Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3779225 A
Publication typeGrant
Publication dateDec 18, 1973
Filing dateJun 8, 1972
Priority dateJun 8, 1972
Also published asCA969829A1, DE2328563A1
Publication numberUS 3779225 A, US 3779225A, US-A-3779225, US3779225 A, US3779225A
InventorsFuller H, Watson E
Original AssigneeBendix Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Reciprocating plunger type fuel injection pump having electromagnetically operated control port
US 3779225 A
Abstract
A fuel injection system for an internal combustion engine of the type having a reciprocating piston pressure pump that includes an electromechanically operated relief or control valve that is arranged so that the face of the valve is not subjected to the pressurized fluid in the pumping chamber, thereby requiring less electromechanical energy to open and close the valve. In this type of arrangement it is now possible to control the opening and closing of the relief valve independently of the reciprocating motion of the piston which pressurizes the fuel in timed relation to rotation of the camshaft or crankshaft of an internal combustion engine.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Watson et al.

[ Dec. 18, 1973 RECIPROCATING PLUNGER TYPE FUEL 2,863 437 12/1958 Bessiere 123/32 AE INJECTION M HAVING 3,191,812 6/1965 Asaka et a1 123/139 AM 3.417.703 12/1968 Eckert et a1. 123/139 AQ ELECTROMAGNETICALLY OPERATED CONTROL PORT Primary ExaminerLaurence M. Goodridge 1 lnvemofsi Edwin waison Sidney, Assistant ExaminerCort Flint Harlan Fuller, DOYIBSIOWH, At10rneyRaymond J. Eifler et a1. [73] Assignee: The Bendix Corporation, Southfield,

Mich. [57] ABSTRACT [22] Filed; June 8 1972 A fuel injection system for an internal combustion engine of the type having a reciprocating piston pressure PP N04 260,882 pump that includes an electromechanically operated relief or control valve that is arranged so that the face [52 US. (:1. 123/139 E, 123/32 AE vaive is not subjected to the Pressurized fluid in 51 Int. Cl. F02d 5/00 Pumping chamber, thereby requiring less electio- [58] Field of Search 123/139 E, 139 AM, mechanical energy to P and close the valvein this 123/139 AK, 32 A5 32 EA type of arrangement it is now possible to control the opening and closing of the relief valve independently [56] References Cited of the reciprocating motion of the piston which pressurizes the fuel in timed relation to rotation of the UNITED STATES PATENTS camshaft or crankshaft of an internal combustion enl,664.610 4/1928 French 123/32 AE gine 2077,25) 4/1937 Planiol 123/139 E 2,598,528 5/1952 French 123/32 AE 6 Claims, 3 Drawing Figures T0 ENGINE CYLINDER 57 I 52 i 5G :2 g 50 g g 24 1 11 28 -1Lr|1%u 11W l a z a f 10 i k 5 l i 1 t 6 0 27 j 3 6 a tjarfla PATENTEDUEB 18 ms 3.779.225

sum 10F 2 TO ENGINE CYLINDER FIGURE I PATENTEDUEC 18 I975 3; 779.225

FIGURE 2 FIGURE 3 RECIPROCATING PLUNGER TYPE FUEL INJECTION PUMP HAVING ELECTROMAGNETICALLY OPERATED CONTROL PORT BACKGROUND OF THE INVENTION This invention relates to an internal combustion engine fuel injection system of the type having a source of fuel, a fuel pump for pressu'rizing the fuel, and one or more injectors or nozzle assemblies for injecting fuel into the engine cylinders. The invention is more particularly related to an improved pump of the type having a reciprocating piston for pressurizing fluid and a solenoid-operated control valve for controlling the amount of fluid dispensed by the pump.

Mechanical fuel injection systems for internal combustion engines generally include a fuel tank; the fuel pump that receives fuel from the tank and pressurizes the fuel; and one or more nozzle valve assemblies that receive the pressurized fuel and inject it into the engine cylinder. The fuel pump which pressurizes the fuel to be supplied to the engine cylinders may be of the rotary or reciprocating piston or plunger type. An example of a rotary injection fuel pump may be found in U.S. Pat. No. 3,489,091 entitled Rotary Distributor Pump, issued Jan. 13 1970 to P. Becker. Examples of fuel injection pumps that operate on the principle of a reciprocating piston or plunger may be found in U.S. Pat. Nos. 2,922,581 entitled Fuel Injection Apparatusissued Jan. 26, 1960 to L. J. Garday; 3,146,715 entitled Fuel Injection Pump, issued Sept. 1, 1964 to G. J. Knudson; and 3,190,561 entitled Fuel Injector, issued June 22, 1965 to H. I. Fuller et al.

