Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3774611 A
Publication typeGrant
Publication dateNov 27, 1973
Filing dateJun 8, 1972
Priority dateJun 8, 1972
Publication numberUS 3774611 A, US 3774611A, US-A-3774611, US3774611 A, US3774611A
InventorsOakes G, Tussey J
Original AssigneeOakes G, Tussey J
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Stabilized contamination free surgical evacuator
US 3774611 A
Abstract
A contamination free surgical evacuator that includes a fluid stabilizer is disclosed. The evacuator container is bulbous in shape and formed of a material that has memory, i.e., tends to return to a "normal" configuration when external forces are released. A pair of input drip chambers and valves, one or both of which may be used to drain fluids from a wound, allow drained fluids to enter the evacuator container. A magnetic output or purge valve mounted in a graduated cup-like region, allows the evacuator container to be initially evacuated and allows drained fluids to be removed from the container thereafter. The graduations allow the evacuator to be used as a "rate of drainage" measuring instrument. The fluid stabilizer is in essence a compressible, perforated diaphragm mounted inside of the bulbous evacuator container. The fluid stabilizer prevents drained fluids from splashing around in the evacuator container, yet it does not inhibit the operation of the evacuator. Moreover, the fluid stabilizer prevents any sudden surge of fluids from accidentally actuating the magnetic purge valve.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1 Tussey et al.

[ Nov. 27, 1973 STABILIZED CONTAMINATION FREE SURGICAL EVACUATOR [76] Inventors: Jimmy D. Tussey, Rt. 3, Box 7;

' George W. Oakes, Rt. 3, Box 49, both of South Boston, Va. 24592 [22] Filed: June 8, 1972 [21] Appl. No.: 261,029

[52] US. Cl. 128/278, 417/472 [51] Int. Cl A6lm 1/00 [58] Field of Search 417/274, 275, 277,

294-295, 214 F, 145.5, DIG. 24, 214 C, 231-232 Primary Examiner-Charles F. Rosenbaum Att0rneyB. Franklin Griffin, Jr. et al.

[5 7 1 ABSTRACT a fluid stabilizer is disclosed. The evacuator container is bulbous in shape and formed of a material that has memory, i.e., tends to return to a normal configuration when external forces are released. A pair of input drip chambers and valves, one or both of which may be used to drain fluids from a wound, allow drained fluids to enter the evacuator container. A magnetic output or purge valve mounted in a graduated cup-like region, allows the evacuator container to be initially evacuated and allows drained fluids to be removed from the container thereafter. The graduations allow the evacuator to be used as a rate of drainage measuring instrument. The fluid stabilizer is in essence a compressible, perforated diaphragm mounted inside of the bulbous evacuator container. The fluid stabilizer prevents drained fluids from splashing around in the evacuator container, yet it does not inhibit the operation of the evacuator. Moreover, the fluid stabilizer prevents any sudden surge of fluids from accidentally actuating the magnetic purge valve.

14 Claims, 3 Drawing Figures sz v '5 Q I @53 j 5 a 69 STABILIZED CONTAMINATION FREE SURGICAL EVACUATOR BACKGROUND-OF THE INVENTION This invention relates to surgical drainage devices and more particularly to contamination free surgical evacuators suitable for draining wounds or infected areas of a patients body.

Various types of surgical evacuator devices have been proposed and some of them are in use. These devices vary from pumps to suction evacuator devices. Pumps generally have the disadvantage that they are bulky and, therefor, difficult to attach to a patient in a manner tha allows him to move about during recovery from an injury or operation. For this reason, vacuum or suction evacuators generally have been found to be more useful.

