components and has a curvature in the lateral direction, relative to the condyle components generally matching the anatomical shape of and adapted to be received in the anterior intercondylar notch of the femur.

10. A knee-joint prosthesis according to claim 1 wherein the tibial component has undercut grooves formed in its internal surface and adapted to receive a cement to enhance by mechanical locking the connection of the tibial component to the tibial condyle.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2668531 *Feb 15, 1952Feb 9, 1954Haboush Edward JProsthesis for hip joint
US3715763 *Apr 21, 1971Feb 13, 1973Link WArtificial limb for the knee joint
DE1964781A1 *Dec 24, 1969Jul 8, 1971Link Waldemar FaProthese fuer das Kniegelenk eines Menschen
FR1047640A * Title not available
Non-Patent Citations
Reference
1 *Vitallium Surgical Appliance (Catalog), Austenal Medical Div., Howmet Corp., New York, N.Y., 1964, page 62, M.G.H. Femoral Condyle Replacements/No. 6662.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3840905 *Sep 17, 1973Oct 15, 1974Nat Res DevEndoprosthetic knee joint
US3852830 *Feb 15, 1973Dec 10, 1974Richards Mfg CoKnee prosthesis
US3868730 *Feb 6, 1974Mar 4, 1975HowmedicaKnee or elbow prosthesis
US3869731 *Feb 14, 1973Mar 11, 1975Univ CaliforniaArticulated two-part prosthesis replacing the knee joint
US3878566 *May 8, 1974Apr 22, 1975Richards Mfg CoPatello-femoral prosthesis
US3886599 *Jul 25, 1974Jun 3, 1975Schlein Louis CharlesSurgically implantable total ankle prosthesis
US3896502 *Jan 7, 1974Jul 29, 1975Nat Res DevEndoprosthetic bone joint devices
US3896503 *Feb 6, 1974Jul 29, 1975Nat Res DevEndosphosthetic ankle joint devices
US3924275 *May 3, 1974Dec 9, 1975Friedrichsfeld GmbhArtifical joint prosthesis using Al{hd 2{b O{HD 3{B {0 material
US4081866 *Feb 2, 1977Apr 4, 1978Howmedica, Inc.Total anatomical knee prosthesis
US4178641 *Dec 1, 1977Dec 18, 1979Schutt and Grundei O.H.G.Knee-joint-endoprothese
US4193140 *Dec 19, 1975Mar 18, 1980Richards Manufacturing Company, Inc.Knee prosthesis
US4209861 *Feb 22, 1978Jul 1, 1980Howmedica, Inc.Joint prosthesis
US4261064 *Feb 21, 1979Apr 14, 1981Helfet Arthur JacobBicondylar joint prosthesis
US4301553 *May 23, 1980Nov 24, 1981United States Surgical CorporationProsthetic knee joint
US4353135 *May 9, 1980Oct 12, 1982Minnesota Mining And Manufacturing CompanyPatellar flange and femoral knee-joint prosthesis
US4355429 *Jan 23, 1980Oct 26, 1982Osteo AgSlide prosthesis for the knee joint
US4383337 *Oct 22, 1980May 17, 1983Zimmer Usa, Inc.Elbow prosthesis
US4714473 *Jul 25, 1985Dec 22, 1987Harrington Arthritis Research CenterKnee prosthesis
US4883490 *Mar 7, 1984Nov 28, 1989Indong OhAcetabular cup
US4892547 *Feb 3, 1988Jan 9, 1990Biomet, Inc.Partially stabilized knee prosthesis
US4911721 *Jan 17, 1989Mar 27, 1990Aendergaten 3Joint prosthesis
US4919671 *Apr 13, 1988Apr 24, 1990Sulzer Brothers LimitedMetal anchoring part for a knee joint endoprosthesis
US4959071 *Feb 3, 1989Sep 25, 1990Biomet, Inc.Partially stabilized knee prosthesis
US4964868 *Aug 27, 1987Oct 23, 1990Harrington Arthritis Research CenterKnee prosthesis
US5123927 *Sep 23, 1991Jun 23, 1992University Of British ColumbiaMethod and apparatus for antibiotic knee prothesis
US5133759 *May 24, 1991Jul 28, 1992Turner Richard HAsymmetrical femoral condye total knee arthroplasty prosthesis
US5263987 *May 28, 1991Nov 23, 1993Shah Mrugesh KMethod and apparatus for arthroscopically replacing a bone joint
US5358527 *Mar 20, 1992Oct 25, 1994Forte Mark RTotal knee prosthesis with resurfacing and posterior stabilization capability
US5370699 *Jan 21, 1993Dec 6, 1994Orthomet, Inc.Modular knee joint prosthesis