Fuel pumps of the reciprocating piston type generally include a housing; a piston mounted for reciprocating movement within the housing, the piston cooperatively linked to the crankshaft or camshaft of an internal combustion engine so that rotation of the camshaft causes reciprocation of the piston within the pump housing; and a pressure chamber, one wall of which is the face of the reciprocating piston, the pressure chamber having an inlet port, a relief (bypass) port and an injection port. In all of the reciprocating type pumps the piston includes a passageway (generally a groove or passage in the piston) that periodically links the pressure chamber to the relief port during the stroke of the piston. The shape and arrangement of the passage and the piston are designed so that radial adjustment of the piston (by rotating the piston) from one position to another affects the periodic linking of the relief port to the pressure chamber, thereby controlling injection time and hence the volume of fuel injected into an engine cylinder. Therefore, the quantity of fuel injected into the engine is determined by radially adjusting (rotating) the reciprocating pistons which are mechanically linked to the camshaft of the engine. Because the piston is mechanically linked to the camshaft, the point in time at which fuel is injected into the engine cylinders is generally fixed with respect to the degree of rotation of the camshaft from a common reference point.

Another limitation and disadvantage associated with fuel pumps of the reciprocating piston type is that the reciprocating piston determines the beginning of the injection cycle, i.e., the piston starts the beginning of the injection cycle when it closes the inlet port and the piston begins to build up pressure in the pressure chamber until the pressure reaches a point that causes the injection port to be opened and fuel to be injected into the engine cylinder. In most systems, once a reciprocating fuel pump is installed, the reciprocating piston is mechanically linked to the engine camshaft or crankshaft so that the inlet port always closes when the camshaft reaches the same degree of rotation. A common approach of making the closing of the inlet port vary with respect to the degree of rotation of the camshaft is to introduce a mechanical translator between the engine camshaft and the pump piston. However, mechanical translators (timing advance mechanisms) are both bulky and expensive, which of course is undesirable for commercial fuel injection systems. Another solution to the problem was to eliminate the reciprocating piston and employ a solenoid-operated injector which is electronically controlled by sophisticated switching circuitry. However, this type of system requires an extremely high pressure pump, more expensive electromechanical and electrical components, and very complex injectors.

Therefore, to control the amount of fuel injected into an internal combustion engine over a wide range of engine speeds, inventors have attempted to modify the fuel pump of the reciprocating piston type in a manner so as to control the inlet port opening and closing. Having failed to do this in an economical and practical way, the art has turned toward electronic fuel injection systems which do not employ a fuel pump of the reciprocating piston type and which are relatively expensive and complex.

SUMMARY OF THE INVENTION This invention provides a mechanical fuel injection control system that utilizes a reciprocating piston type fuel pump that is capable of varying the amount of fuel injected into the engine cylinder at fixed and/or at different speeds of rotation of the engine cam and/or crank-shaft.

The invention is a fuel injection pump for an internal combustion engine characterized by an electromechanically operated control or relief valve assembly (27) that is controlled independently of a reciprocating piston (31) in the pump that pressurizes the fluid. The invention is also characterized by an electromechanical relief (control) valve (20) that has a valve face (23) that is not subject to the pressure in a pressure chamber so that the valve requires less electromechanical energy to open and close.

In one embodiment of the invention the fuel injection system for an internal combustion engine of the type having a camshaft comprises: a pump housing (I) having a pressure chamber (10) that communicates with an inlet passage (6), a relief passage (3) and an injection passage (15), the injection passage communicating with the engine; means for supplying fuel to the pumping chamber through said inlet passage; means for closing the injection passage (15), the closing means including biasing means (52), for keeping the injection passage closed until a predetermined fuel pressure is attained in the pumping chamber; means (30) responsive to the rotation of the engine camshaft or crank shaft for periodically pressurizing the fuel in the chamber (10) whereby fuel entering the chamber through the inlet passage periodically flows out of the pumping chamber through the relief (bypass) passage; and electro-mechanical valves means (27) operative to open and close the relief passage (3) at predetermined intervals in response to at least one operating parameter of the engine whereby each time the relief (bypass) passage (3) is closed and fuel is being pressurized, the fuel pressure in the pumping chamber attains a predetermined pressure level at which the injection passage is opened, thereby injecting fuel into the engine. This type of pump assembly makes it possible to open and close the relief passage independently'of the reciprocating motion of the plunger 31.