In operation, a vacuum or suction evacuator is first compressed to a small size. As the bag portion of the evacuator expands to its normal size a suction is created. The suction is utilized to drain a patients wound through suitable drainage tubes. Evacuators that use this principle of operation are disclosed in US. Pat. Nos. 3,115,138 to McElvenny et al.; 3,276,868 to Mondiadis; and, 3,572,340 to Lloyd et al. While evacuators of this general nature have been somewhat satisfactory, they all have one common disadvantage. Specifically, all of these evacuators are open evacuators whereby they allow bacteria and other contaminants to enter the region of the patient being drained. More specifically, these evacuators are first compressed to force air from the bags through a normally plugged opening. Then the plug is replaced and the desired fluids are drained into the evacuator bag. When the bagis suitably full, the plug is again removed and the bag is compressed to exhaust the fluids through the opening previously plugged. Then the plug is again replaced. The major problem with such an evacuation procedure is the time periods during which the plug is removed and fluid (or air) is not being exhausted. During these periods of time contaminant can enter the bag. From the bag the contaminants can then enter the body of the patient through the drainage tube where they can cause infection. For this, as well as other reasons, these devices have not found as widespread use as possible.

One device, described in US. Pat. application Ser. No. 189,563 filed Oct. 15, 1971 for Contamination Free Surgical Evacuator, has been proposed to overcome the foregoing disadvantage. While this device has proven to be eminently successful in eliminating this and other problems, thre are further areas yet subject to improvement. For example, since the entire interior of the evacuator described in the noted patent application is essentially open, blood or other fluids drained into the evacuator container are free to splash around inside the container. It will be appreciated that for ambulatory patients, and also for bed patients, such splashing is undesirable because it is noisy and may be uncomfortable.

Thus, it is one object of this invention to provide a new and improved surgical drainage devcie that reduces the amount of internal splashing of drained liquids.

Another disadvantage of the device described in the foregoing patent application, relates to its structure. More specifically, because the structure comprises a pair of plates and a plurality of internal springs, it is relatively complicated to manufacture. Consequently, it is desirable to provide a container structure that is less complex and therefor more economical.

Therefore, it is another object of this invention to provide a new and improved surgical evacuator that is formed of a limited number of components, yet readily expands toward a normal configuration after having been evacuated so as to create the desired drainage vacuum.

While the device described in the above noted patent application has been quite satisfactory in preventing contamination, it will be appreciated by those skilled in the art that a potential for contamination still exists, even though small, because there is an unrestricted wet surface between the evacuator container and the wound through the drainage tubing. This wet surface provides a surface for bacterial migration should bacteria enter the evacuator container in one manner or another.

Hence, it is a still further object of this invention to provide a dry wall region between the container and the drainage tubing to prevent the migration of bacteria and other organisms.

One further problem with the device described in the foregoing patent application relates to its inability to directly drain more than one region of a wound, without the utilization of Ys of other connectors. It will be appreciated that Ys or other connectors reduce the contamination integrity of the system because each connection point is subject to separation and, thus, could allow the entry of contaminants. Consequently, it is desirable to reduce the number of connection points to an absolute minimum.

Hence, it is yet another object of this invention to provide a new and improved surgical evacuator that can drain one or more tubes directly, as desired.

SUMMARY OF THE INVENTION internal volume of the container. Upon release, thecontainer tends to assume its normal bulbous shape, and, thus, creates the vacuum that drains wounds in the manner described above. More specifically, the evacu-- ator includes flap inlet valves and a magnetic outlet or purge valve. The inlet valves allow fluids to be drawn into the container by the vacuum created as the container expands to its normal shape. The magnetic valve allows the container to be evacuated to air and fluids when the container is compressed by manual external pressure.

In accordance with other principles of this invention, a fluid stabilizer is mounted inside of the evacuator container. The stabilizer is, preferably, a generally cylindrical, perforated diaphragm which allows blood or other fluids to flow slowly from one region in the evacuator container to another region. Thus, splashing of contained fluids is prevented. The fluid stabilizer compresses when the evacuator container is manually compressed to create the desired vacuum so that there is no loss of evacuator operation by its inclusion.