US5441538 *Apr 12, 1993Aug 15, 1995Bonutti; Peter M.Bone implant and method of securing
US5624462 *Jan 24, 1995Apr 29, 1997Bonutti; Peter M.Bone implant and method of securing
US5639279 *Feb 9, 1995Jun 17, 1997Intermedics Orthopedics, Inc.Posteriorly-stabilized prosthetic knee
US5658342 *Feb 6, 1995Aug 19, 1997Arch DevelopmentStabilized prosthetic knee
US5800552 *Oct 21, 1994Sep 1, 1998Forte; Mark R.Mechanically linked hinged total knee prosthesis
US5876460 *Sep 6, 1996Mar 2, 1999Bloebaum; Roy D.Cemented prosthetic component and placement method
US6039764 *Aug 18, 1997Mar 21, 2000Arch Development CorporationProsthetic knee with adjusted center of internal/external rotation
US6059831 *Mar 31, 1999May 9, 2000Biomet, Inc.Method of implanting a uni-condylar knee prosthesis
US6155812 *Jul 15, 1998Dec 5, 2000Biomet, IncCement mold for a temporary implant
US6165223 *Mar 1, 1999Dec 26, 2000Biomet, Inc.Floating bearing knee joint prosthesis with a fixed tibial post
US6217617 *Oct 24, 1996Apr 17, 2001Peter M. BonuttiBone implant and method of securing
US6355067Jul 27, 1998Mar 12, 2002Aaron. A. HofmannCemented prosthetic component and placement method
US6361731Nov 10, 2000Mar 26, 2002Biomet, Inc.Method of forming a temporary implant
US6413259Dec 14, 2000Jul 2, 2002Blackstone Medical, IncBone plate assembly including a screw retaining member
US6413279Oct 24, 2000Jul 2, 2002Biomet, Inc.Floating bearing knee joint prosthesis with a fixed tibial post
US6443991Sep 14, 1999Sep 3, 2002Depuy Orthopaedics, Inc.Posterior stabilized mobile bearing knee
US6494914 *Dec 5, 2000Dec 17, 2002Biomet, Inc.Unicondylar femoral prosthesis and instruments
US6726723Aug 29, 2002Apr 27, 2004Depuy Orthopaedics, Inc.Posterior stabilized mobile bearing knee
US6972039Jul 1, 2002Dec 6, 2005Biomet, Inc.Floating bearing knee joint prosthesis with a fixed tibial post
US7344541Jan 13, 2004Mar 18, 2008Hudson Surgical Design, Inc.Methods and apparatus for femoral and tibial resection
US7488324Dec 8, 2003Feb 10, 2009Biomet Manufacturing CorporationFemoral guide for implanting a femoral knee prosthesis
US7544208May 2, 2005Jun 9, 2009Theken Spine, LlcAdjustable corpectomy apparatus
US7608110Mar 11, 2005Oct 27, 2009O'driscoll Shawn WSystems for bone replacement
US7635365Aug 27, 2004Dec 22, 2009Ellis Thomas JBone plates
US7695479Apr 12, 2005Apr 13, 2010Biomet Manufacturing Corp.Femoral sizer
US7695501Jun 16, 2006Apr 13, 2010Ellis Thomas JBone fixation system
US7695520May 31, 2006Apr 13, 2010Biomet Manufacturing Corp.Prosthesis and implementation system
US7766911Dec 5, 2005Aug 3, 2010Theken Spine, LlcFixed and variable locking fixation assembly
US7780666Jun 1, 2005Aug 24, 2010Theken Spine, LlcFixed and variable locking fixation assembly
US7780672Feb 27, 2006Aug 24, 2010Biomet Manufacturing Corp.Femoral adjustment device and associated method
US7785327Jun 1, 2005Aug 31, 2010Theken Spine, LlcFixed and variable locking fixation assembly
US7789885Feb 15, 2005Sep 7, 2010Biomet Manufacturing Corp.Instrumentation for knee resection
US7815645Jan 14, 2005Oct 19, 2010Hudson Surgical Design, Inc.Methods and apparatus for pinplasty bone resection
US7837690Jan 15, 2003Nov 23, 2010Biomet Manufacturing Corp.Method and apparatus for less invasive knee resection
US7842093Jul 18, 2006Nov 30, 2010Biomet Manufacturing Corp.Method and apparatus for a knee implant
US7857814Mar 8, 2005Dec 28, 2010Hudson Surgical Design, Inc.Methods and apparatus for minimally invasive arthroplasty
US7887542Aug 31, 2004Feb 15, 2011Biomet Manufacturing Corp.Method and apparatus for less invasive knee resection