Accordingly, it is an object of this invention to pro vide a fuel injection pump of a reciprocating piston type wherein the control of the relief valve is independent of the reciprocating piston.

It is another object of this invention to provide a control valve assembly for the relief (bypass) port'of the pressure chamber wherein the axial movement of the valve is not biased by pressurized fluid within the pumping chamber.

It is still another object of this invention to eliminate the need for bulky and expensive mechanical timing devices between an internal combustion engine and a fuel injection'pump.

It is yet another objectof this invention to provide a control valve for a pressure chamber that permits a maximum flow rate to be obtained over a minimum amount of valve travel.

It is still another object of this invention to combine a novel means to control the amount and duration of fuel delivery with a fuel pump of known characteristics, thereby improving the versatility of fuel injector pumps of the reciprocating piston type.

It is also an object of this invention to provide a means for controlling fuel quantity and timing by utilizing a solenoid-operated control valve responding to one or more engine parameters.

The above and other objects and features of the invention wlll become apparent from the following detailed description taken in conjunction with the accompanying drawings and claims which form a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a fuel pump for an internal combustion engine that incorporates the principles of this invention.

FIG. 2 is an enlarged partial diagrammatic view showing the valve portion of the solenoid and the reciprocating plunger.

FIG. 3 is a diagrammatic top view of the pressure chamber taken along lines III--III in FIG. 2.

DETAILED DESCRIPTION OF THE DRAWINGS Referring now to the drawings, FIG. 1 illustrates a fuel injection pump ll of the type having a reciprocating piston assembly 30 for pressurizing the fuel in response to rotation of an internal combustion engine (not shown), a solenoid-operated relief or control valve assembly 27 that is controlled independently of the reciprocating piston assembly 30, and an injection or delivery valve assembly 50 that communicates with the engine cylinder.

The reciprocating piston assembly 30 comprises: a can follower 32 that follows the camshaft or crankshaft of an internal combustion engine (not shown); a spring assembly 33 which maintains the cam follower 32 in contact with the camshaft; and a piston 31 which reciprocates in the bore of housing 60.

The electromegnetic valve assembly 27 comprises: a coil of wire 24 which receives power from a source (not shown); and a valve or solenoid core 20 which is axially movable in response to energization of the coil 24. Spring 28 biases valve 20 axially in the open position so that energization of the solenoid coil 24 is required to close the valve 20. The movable valve 20 includes a hollow portion 21, the purpose of which is to decrease the mass of the core so that less electromagnetic energy is required to move the valve 20. The valve 20 includes an end face 23 which terminates within the housing 60. An important feature of the valve 20 is the annular groove 2 therein which links relief passage 3 with the bore 10 in the housing when the valve 20 is extended to its farthest position from the coil 24. Obviously, portions of the core 20 not required to be responsive to the solenoid can be fabricated from materials other than iron.

The pump assembly 1 further includes a source or supply chamber 5 which supplies fuel to a-pressure chamber 10 through (inlet) passage 6. The supply chamber 5 also communicates with the pressure chamber 10 through (relief) passage 3 and the passage formed by the annular groove 2 of the valve 20 when the valve 20 is in the position shown.

In the FIGURE shown, passage 6 is closed because of the position of piston 31 and the relief passage 3 is open because of the position of the solenoid valve 20. Therefore, the inlet passage 6 of the pressure chamber 10 is closed and the relief passage 3 is open, preventing pressurizing of the fuel in chamber 10 by the piston 31.

The fuel injection pump 1 further includes an injection valve assembly 50 which includes: a delivery valve 51; a valve seat 49 for receiving valve 51; a spring assembly 52 for maintaining the valve 51 in a closed position until a predetermined pressure is attained in chamber 10, the valve 51 and valve seat 49 being disposed in a chamber 15 that communicates with passages 56 and 57 that lead to the engine cylinder. The valve 51 is shown in the closed position which prevents fuel in pressure chamber 10 from communicating with the fluid in chamber 15 and thereby injecting fuel into the engine. The valve 51 is biased closed by spring 52 so that valve 51 does not open until the pressure in the passage 10 reaches a predetermined pressure level which is much greater than any pressure level of the fluid in the supply chamber 5. FIG. 1 illustrates the pressurizing piston 31 at the top of its stroke and the solenoid valve positioned so that the pumping chamber 10 communicates with the supply chamber 5 through passage 3 so that the pressure in chamber 10 is not appreciably greater than the pressure within the supply chamber 5.