In accordance with still further principles of this invention, two, or more, input terminals are provided. The input terminals include the flap valves and are adapted to either receive drainage tubes connected to a wound or be entirely closed. Thus, more than one wound, or several regions or the same wound, can be separately, directly drained into the evacuator container. In addition, the input terminals or drains are formed in a manner such that each drainage tube is separated by a drip chamber from the interior of the evacuator container. Thus, a dry wall section between the drainage tubes and the container is provided. The dry wall region prevents the migration of bacteria or other organisms from the container to the drainage tubes.

It will be appreciated from the foregoing brief description that a stabilized, contamination free surgical evacuator is provided by the invention. Because a compressible diaphragm that only allows the slow internal movement of fluids is included, the internal splashing of blood prevalent in prior art devices does not occur. Moreover, the compressible diaphragm prevents any sudden surge of fluids from accidentally actuating the magnetic purge valve. In addition, because the container is formed of a material having memory, separate devices for expanding the container after the compression thereof, such as springs, are not necessary. Further, because dry wall drip chambers are provided, bacteria cannot migrate from the container through the tubing to the wound being drained to cause infection.

BRIEF DESCRIPTION OF THE DRAWINGS The foregoing objects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:

FIG. 1 is an isometric view of a preferred embodiment of the invention;

FIG. 2 is a sectional view along line 22 of FIG. 1; and,

FIG. 3 is a sectional view of the drip chambers only, along line 3-3 of FIG. 1.

DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 illustrates a preferred embodiment of the invention and comprises an evacuator container 11 formed of a lower section 13 and an upper section 15. Preferably, the lower section 13 is formed of transparent flexible polypropylene and the upper section is formed of transparent semi-rigid polypropylene. In any event, the upper and lower sections are spin welded together along a junction 17 in a conventional manner to form an evacuator container that is unitary.

As with the device described in the'U.S. Patent application referenced above, Ser. No. 189,563, the upper section includes a cup-shaped region 19 having a plurality of graduations 21 written thereon. Since the cup-shaped region is transparent, when the evacuator container is inverted from the position illustrated in FIGS. 1 and 2, the graduations in combination with amount of fluid in the cup-shaped region provide measurement information. Thus, if a wound has been drained for a predetermined time and then the evacuator container is inverted from the position illustrated in FIGS. 1 and 2, the amount of fluid drained during the period of time can be determined by reading the nearest graduation or interpulating between graduations, as desired.

Located atop the cup-shaped region 19 is a cap 23 which surrounds a one-way magnetic outlet or purge valve 25. The magnetic purge valve comprises a ring magnet 24 surrounding an outlet aperture 26. The ring magnet 24 co-acts with a metal plate or cap 28, formed of iron or some other magnetic material, separated therefrom by a gasket 30. The gasket is fully attached along one surface to either the ring magnet 26 or the metal plate 28 and only partially attached to the other element so as to be able to separate therefrom when pressure is applied. Thus, internal pressure allows these elements to separate and provide an exhaust opening. More specifically, the magnetic valve allows the interior of the container 1 1 to be exhausted of air and fluids when it is compressed in the hereinafter described manner to cause the metal plate to move away from the ring magnet. A splash cap 32 prevents splashing of fluid during exhaustion.

Located adjacent to the cup-shaped region 19 are a pair of inlet terminals 27 and 29. As best seen in FIG. 3, the inlet terminals each include a drip chamber 31 which is an essentially funnel-shaped region that ends in a lower hole 33. The lower hole is normally closed by a flexible flap 35. Thus, the flap and the lower hole form a one-way inlet valve. Internal vaccum caused when the container expands towards its normal state opens the inlet valves. The flaps may be attached to the inner surface of the upper section 15 by any suitable means such as by a pin 37 located between the drip chambers 31. Alternatively they may be unitarily formed with the drip chambers 31 and the remaining portions of the upper section 15. Or, a suitable bonding agent may be used.

