Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3777972 A
Publication typeGrant
Publication dateDec 11, 1973
Filing dateMar 17, 1972
Priority dateMar 25, 1971
Also published asDE2214487A1, DE2214487B2, DE2214487C3
Publication numberUS 3777972 A, US 3777972A, US-A-3777972, US3777972 A, US3777972A
InventorsKjellgren O
Original AssigneeAlfa Laval Ab
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Sludge centrifuge
US 3777972 A
Spaced around the periphery of the centrifugal rotor are permanently open nozzles for discharging sludge separated from the liquid fed to the separating chamber of the rotor. To remove the sludge cushions accumulating on the peripheral wall of this chamber between the permanently open nozzles, the rotor periphery has at least one sludge outlet which is alternately opened and closed by an axially movable piston valve.
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Kjellgren Dec. 11, 1973 SLUDGE CENTRIFUGE 3,630,431 12 1971 Oka 233 47 R 1 Inventor: 0w Allan Valentin Kiellgren, 3232,3523 Z1323 Sill???1:31.......::1:::31:1:31:1:::3 iii/13E Stockholm, Sweden [73] Asslgnee: Alia-Laval AB, Tumba, Sweden Primary Examiner George H Krizmanich [22] Filed: Mar. 17, 1972 Att0meyCyrus S. Hapgood et al.

[21] App]. No.: 235,633

30 Foreign Application Priority Data [57] ABSTRACT Mar. 25, 1971 Sweden 3877/71 Spaced around the periphery of the centrifugal rotor are permanently open nozzles for discharging sludge [52] U.S. Cl. 233/20 A, 233/47 R Separated from the liquid fed to the Separating charm [51] lltt. CI B041) l/12 ber of the town To remove the Sludge Cushions accu [58] Fleld 0f Search 233/19 R, 19 A, 20 R, mulating on the peripheral wall f this h b 233/20 47 R tween the permanently open nozzles, the rotor periphery has at least one sludge outlet which is alternately [56] References C'ted opened and closed by an axially movable piston valve.

UNITED STATES PATENTS 7/1954 Heckendorf 233/20 R 3 Claims, 1 Drawing Figure SLUDGE CENTRIFUGE The present invention relates to centrifuges for separating a sludge-containing liquid and in which the rotor is provided along its periphery with circumferentially spaced nozzles which are permanently open to discharge sludge separated in the separating chamber of the rotor. v

A difficulty with centrifuges of this type is that the nozzles are easily clogged if the sludge contains particles larger than the inner diameter of the nozzles. The sludge concentration obtained in the separation depends upon the number as well as the inner diameter of the nozzles, since a reduced number of nozzles requires an increased inner diameter of the nozzles. If, in order to avoid this clogging of the nozzles, their inner diameter is increased and consequently their number is reduced correspondingly, the sludge cushions formed between the nozzles will grow faster radially inward toward the periphery of the disc set and into the latter, due to the bosh angle of the sludge. This means that the centrifuge must be stopped more often for cleaning than when using the smaller nozzles. Each cleaning of the centrifuge rotor requires dismounting of the rotor and consequently troublesome and time-consuming work. Different methods have been attempted for clean-flushing the centrifuge rotor while keeping it in rotation, without reaching any satisfactory solution of the problem.

According to the present invention, which aims at eliminating this difficulty, the separating chamber of the centrifuge rotor has the afore-mentioned nozzles, and the rotor is provided along its periphery with one or more sludge outlet openings arranged to be opened and closed by an axially movable piston valve. When using a single sludge outlet opening, this opening can extend continuously along the entire periphery of the rotor. The opening and closing movements of the piston valve can be effected in a manner which is conventional in the art.

The invention is described more in detailbelow with reference to the accompanying drawing, in which the single illustration is an axial'sectional view of the lefthand half of an example of the new centrifuge.

In the drawing, a centrifuge rotor 1* comprises an upper part la and a lower part l'b which are clamped together by a lock ring 2. In the rotor wall is a sludge outlet opening 3 and similar openings (not shown) spaced around the periphery of the rotor, these openings being opened and closed in a conventional manner by a valve piston 4. The latter has a'plurality of holes passing radially through the piston at its upper annular portion and spaced therearound to form permanently open sludge outlet nozzles, one of these holes being shown at 5. Alternatively, such holes may be formed in the upper part 1a of the rotor body, as shown with dash-dotted lines at 5a. The holes 5'or 5a open into the openings 3. When separating bacteria from milk, the holes 5 can have a diameter of 0.4mm; and when separating ,bakers cottage cheese from sour coagulated skim milk, these holes can have a diameter of 1.0 mm.

The rotor l is carried and driven by a hollow shaft 6, through the central channel of which liquid to be separated is supplied to the separating chamber of the rotor. The liquid enters this chamber past the lower edge of a distributor 7. Separated sludge is thrown outwardly through the holes 5; but between these holes (reckoned peripherally) sludge deposits are eventually formed as indicated at 8. Purified liquid flows through a disc set 9 inwardly toward the axis of the rotor and thence, via an overflow outlet10, into a paring chamber 11. The latter is provided with a stationary parting disc 12 connected to an outlet pipe. 13.