FIG. 2 is an enlarged cross-sectional diagrammatic view of the pump assembly shown in FIG. 1. In this diagrammatic view the supply chamber 5 communicates with the pressure chamber 10 only through the inlet passage 6 because the iron core 20 of the solenoid valve has been moved to a position to block the relief passage 3 that would otherwise communicate with the pressure chamber 10. This diagrammatic view illustrates that as piston 31 rises to point A, it closes the inlet port connected to the supply chamber 5, thereby allowing the fuel in the chamber 10 to be pressurized as the volume of the chamber decreases. When the pressure of the fluid in chamber 10 reaches a predetermined pressure value, valve 51 (FIG. 1) opens, allowing fluid to flow around the valve body 20 through the injector valve assembly (50, FIG. 1) and to the internal combustion engine (not shown). Another feature of the invention which can be seen in FIG. 2 is the fact that the face 23 of the valve 20 is not subject to the pressure in chamber 10. If the electromagnetic valve face 23 terminated within chamber 10, it would be subject to pressures that would require additional electromagnetic force to move the valve body 20. Further, since the movement of the valve 20 is independent of the operation of the reciprocating piston 31, control and injection of fuel into an engine cylinder may be started and stopped at any point in time regardless of the angle of rotation of the camshaft. This is an important feature of this invention in that prior art reciprocating type fuel injection pumps were not capable of obtaining this feature.

FIG. 3 is a diagrammatic view looking into pressure chamber along lines [IL-Ill in FIG. 2. This FIGURE illustrates the shape of the pressure chamber 10 that allows pressurized fluid to flow around the valve body 20. The valve body is shown in the open position so that fluid in the pressure chamber 10 may flow through the bypass or relief passage 3 to the supply chamber 5. This view further illustrates how axial movement of the valve 20 in an axial direction opens and closes the communicating link between the pressure chamber 10 and the bypass passage 3. This FIGURE further illustrates that the face of the valve 20 is not at any time located within the pressure chamber 10 and therefore is not subjected to any axial forces caused by the fluid in the chamber when the valve 20 is closed or open. Movement of the body 20 in either axial direction is in the order of .005 inches or less, allowing a maximum flow rate to be obtained in a minimum amount of time.

, OPERATION Referring now to the drawings, and more particularly to FIGS. 1 and 2, the fuel pump 1 operates as follows: a sensing device (not shown) senses one of the operating parameters of the internal combustion engine (not shown) to control the axial movement of the solenoid core or valve 20. The control signal has the effect of causing the body 20 to oscillate at various magnitudes and/or frequencies. Simultaneously with the movement of the iron core 20, the piston 31 reciprocates in response to the action of the spring 33 and cam follower 32 which is following the rotating camshaft of the internal combustion engine. Once the piston 31 has risen to a point in the bore of the housing 60 past the passage 6, fluid in the chamber 10 will or will not be pressurized, depending upon the location of the iron core 20. If the iron core 20 is in the position shown in FIG. 2, there is no communicating link between the chamber 10 and the supply chamber 5, as the location of annular groove 22 is such that passageway 3 does not communicate with pressure chamber 10. Therefore, pressure in the chamber 10 will increase until the delivery valve 51 opens, allowing fuel to pass through passage 57 and to the engine cylinder. Fuel will continue to flow through passage 57 until either the relief port opens or the piston 31 reverses direction, which increases the volume of chamber 10, decreasing the pressure in the chamber 10 and thereby causing the valve 51 to close.

Since the movement of the valve 20 is controlled independently of the movement of the reciprocating pis-' ton 31, it is possible to open and/or close the communicating link between the pressure chamber 10 and the supply chamber 5 at any particular point during the upward stroke of the piston 31. Therefore, it can now readily be appreciated that the injection of fuel into the engine may be controlled by the electromagnetically operated valve 20 which in turn is controlled independently of the reciprocating piston 31. Therefore, the quantity of fuel injected into the engine is a function of the interval of time between the opening and closing of the relief passage 3 by the movement of valve 20.