The tops of the drip chambers are closed by closure plates 39. The closure plates 39 have openings 41 which either allow a drain tube 43 to enter the drip chamber or allow a plug 45 to close the opening. Preferably, the closure plates 39 are removably mounted in the tops of the drip chambers so that plates with different size openings 41 can be used. More specifically, standard drain tubes come in 3/32 inches, 6/32 inches and H4 inches outside diameter. It is desirable that any of these sizes be usable with the invention. The use of removable clsoure plates 39 allows this to be done.

It should be noted that the drip chambers 31 are formed such that only the tip of the drainage tube 43 need be inserted into the drip chamber. Since the opening 41 in the closure plate 39 is aligned with the hole 33, the drainage tube is also aligned with thehole 33. Thus, fluids from the tube pass directly through the hole 33 past the flap 35 and into the interior of the evacuator container. This structural arrangement provides a dry region between the drainage tube 43 and the interior of the evacuator container. The dry region is along the inner surface of the drip chambers 31 and prevents the migration of bacteria and other organisms from the container into a wound being drained.

Located inside of the container 11 is a fluid stabilizer 51 (FIG. 2). The fluid stabilizer 51 is a generally cylindrical corrugated element preferably formed of flexible polypropylene. A plurality of perforations 53 extend through the corrugations. The perforations 53 allow fluid to flow through the fluid stabilizer. However, the rate of fluid flow is considerably less than if the stabilizer were not present. Thus, while blood or other fluids are free to move inside of the evacuator 11, they are prevented from splashing about and surging against the magnetic purge valve and unintentionally opening it, such as could occur if the evacuator were dropped, for example.

The fluid stabilizer 51 is held in place at the bottom of the evacuator container 11 by an upwardly projecting ring-shaped region 55. In addition, the fluid stabilizer is held in position at its upper end by a plurality of downwardly projecting pins 57, preferably four in number. Thus, the fluid stabilizer is maintained in position during formation of the unitary evacuator container and thereafter. That is, during spin welding of the lower and upper sections 13 and 15 the fluid stabilizer is held centered by the ring 55 and the pins 57. Further, it is held in position by these same items during use. Preferably, the ring 55 and the pins 57 are formed as a part of the lower and upper sections 13 and 15 respectively.

Because the fluid stabilizer is corrugated and formed of a flexible material, it is easily collapsible. That is, when the evacuator container is compressed to empty it of air and/or fluids through the magnetic valve 25, the fluid stabilizer also compresses. Thereafter, it expands as the evacuator container 11 expands to its.

normal bulbous shape.

Attached to the lower section 13 of the container 11 is an attachment tab 59 which is utilized to attach the surgical evacuator of the invention to an ambulatory patient, such as by hanging it from the waist of the patient, for example.

The operation of the surgical evacuator of the invention is generally similar to the operation of the surgical evacuator described in above noted patent application, Ser. No. 189,563. More specifically, a drainage tube or drainage tubes are inserted into the wound to be drained. The tube or tubes are connected to the evacuator container via the drip chambers 31 in the manner described above. The evacuator is evacuated by squeezing the bulbous container to empty it of air and- /or fluids. More specifically, pressure formed by squeezing the container opens the magnetic valve 25 and allows air and/or fluids in the container to be evacuated therefrom. Fluids are evacuated when the container is inverted, of course. Upon release of the manually applied pressure, the magnetic valve immediately closes to prevent the entrance of contaminants. Thereafter, the evacuator tends to return to its normal bulbous state, illustrated in the drawings. This tendency causes a suction which opens the flap valve 35 and draws fluid from the wound via the drainage tube (or tubes) 43. After the evacuator returns to its normal state, it is emptied by inverting it and again manually compressing or squeezing it to open the magnetic valve 25 forcing fluids to flow out through the magnetic valve.