Assuming that bakers cottage cheese is to be separated from sour coagulated skim milk, the skim milk is fed through the shaft 6 to the separating chamber of the rotor and is divided into whey and bakers cottage cheese. The whey passes inwardly and is discharged by the paring disc 12, while the cheese passes outwardly toward the periphery of the rotor for discharge through the holes 5 and the openings 3. Despite this discharge through the holes 5, some of the cheese deposits on the inner surface of the rotor periphery at its regions located between the circumferentially spaced holes 5, so that these deposits eventually form substantially conical cushions each having its apex extending inwardly toward the periphery of the disc set 9. These cheese cushions, however, must not be allowed to grow into the disc set, since they would then impair the separation efficiency of the centrifuge. To avoid such impairment without having to stop the centrifuge rotor in order to dismount and clean it, the openings 3 are opened by downward actuation of the valve piston 4 without stopping the centrifuge rotor. Due to the centrifuge force, the cheese cushions are then thrown out directly through the openings 3; and after the valve piston 4 is returned to its closing (upper) position as illustrated, the separation can be continued.

In those cases where bacteria are separated from whole milk, a layer of impurities settles along the inside of the rotor periphery, and through this layer extend radial channels which are formed just opposite the holes 5 and which remain open during the separation course. Bacteria separated from the milk are thrown out through these channels, as long as the sludge layer does not build up sufficiently to reach the periphery of the disc set. To avoid this build-up, the sludge layer may be discharged in the afore-mentioned manner at suitable intervals (for example, 1 hour).

After a separation .course has been completed, the centrifuge rotor can be cleaned by opening the valve piston 4 while keeping the rotor in continued rotation.

In the illustrated embodiment, the valve piston 4 is actuated conventionally by varying the feed rate of an operating liquid from a stationary duct 15 into an annular space 4a between the valve piston 4 and the lower bowl part lb, this liquid entering the space 4a near the rotor axis. To keep the piston 4 in its raised position as shown, the space 4a is maintained completely filled with the operating liquid despite a continual bleeding thereof through a peripheral outlet 4b. Thus, the pressure of the operating liquid is sufficient to hold the upper edge of the piston against the opposing edge of the upper bowl part la, as shown at 16, thereby preventing discharge directly through the openings 3. By sufficientlyreducing the flow rate from duct 15, the operating liquid drains from space 4a through outlet 4b until the upward pressure on piston 4 is diminished enough to allow lowering thereof under the pressure exerted by the contents of the separating chamber, whereupon the openings 3 are unblocked for direct discharge therethrough independently of the holes 5. Piston 4 is returned to its raised (closing) position by increasing the feed rate from duct 15 so as to re-fill the space 4a.

eral portion of the chamber except through said nozzle means and a second position for discharging sludge through said outlet opening independently of said nozzle means.

2. The combination according to claim 1, in which said nozzle means are in the piston valve.

3. The combination according to claim 1, in which said nozzle means are in said peripheral portion of the rotor.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2682992 *Nov 2, 1951Jul 6, 1954Int Harvester CoPower washing cream separator and threaded drive member therefor
US3460750 *Apr 12, 1967Aug 12, 1969Silla CuccoliniCentrifugal separator
US3519200 *Nov 2, 1967Jul 7, 1970Alfa Laval AbMethod for indicating changes of liquid pressure in a centrifugal separator
US3630431 *Mar 10, 1970Dec 28, 1971Mitsubishi Kakoki KkValve-discharge disc centrifuge
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4191325 *Aug 9, 1978Mar 4, 1980Alfa-Laval AbCentrifuge with sludge outlets at rotor periphery
US4347971 *Feb 26, 1981Sep 7, 1982Joy Manufacturing CompanyCentrifuge apparatus
US4350282 *Dec 23, 1980Sep 21, 1982Donaldson Company, Inc.Self-purging centrifuge
US4410318 *Sep 16, 1981Oct 18, 1983Alfa Laval AbMethod and arrangement to watch over separated sediment, which is thrown out through nozzles of a centrifugal separator
US4432748 *May 15, 1978Feb 21, 1984Joy Manufacturing CompanyCentrifuge apparatus and method of operating a centrifuge
US4813923 *Jan 27, 1988Mar 21, 1989Alfa-Laval Separation AbCentrifugal separator
US6969343 *May 30, 2001Nov 29, 2005Westfalia Separator Food Tec GmbhCentrifuge with a sieve system and method for operating the same
EP0205473A1 *Nov 14, 1985Dec 30, 1986Alfa Laval AbOutlet arrangement in a centrifugal separator.
WO1982002153A1 *Dec 15, 1981Jul 8, 1982Donaldson Co IncSelf-purging centrifuge
WO2008140378A1 *May 9, 2008Nov 20, 2008Alfa Laval Corp AbMethod and device for cleaning of a fluid in a centrifugal separator
U.S. Classification494/48, 494/27
International ClassificationB04B1/14, B04B1/00, B04B1/18
Cooperative ClassificationB04B1/18
European ClassificationB04B1/18