In other words, when the relief port is closed (no communicating link between pressure chamber 10 and supply chamber 5), the piston 31 will pressurize fuel in the chamber 10 causing it to open injection valve 51 and inject fuel into the engine. However, at any time during this cycle the independently controlled valve 20 can be moved into a position that will establish a communicating link between the pressure chamber 10 and the supply chamber 5, thereby relieving the pressure in chamber 10 resulting in the closing of the injector or delivery valve 51.

While a preferred embodiment of the invention has been disclosed, it will be apparent to those skilled in the art that changes may be made to the invention as set forth in the appended claims, and in some cases certain features of the invention may be used to advantage without corresponding use of other features. Accordingly, it is intended that the illustrative and descriptive materials herein be used to illustrate the principles of the invention and not to limit the scope thereof.

Having described the invention, what is claimed is:

l. A pump for supplying pressurized fluid which comprises:

a pump housing having a pumping chamber that has an inlet port, a relief port, an injection port communicating with said engine, and means for receiv ing a fluid, said fluid receiving means communicating with said inlet port, said relief port and said pumping chamber;

means for keeping said injection port closed below a first predetermined pressure in said pumping chamber;

means for periodically pressurizing the fluid in said chamber to cause fluid entering said pumping chamber through said inlet port to periodically flow out of said pumping chamber through said relief port; and

electromechanical valve means operative to open and close said relief port at predetermined intervals in response to at least one operating parameter of said engine, said electromechanical valve means including a solenoid valve having a core that has a first portion having an axial cross-sectional area that matches the configuration and size of said relief port and a second portion having a second axial cross-sectional area that is smaller than the relief port, said solenoid core mounted for axially reciprocating movement in said relief port so that in one position said first portion of said solenoid core closes said relief port and in a second position said second portion of said solenoid core opens said relief port, said solenoid core mounted so that neither end thereof terminates within said pumping chamber whereby the axial movement of said solenoid core that opens and closes said relief port is not biased by pressurized fluid within said pumping chamber, whereby each time said relief port closes,

the fluid pressure in said pumping chamber attains the first predetermined pressure at which said injection port opens, whereby pressurized fluid flows from said injection port.

2. The pump as recited in claim 1 wherein said means for pressurizing fluid in said pumping chamber comprises:

'a piston mounted for reciprocating movement within said pump housing, said piston operable to periodically open and close said inlet port and thereby periodically apply pressure to said fluid in said pumping chamber as said plunger reciprocates, whereby when said relief port is open, fluid is pumped through said relief port and when said relief port is closed, fluid is pumped through said injection port.

3. The pump as recited in claim 2 wherein said solenoid core is mounted transverse to said pump piston.

4. The pump as recited in claim 1 wherein said solenoid core is mounted transverse to a wall of said pumping chamber so that said plunger extends into said chamber through said relief port.

5. The pump as recited in claim 2 wherein said solenoid core is mounted transverse to a wall of said pumping chamber so that said plunger extends into said chamber through said relief port.

6. A fuel injection system for an internal combustion engine of the type having a cam shaft, the system comprising: v

a pump housing having a pumping chamber that has an inlet port, a relief port and an injection port, said injection port communicating with said engine;

means for supplying fuel to said pumping chamber through said inlet port;

means for closing said injection port, said closing means including biasing means for keeping said injection port closed until a predetermined fuel pressure is attained in said pumping chamber;

means responsive to the rotation of said engine cam shaft for periodically pressurizing the fuel in said chamber whereby the fuel in said chamber periodically flows out of said pumping chamber through said relief port; and