As alluded to above, the evacuator of the invention can be used as a fluid flow measuring device. Such a device is of particular importance to medical personnel as the rate of drainage decreases since it is desirable to remove the drainage tubes when the rate of drainage drops below a predetermined point. If this is not done the tube (or tubes) may adhere to the wound. The rate of flow of drained fluids can be measured over a predetermined unit of time by allowing the flow to continue for the predetermined unit of time. Thereafter, the

amount of drained fluid is measured by inverting the evacuator and reading the graduation nearest the fluid level, or interpolating between graduations, as desired,

It will be appreciated by those skilled in the art and others that the invention provides an evacuator which is, structurally, considerably less complicated than prior art evacuators. In addition, it provides a means for preventing the splashing of blood or other fluids held in the evacuator container. Further, it provides a dry surface between the evacuator container and the patient. Thus the migration of bacteria and other organisms from the evacuator to the wound being drained is prevented. Hence, the invention provides a variety of improvements over prior art evacuators including the one illustrated and described in US. Pat. Application Ser. No. 189,563.

While a preferred embodiment of the invention has been illustrated and described, it will be appreciated by those skilled in the art and others that various changes can be made therein without departing from the spirit and scope of the invention. For example, three or more inlet regions, rather than two can be provided, if desired. Moreover, the fluid stabilizer can be attached to the interior of the container in a variety of manners and can take on other forms. Further, while the disclosure has primarily discussed the use of the invention in draining blood and other fluids from wounds, it will be appreciated that it can be used for other purposes. For example, the invention can be utilized to drain urine directly from the urinary tract under low suction by placing the drainage tube in a patients bladder, ureters or pelvis of the kidney. Hence, the invention can be practiced otherwise than as specifically described herein.

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

l. A stabilized, contamination free surgical evacuator comprising:

an evacuator container, said evacuator container being compressible and expandable to decrese and increse the internal volume of said container and thus create a vacuum;

an inlet region formed in said evacuator container,

said inlet region including at least one one-way valve which allows fluid to be drawn into said container by the vacuum created therein;

an outlet region formed in said evacuator container,

said outlet region including a one-way valve that allows fluids and air to be exhausted from said evacuator container when said evacuator container is compressed to decrease its internal volume; and,

a fluid stabilizer mounted inside of said evacuator container, said fluid stabilizer comprising a compressible diaphragm having a plurality of apertures therein which allow fluids to slowly flow from one region to another region inside of said container.

2. A stabilized, contamination free surgical evacuator as claimed in claim 1 wherein said evacuator container is bulbous in shape and formed of materials having memory which return to a normal state when no external forces are applied.

3. A stabilized, contamination free surgical evacuator as claimed in claim 2 wherein said inlet region includes at least one drip chamber.

4. A stabilized, contamination free surgical evacuator as claimed in claim 3 wherein said drip chamber is formed such that it includes an inlet aperture adapted to receive a drainage tube and an outlet aperture which forms the inlet to said one-way valve, said apertures being aligned'so that fluids entering said drip chamber from said drainage tube pass directly through said aperture forming the inlet to said one-way valve whereby a dry wall region exists between said drainage tube and said aperture forming the inlet to said one-way valve.

5. A stabilized, contamination free surgical evacuator as claimed in claim 4 wherein said drip chamber includes a relatively large aperture and a closure plate for closing said apertures, said closure plate including an aperture through which said drainage tube extends.

6. A stabilized, contamination free surgical evacuator as claimed in claim 5 including a plurality of one-way valves and drip chambers.

7..A stabilized, contamination free surgical evacuator as claimed in claim 6 wherein said fluid stabilizer is generally cylindrical in shape and has a corrugated outer surface.

8. A stabilized, contamination free. surgical evacuator as claimed in claim 6 wherein said evacuator container and said fluid stabilizer are formed of polypropylene.

9. A stabilized, contamination free surgical evacuator as claimed in claim 8 wherein said evacuator container comprises an upper section formed of semi-rigid polypropylene and a lower section formed of flexible polypropylene, said lower section including a ring-shaped inward projection inside of which said fluid stabilizer is mounted and said upper section including a plurality of inwardly projection legs which pass through apertures in said fluid stabilizer to hold said fluid stabilizer in a predetermined position.