US7896924Jan 9, 2008Mar 1, 2011Howmedica Osteonics Corp.Unicondylar femoral prosthetic implant component
US7918876Mar 24, 2004Apr 5, 2011Theken Spine, LlcSpinal implant adjustment device
US7922771Jan 31, 2008Apr 12, 2011Smith & Nephew, Inc.High performance knee prostheses
US7935151Apr 9, 2010May 3, 2011Hudson Surgical Design, Inc.Femoral prosthetic implant
US7967822Oct 29, 2004Jun 28, 2011Hudson Surgical Design, Inc.Methods and apparatus for orthopedic implants
US7998217Feb 2, 2005Aug 16, 2011Biomet Manufacturing Corp.Modular offset stem implants
US8016891Sep 30, 2005Sep 13, 2011Ortho Development CorporationTibial augment connector
US8021368Mar 8, 2005Sep 20, 2011Hudson Surgical Design, Inc.Methods and apparatus for improved cutting tools for resection
US8062377Oct 31, 2007Nov 22, 2011Hudson Surgical Design, Inc.Methods and apparatus for knee arthroplasty
US8070752Jan 9, 2008Dec 6, 2011Biomet Manufacturing Corp.Patient specific alignment guide and inter-operative adjustment
US8088167Dec 15, 2009Jan 3, 2012Hudson Surgical Design, Inc.Femoral prosthetic implant
US8114083Mar 8, 2005Feb 14, 2012Hudson Surgical Design, Inc.Methods and apparatus for improved drilling and milling tools for resection
US8114156 *Mar 12, 2009Feb 14, 2012Edwin Burton HatchFlexibly compliant ceramic prosthetic meniscus for the replacement of damaged cartilage in orthopedic surgical repair or reconstruction of hip, knee, ankle, shoulder, elbow, wrist and other anatomical joints
US8123758Feb 9, 2009Feb 28, 2012Biomet Manufacturing Corp.Femoral guide for implanting a femoral knee prosthesis
US8206143Feb 20, 2009Jun 26, 2012Biomet Manufacturing Corp.Modular articulating cement spacer
US8216319 *Oct 27, 2005Jul 10, 2012Depuy Products, Inc.Method of repairing a knee joint
US8226726Sep 3, 2009Jul 24, 2012Biomet Manufacturing Corp.Method and instrumentation for patello-femoral joint replacement
US8265949Sep 27, 2007Sep 11, 2012Depuy Products, Inc.Customized patient surgical plan
US8287545Mar 8, 2005Oct 16, 2012Hudson Surgical Design, Inc.Methods and apparatus for enhanced retention of prosthetic implants
US8298238Aug 6, 2008Oct 30, 2012Hudson Surgical Design, Inc.Methods and apparatus for pivotable guide surfaces for arthroplasty
US8308808Feb 19, 2010Nov 13, 2012Biomet Manufacturing Corp.Latent mobile bearing for prosthetic device
US8343159Sep 29, 2008Jan 1, 2013Depuy Products, Inc.Orthopaedic bone saw and method of use thereof
US8353914Jul 9, 2007Jan 15, 2013Hudson Surgical Design, Inc.Methods and apparatus for improved profile based resection
US8357111Sep 30, 2007Jan 22, 2013Depuy Products, Inc.Method and system for designing patient-specific orthopaedic surgical instruments
US8357166Sep 29, 2008Jan 22, 2013Depuy Products, Inc.Customized patient-specific instrumentation and method for performing a bone re-cut
US8361076Sep 29, 2008Jan 29, 2013Depuy Products, Inc.Patient-customizable device and system for performing an orthopaedic surgical procedure
US8377068Sep 29, 2008Feb 19, 2013DePuy Synthes Products, LLC.Customized patient-specific instrumentation for use in orthopaedic surgical procedures
US8394147Nov 23, 2010Mar 12, 2013Smith & Nephew, Inc.High performance femoral knee prostheses
US8394148Nov 23, 2010Mar 12, 2013Smith & Nephew, Inc.Tibial component of high performance knee prosthesis
US8398645Sep 29, 2008Mar 19, 2013DePuy Synthes Products, LLCFemoral tibial customized patient-specific orthopaedic surgical instrumentation
US8398715Oct 20, 2009Mar 19, 2013Smith & Nephew, Inc.High performance knee prostheses with converging anterior and posterior portions
US8398716Nov 23, 2010Mar 19, 2013Smith & Nephew, Inc.High performance knee prostheses with posterior cam