electromechanical valve means operative to open and close said relief port at predetermined intervals in response to at least one operating parameter of said engine whereby each time said relief port is closed the fuel pressure in said pressure chamber attains the predetermined pressure level at which said injection port opens, thereby injecting fuel into said engine, and each time said relief port is open, said injection port is closed, said electromechanical valve means is a solenoid valve having a plunger that has a first portion having an axial cross-sectional area that matches the configuration and size of said relief port and a second portion having a second axial cross-sectional area that is smaller than the relief port, said plunger mounted for axially reciprocating movement in said relief port so that in one position said first portion of said plunger closes said relief port and in a second position said second portion of said plunger opens said relief port, said solenoid core mounted so that neither end thereof terminates within said pumping chamber whereby the axial movement of said solenoid core that opens and closes said relief port is not biased by pressurized fluid within said pumping chamber.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1664610 *Jan 8, 1925Apr 3, 1928French Louis OFuel-feeding system
US2077259 *May 19, 1932Apr 13, 1937Joseph SchidlovskyFuel injecting device for internal combustion engines
US2598528 *Dec 20, 1948May 27, 1952French Louis OFuel injection apparatus
US2863437 *Jan 22, 1957Dec 9, 1958Bessiere Pierre EtienneFuel injection devices for multicylinder engines
US3191812 *Oct 12, 1964Jun 29, 1965Honda Gijutsu Kenkyusho KkHigh pressure fuel injection apparatus for internal combustion engines
US3417703 *Oct 21, 1966Dec 24, 1968Bosch Gmbh RobertFuel injection pump
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3859972 *Jun 28, 1973Jan 14, 1975Bendix CorpFuel injection system for an internal combustion engine
US3880131 *Jun 28, 1973Apr 29, 1975Bendix CorpFuel injection system for an internal combustion engine
US3913537 *Aug 20, 1974Oct 21, 1975Bosch Gmbh RobertElectromechanically controlled fuel injection valve for internal combustion engines
US3989021 *Mar 24, 1975Nov 2, 1976Diesel Kiki Co., Ltd.Dash pot arrangement for distribution type fuel injection pump cut off barrel
US4033310 *Oct 4, 1973Jul 5, 1977C.A.V. LimitedFuel pumping apparatus with timing correction means
US4033314 *Aug 8, 1975Jul 5, 1977Eaton CorporationMetering control
US4050856 *Mar 10, 1976Sep 27, 1977Diesel Kiki Co., Ltd.Dash pot arrangement for distribution-type fuel injection pump cut off barrel
US4073275 *Jan 27, 1976Feb 14, 1978Robert Bosch GmbhFuel injection pump
US4211202 *Sep 14, 1978Jul 8, 1980Daimler-Benz AktiengesellschaftPump nozzle for air-compressing injection internal combustion engine
US4241714 *Jun 25, 1979Dec 30, 1980General Motors CorporationSolenoid valve controlled fuel injection pump
US4326672 *Feb 13, 1981Apr 27, 1982Caterpillar Tractor Co.Rotary fuel injection apparatus
US4343280 *Sep 24, 1980Aug 10, 1982The Bendix CorporationFuel delivery control arrangement
US4357925 *Dec 17, 1980Nov 9, 1982The Bendix CorporationDistributor injection pump for diesel engines
US4367715 *Dec 17, 1980Jan 11, 1983The Bendix CorporationDistribution injection pump for diesel engines
US4379442 *Sep 3, 1981Apr 12, 1983Ford Motor CompanyElectromagnetically controlled fuel injection pump
US4406267 *Sep 2, 1981Sep 27, 1983Ford Motor CompanyElectromagnetically controlled fuel injection pump spill port valve assembly
US4407245 *Aug 19, 1981Oct 4, 1983Robert Bosch GmbhShutoff apparatus for fuel injection pumps
US4422424 *Jun 23, 1981Dec 27, 1983The Bendix CorporationElectronically controlled fuel injection pump
US4445484 *Apr 30, 1981May 1, 1984Renault Vehicules IndustrielsMechanical fuel injection devices, mainly for diesel engines
US4459963 *Mar 26, 1982Jul 17, 1984Robert Bosch GmbhElectrically controlled fuel injection apparatus for multi-cylinder internal combustion engines