10. A stabilized contamination free surgical evacuator as claimed in claim 1 wherein said fluid stabilizer is generally cylindrical in shape and has a corrugated outer surface.

11. A stabilized, contamination free surgical evacuator as claimed in claim 10 wherein said evacutor container and said fluid stabilizer are formed of polypropylene.

12. A stabilized, contamination free surgical evacuator as claimed in claim 11 wherein said evacuator container comprises an upper section formed of semi-rigid polypropylene and a lower section formed of flexible polypropylene, said lower section including a ringshaped inward projection inside of which said fluid stabilizer is mounted and said upper section including a plurality of inwardly projecting legs which pass through apertures in said fluid stabilizer to hold said fluid stabilizer in a predetermined position.

13. A stabilized, contamination free surgical evacuator as claimed in claim 1 wherein said evacuator container comprises an upper section formed of semi-rigid polypropylene and a lower section formed of flexible polypropylene, said lower section including a ringshaped inward projection inside of which said fluid stabilizer is mounted and said upper section including a plurality of inwardly projecting legs which pass through apertures in said fluid stabilizer to hold said fluid stabi lizer in a predetermined position.

14. A stabilized, contamination free surgical evacuator as claimed in claim 1 including a plurality of oneway valves and drip chambers.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2686006 *Jan 8, 1952Aug 10, 1954Goodrich Co B FPneumatic bellows pump
US3376868 *Jun 4, 1964Apr 9, 1968Howe Sound CoSurgical evacuator device
US3572340 *Jan 11, 1968Mar 23, 1971Kendall & CoSuction drainage device
US3595240 *Aug 7, 1968Jul 27, 1971Mishler Alan JHydrocephalus shunt with two-way flushing means
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3875941 *Apr 3, 1974Apr 8, 1975Medical Dynamics IncSystem for evacuating fluids from the body
US3891000 *Nov 19, 1973Jun 24, 1975Melnick IrvingImpregnated magnetic flap valve
US3900029 *Oct 26, 1973Aug 19, 1975Melnick IrvingClosed surgical evacuator
US3905391 *Nov 19, 1973Sep 16, 1975Melnick IrvingMagnetic flap valve
US4058123 *Oct 1, 1975Nov 15, 1977International Paper CompanyCombined irrigator and evacuator for closed wounds
US4112947 *Jan 24, 1977Sep 12, 1978International Paper CompanyCombined irrigator and evacuator for closed wounds
US4278089 *Nov 9, 1978Jul 14, 1981Howmedica, Inc.Wound drainage device
US4404924 *Sep 5, 1980Sep 20, 1983Uresil CompanyBody fluid suction device indicators
US4460354 *Jul 8, 1980Jul 17, 1984Snyder Laboratories, Inc.For evacuating fluids from the body
US4529402 *Feb 21, 1984Jul 16, 1985Snyder Laboratories, Inc.Closed wound suction evacuator with rotary valve
US4536136 *Mar 22, 1983Aug 20, 1985Lan Yung HueiFilm-made pump driven by the filling effect of a fluid on filling into a chamber made of film
US4559035 *Sep 26, 1983Dec 17, 1985Snyder Laboratories, Inc.Collapsible wound suction evacuator
US4578060 *Jul 20, 1983Mar 25, 1986Howmedica, Inc.Wound drainage device
US4601715 *May 29, 1984Jul 22, 1986Snyder Laboratories, Inc.Chest drainage device with sound muffling tube
US4643719 *Jul 19, 1984Feb 17, 1987Garth Geoffrey CManually operable aspirator
US4671791 *Nov 28, 1984Jun 9, 1987Ekbladh Fred Vage GSuction pump
US4740202 *Aug 8, 1986Apr 26, 1988Haemonetics CorporationSuction collection device