US8403992Nov 23, 2010Mar 26, 2013Smith & Nephew, Inc.High performance knee prostheses
US8414286Dec 4, 2008Apr 9, 2013Zimmer Orthopaedic Surgical Products, Inc.Spacer molds with releasable securement
US8425522May 21, 2010Apr 23, 2013Bonutti Skeletal Innovations LlcJoint replacement method
US8425617Nov 23, 2010Apr 23, 2013Smith & Nephew, Inc.Knee prostheses with convex slope on portion of tibial articular surface
US8430932Dec 6, 2011Apr 30, 2013Puget Bio Ventures LLCFemoral prosthetic implant
US8449618Nov 23, 2010May 28, 2013Smith & Nephew, Inc.High performance knee prostheses
US8480389Jul 9, 2010Jul 9, 2013Zimmer Orthopedic Surgical Products, Inc.Spacer mold and methods therefor
US8518047Aug 3, 2010Aug 27, 2013Biomet Manufacturing, LlcMethod and apparatus for less invasive knee resection
US8551100Jan 23, 2006Oct 8, 2013Biomet Manufacturing, LlcInstrumentation for knee resection
US8568417Sep 20, 2010Oct 29, 2013Charles River Engineering Solutions And Technologies, LlcArticulating tool and methods of using
US8603095Nov 8, 2011Dec 10, 2013Puget Bio Ventures LLCApparatuses for femoral and tibial resection
US8603178Nov 23, 2010Dec 10, 2013Smith & Nephew, Inc.Knee prostheses with convex portion on tibial lateral articular surface
US8623030Mar 14, 2013Jan 7, 2014Bonutti Skeletal Innovations LlcRobotic arthroplasty system including navigation
US8632552Mar 14, 2013Jan 21, 2014Bonutti Skeletal Innovations LlcMethod of preparing a femur and tibia in knee arthroplasty
US8632573Apr 13, 2010Jan 21, 2014Thomas J. EllisBone fixation system
US8641726Mar 14, 2013Feb 4, 2014Bonutti Skeletal Innovations LlcMethod for robotic arthroplasty using navigation
US8647389Dec 17, 2010Feb 11, 2014Smith & Nephew, Inc.High performance knee prostheses
US8652210Nov 23, 2010Feb 18, 2014Smith & Nephew, Inc.Femoral prostheses with lateral buttress for patella
US8740906Jul 11, 2008Jun 3, 2014Hudson Surgical Design, Inc.Method and apparatus for wireplasty bone resection
US8747439Jul 10, 2006Jun 10, 2014P Tech, LlcMethod of using ultrasonic vibration to secure body tissue with fastening element
US8784495Jun 8, 2010Jul 22, 2014Bonutti Skeletal Innovations LlcSegmental knee arthroplasty
US8801983Jun 11, 2013Aug 12, 2014Zimmer Orthopaedic Surgical Products, Inc.Spacer mold and methods therefor
US8808329Apr 3, 2012Aug 19, 2014Bonutti Skeletal Innovations LlcApparatus and method for securing a portion of a body
US8814902Jul 31, 2006Aug 26, 2014Bonutti Skeletal Innovations LlcMethod of securing body tissue
US8834486Feb 21, 2012Sep 16, 2014Biomet Manufacturing, LlcFemoral guide for implanting a femoral knee prosthesis
US8834490Oct 29, 2013Sep 16, 2014Bonutti Skeletal Innovations LlcMethod for robotic arthroplasty using navigation
US8840629Oct 29, 2013Sep 23, 2014Bonutti Skeletal Innovations LlcRobotic arthroplasty system including navigation
DE2906458A1 *Feb 20, 1979Aug 23, 1979HowmedicaGelenkprothese
DE2919803A1 *May 16, 1979Dec 6, 1979New York SocietyKniegelenkprothese
EP0034192A1 *Feb 14, 1980Aug 26, 1981Howmedica International, Inc.A wrist prosthesis
EP0135319A2 *Jul 30, 1984Mar 27, 1985ARTHROPLASTY RESEARCH & DEVELOPMENT (PTY) LTD.Knee prosthesis
EP0290736A1 *Mar 8, 1988Nov 17, 1988Gebrüder Sulzer AktiengesellschaftMetallic anchoring piece for a knee joint endosprothesis anchorable in the tibia
EP0888089A1 *Feb 20, 1997Jan 7, 1999Hudson Surgical Design, Inc.Prosthetic implant
WO2007090784A1 *Feb 1, 2007Aug 16, 2007Zimmer GmbhTibia platform implant
Classifications
U.S. Classification623/20.3
International ClassificationA61F2/38
Cooperative ClassificationA61F2/38, A61F2002/3895
European ClassificationA61F2/38