US4474158 *Oct 28, 1982Oct 2, 1984Lucas Industries Public Limited CompanyLiquid fuel pumping apparatus
US4475514 *Dec 22, 1982Oct 9, 1984Hans ListFuel injection pump for internal combustion engines
US4580540 *Oct 10, 1980Apr 8, 1986Robert Bosch GmbhFuel injection pump for internal combustion engines
US4619239 *Jan 25, 1984Oct 28, 1986Klockner-Humboldt-Deutz AktiengesellschaftFuel injection arrangement for internal combustion engines
US4708116 *Feb 19, 1986Nov 24, 1987Motoren-Werke Mannheim AktiengesellschaftInjection system for a diesel engine with a high pressure injection pump for each cylinder
US4785787 *Apr 20, 1987Nov 22, 1988Kloeckner-Humboldt-Deutz AgFuel injection mechanism for an internal combustion engine
US4793313 *Mar 10, 1987Dec 27, 1988Robert Bosch GmbhFuel injection apparatus for internal combustion engines
US4870940 *Aug 25, 1988Oct 3, 1989Weber S.R.L.Injection pump for fuel injection systems with control led injectors for i.c. engines
US4881504 *Feb 1, 1988Nov 21, 1989Lucas Industries Public Limited CompanyFuel injection pump
US4917068 *Dec 14, 1988Apr 17, 1990Toyoto Jidosh Kabushiki KaishaUnit injector for an engine
US5125807 *Apr 2, 1990Jun 30, 1992Kloeckner-Humboldt-Deutz AgFuel injection device
US5287833 *Apr 7, 1992Feb 22, 1994Yamaha Hatsudoki Kabushiki KaishaLubricating oil supplying system for two cycle engine
US5355851 *Oct 30, 1992Oct 18, 1994Yamaha Hatsudoki Kabushiki KaishaLubricating oil supplying system for two cycle engine
US5390635 *Sep 18, 1992Feb 21, 1995Yamaha Hatsudoki Kabushiki KaishaLubricating oil supplying system for engine
US5501190 *Aug 9, 1994Mar 26, 1996Yamaha Hatsudoki Kabushiki KaishaLubricating system for engine
US5511524 *Oct 11, 1994Apr 30, 1996Yamaha Hatsudoki Kabushiki KaishaLubricating oil supplying system for engine
US5526783 *Jun 28, 1993Jun 18, 1996Yamaha Hatsudoki Kabushiki KaishaLubricant control
US5537959 *Aug 9, 1994Jul 23, 1996Yamaha Hatsudoki Kabushiki KaishaLubricating system for engine
US5542387 *Aug 9, 1994Aug 6, 1996Yamaha Hatsudoki Kabushiki KaishaComponent layout for engine
US5630383 *Jun 7, 1995May 20, 1997Yamaha Hatsudoki Kabushiki KaishaLubricating oil supplying system for engine
US5749717 *Sep 12, 1995May 12, 1998Deisel Technology CompanyElectromagnetic fuel pump for a common rail fuel injection system
US5954487 *Aug 15, 1997Sep 21, 1999Diesel Technology CompanyFuel pump control valve assembly
US6059545 *Jul 30, 1999May 9, 2000Diesel Technology CompanyFuel pump control valve assembly
US6089470 *Mar 10, 1999Jul 18, 2000Diesel Technology CompanyControl valve assembly for pumps and injectors
US6145493 *Oct 14, 1997Nov 14, 2000Daimlerchrysler AgFuel guidance system for a multicylinder internal combustion engine having inlet bores for connector pumps
US6158419 *Mar 10, 1999Dec 12, 2000Diesel Technology CompanyControl valve assembly for pumps and injectors
US6224351 *Sep 13, 1999May 1, 2001Robert Bosch GmbhRadial pistol pump
US6450778Dec 7, 2000Sep 17, 2002Diesel Technology CompanyPump system with high pressure restriction
US6854962Dec 4, 2001Feb 15, 2005Robert Bosch GmbhPump system with high pressure restriction
US7066151 *Apr 7, 2005Jun 27, 2006Robert Bosch GmbhFuel injector with spill chamber
DE3112381A1 *Mar 28, 1981Nov 11, 1982Bosch Gmbh RobertElektrisch gesteuerte kraftstoffeinspritzeinrichtung fuer mehrzylinder-brennkraftmaschinen, insbesondere zur kraftstoffdirekteinspritzung bei fremdgezuendeten brennkraftmaschinen
DE4142940A1 *Dec 24, 1991Jul 1, 1993Bosch Gmbh RobertElektrisch gesteuerte pumpeduese
WO1981000431A1 *Aug 8, 1979Feb 19, 1981Caterpillar Tractor CoRotary fuel injection apparatus
WO1996026360A1Feb 20, 1996Aug 29, 1996Diesel Tech CoFuel pumping and injection systems
WO1997012145A1 *Sep 11, 1996Apr 3, 1997Diesel Tech CoFuel injection pump having a solenoid operated control valve
Classifications
U.S. Classification123/449, 123/458, 123/472
International ClassificationF02M59/24, F02M59/36, F02M59/20, F02M51/04
Cooperative ClassificationF02M59/366
European ClassificationF02M59/36D