US4981473 *Feb 1, 1990Jan 1, 1991Rosenblatt/Ima Invention EnterprisesAspirator without partition wall for collection of bodily fluids including improved safety and efficiency elements
US5002534 *Feb 1, 1990Mar 26, 1991Rosenblatt/Ima Invention EnterprisesAspirator without partition wall for collection of bodily fluids including improved safety and efficiency elements
US5019059 *Aug 2, 1988May 28, 1991Uresil CorporationApparatus and method for collecting body fluids
US5451218 *Mar 2, 1994Sep 19, 1995Moore; Patrick S.Urinary drainage device
US5496299 *Sep 21, 1994Mar 5, 1996C. R. Bard, Inc.Suction reservoir
US5505717 *Sep 15, 1993Apr 9, 1996Moore; Patrick S.Urinary drainage device
US5588958 *Sep 21, 1994Dec 31, 1996C. R. Bard, Inc.Closed wound orthopaedic drainage and autotransfusion system
US6706000Jun 14, 2001Mar 16, 2004Amira MedicalMethods and apparatus for expressing body fluid from an incision
US7258676 *Jun 10, 2004Aug 21, 2007C-Boot LtdDevice and method for low pressure compression and valve for use in the system
US7727168Jun 19, 2007Jun 1, 2010Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US7731668Jul 16, 2007Jun 8, 2010Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US7758518Jan 14, 2009Jul 20, 2010Roche Diagnostics Operations, Inc.Devices and methods for expression of bodily fluids from an incision
US7758555Sep 19, 2007Jul 20, 2010Kci Licensing, Inc.Reduced pressure treatment system having blockage clearing and dual-zone pressure protection capabilities
US7824384Aug 10, 2005Nov 2, 2010Kci Licensing, Inc.Chest tube drainage system
US7828749Nov 22, 2006Nov 9, 2010Roche Diagnostics Operations, Inc.Blood and interstitial fluid sampling device
US7841991Jun 26, 2003Nov 30, 2010Roche Diagnostics Operations, Inc.Methods and apparatus for expressing body fluid from an incision
US7880050Feb 8, 2008Feb 1, 2011Kci Licensing, Inc.Breathable interface system for topical reduced pressure
US7901363Jan 8, 2004Mar 8, 2011Roche Diagnostics Operations, Inc.Body fluid sampling device and methods of use
US7927319Feb 20, 2008Apr 19, 2011Kci Licensing, Inc.System and method for distinguishing leaks from a disengaged canister condition in a reduced pressure treatment system
US8007257Oct 15, 2007Aug 30, 2011Kci Licensing Inc.Reduced pressure delivery system having a manually-activated pump for providing treatment to low-severity wounds
US8057449Feb 8, 2008Nov 15, 2011Kci Licensing Inc.Apparatus and method for administering reduced pressure treatment to a tissue site
US8123701May 13, 2010Feb 28, 2012Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US8148595Jan 27, 2011Apr 3, 2012Kci Licensing, Inc.Breathable interface system for topical reduced pressure
US8158844Mar 12, 2009Apr 17, 2012Kci Licensing, Inc.Limited-access, reduced-pressure systems and methods
US8177772Sep 26, 2006May 15, 2012C. R. Bard, Inc.Catheter connection systems
US8231549May 13, 2010Jul 31, 2012Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US8235939Mar 13, 2007Aug 7, 2012Kci Licensing, Inc.System and method for purging a reduced pressure apparatus during the administration of reduced pressure treatment
US8235971Sep 10, 2010Aug 7, 2012C. R. Bard, Inc.Catheter connection systems
US8267908Nov 21, 2008Sep 18, 2012Kci Licensing, Inc.Delivery tube, system, and method for storing liquid from a tissue site
US8287507May 1, 2009Oct 16, 2012Kci Licensing, Inc.Reduced pressure indicator for a reduced pressure source
US8328776Jun 28, 2010Dec 11, 2012Kci Licensing, Inc.Reduced pressure treatment system having blockage clearing and dual-zone pressure protection capabilities
US8337475Oct 12, 2005Dec 25, 2012C. R. Bard, Inc.Corporeal drainage system
US8357131Sep 16, 2009Jan 22, 2013Kci Licensing, Inc.Laminar dressings, systems, and methods for applying reduced pressure at a tissue site
US8366690Sep 18, 2007Feb 5, 2013Kci Licensing, Inc.System and method for determining a fill status of a canister of fluid in a reduced pressure treatment system
US8366691Aug 7, 2009Feb 5, 2013Kci Licensing, IncReduced-pressure treatment systems with reservoir control
US8372049Mar 5, 2009Feb 12, 2013Kci Licensing, Inc.Dressing and method for applying reduced pressure to and collecting and storing fluid from a tissue site
US8372050Mar 5, 2009Feb 12, 2013Kci Licensing, Inc.Dressing and method for applying reduced pressure to and collecting and storing fluid from a tissue site
US8377017Jan 3, 2008Feb 19, 2013Kci Licensing, Inc.Low-profile reduced pressure treatment system
US8409170Feb 8, 2008Apr 2, 2013Kci Licensing, Inc.System and method for managing reduced pressure at a tissue site
US8425478Sep 16, 2009Apr 23, 2013Kci Licensing, Inc.Multi-layer dressings, systems, and methods for applying reduced pressure at a tissue site
US8444611Jul 21, 2004May 21, 2013Kci Licensing, Inc.Negative pressure wound treatment dressing
US8529526Oct 20, 2009Sep 10, 2013Kci Licensing, Inc.Dressing reduced-pressure indicators, systems, and methods
US8535283Feb 8, 2008Sep 17, 2013Kci Licensing, Inc.System and method for applying reduced pressure at a tissue site
US8575416Jan 11, 2012Nov 5, 2013Kci Licensing, Inc.Limited-access, reduced-pressure systems and methods
US8636721Nov 22, 2004Jan 28, 2014Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc.Portable hand pump for evacuation of fluids
US8641692Jul 9, 2009Feb 4, 2014Kci Licensing, Inc.Manually-actuated, reduced-pressure systems for treating wounds
US8679079Aug 9, 2011Mar 25, 2014Kci Licensing, Inc.Reduced pressure delivery system having a manually-activated pump for providing treatment to low-severity wounds
US8690798May 3, 2012Apr 8, 2014Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US8696596Dec 22, 2009Apr 15, 2014Roche Diagnostics Operations, Inc.Blood and interstitial fluid sampling device
US8728044Nov 13, 2009May 20, 2014Kci Licensing, Inc.Fluid pouch, system, and method for storing fluid from a tissue site
US8740813Jul 30, 2012Jun 3, 2014Roche Diagnostics Operations, Inc.Methods and apparatus for expressing body fluid from an incision
US20110238022 *Mar 24, 2010Sep 29, 2011Shayna MassiCorporeal drainage system
EP0094682A1 *May 17, 1983Nov 23, 1983Solco Basel AgApparatus for the collection and reinfusion of blood
EP0218785A1 *May 17, 1983Apr 22, 1987Solco Basel AgApparatus for collection and reinfusion of blood
EP0390106A2 *Mar 28, 1990Oct 3, 1990Terumo Kabushiki KaishaFluid aspirator
EP1685863A1 *Sep 20, 2004Aug 2, 2006Mikhail Vladimirovich KutushovSystem for correcting biological fluid
WO1980002706A1 *May 22, 1980Dec 11, 1980Uresil CoApparatus and method for introducing fluid into and removing fluid from a living subject
WO2004108051A2 *Jun 10, 2004Dec 16, 2004Boot Ltd CDevice and method for low pressure compresssion and valve for use in the system
Classifications
U.S. Classification604/133, 417/472
International ClassificationA61M1/00
Cooperative ClassificationA61M1/0011
European ClassificationA61M1/00A5