US3779518A - Continuous photographic emulsion processing - Google Patents

Continuous photographic emulsion processing Download PDF

Info

Publication number
US3779518A
US3779518A US00225194A US3779518DA US3779518A US 3779518 A US3779518 A US 3779518A US 00225194 A US00225194 A US 00225194A US 3779518D A US3779518D A US 3779518DA US 3779518 A US3779518 A US 3779518A
Authority
US
United States
Prior art keywords
tubes
inlets
mixing zone
heads
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00225194A
Inventor
G Koepke
Bardorff W Muller
K Browatzki
J Friedsan
K Voss
W Wasser
W Schweicher
H Frenken
P Herzhoff
H Gref
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Application granted granted Critical
Publication of US3779518A publication Critical patent/US3779518A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/015Apparatus or processes for the preparation of emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/434Mixing tubes comprising cylindrical or conical inserts provided with grooves or protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C2200/00Details
    • G03C2200/09Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2499Mixture condition maintaining or sensing
    • Y10T137/2506By viscosity or consistency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2499Mixture condition maintaining or sensing
    • Y10T137/2509By optical or chemical property
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/86131Plural
    • Y10T137/86163Parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86187Plural tanks or compartments connected for serial flow

Definitions

  • ABSTRACT A continuous preparation of photographic emulsions by adding a plurality of individual components, the individual components being introduced continuously andsuccessively by metering pumps. Each individual component is completely mixed with the main stream of emulsion before the next component is introduced. Mixing is carried out in a static mixing zone or alternatively by producing a secondary turbulent flow in a particularly designed mixing zone.
  • PATENTEUDECI a ma SHEEI Q UF 4 FIG. 5
  • the present invention relates to a process for the continuous preparation of photographic emulsions which are ready for casting in which the individual components are introduced together into a closed, tubular body with the starting emulsion and dispersed in one another, and to an apparatus for carrying out this process.
  • metering pumps can be used to carry out reactions in which reactants cannot all be immediately combined.
  • the different reactants can be delivered in graduated quantities to a reaction vessel. It is possible in this way for the reaction to be controlled quantitatively and for its duration to be controlled also.
  • the basic component in another known process, is carried along in an ascending stream, whilst the additional components are superimposed in continuous succession upon the basic component rotationally symmetrically in a cross-stream.
  • One disadvantage of this process is that admixture is always incomplete and that it is impossible to establish consistent mixing times for different parts of the emulsion.
  • the object of the invention is to react the smallest possible proportions by volume of the emulsion and additives as directly and as quickly as possible.
  • An apparatus which provides the reactants with temporary protection from the mixture, is thus unsuitable in principle.
  • photographic emulsions have been provided in accordance with certain recipes with a number of additives which impart to these emulsions advantages such as for example sensitivity in certain spectral regions, stability during casting, stability during storage, and favourable fogging characteristics.
  • These substances have to be added in a certain order and in a certain chronological sequence in order to achieve the required objective. This is associated with the fact that, in order to become active, these substances have to be adsorbed onto the silver halide grain. A place on the grain surface which is occupied by substance A either cannot be taken up by substance B at all, or can only be taken up after a desorption process.
  • the idea behind the process was to rapidly bring one unit by volume of the emulsion into direct contact with one unit by volume of the active solution so that not only does rapid admixture in the accepted sense occur, but also the rate at which adsorption takes place is comparable with the rate at which precipitation takes place.
  • a process for the continuous preparation of photographic emulsions which are ready for casting, wherein individual emulsion components are introduced into a stream of starting emulsion in a closed tubular body and dispersed in the stream, the individual components being introduced continuously and in succession to one another by means of metering pumps, each individual component being completely admixed with the stream in a mixing zone downstream from where it is introduced before the next component is introduced.
  • Admixture advantageously takes place in a static mixing zone. in a mixing zone of this kind, a particularly intense mixing effect'can be achieved by generating a secondary turbulent flow in the mixing zone.
  • the rate of flow of the main stream is selected in such a way that the average residence time of a particular component in its respective mixing zone is at most 50 seconds.
  • an apparatus for the continuous preparation ofphotographic emulsion which are ready for casting, comprising a tubular body having inlets arranged along its length which each communicate through metering pumps with one or more individual emulsion component storage vessels, a mixing zone which has no parts adapted to be mechanically moved being arranged between each adjacent pair of inlets.
  • the mixing zone consists of two tubes arranged onebehind the other in hairpin-fashion in each of which tubes a spiral is arranged whose diameter is substantially identical to the internal diameter of the tube.
  • the spiral is best dimensioned in such a way that the ratio of its lead to the distance between its core and the inner surface of-the respective tube is 2:1.
  • the inlets for the individual components are simply formed by tangential tubes or, in preferred embodiment, are in the form of sprinkler heads.
  • the hairpin-like mixing zones are provided with quick closures, the spirals being locked in position by holders when the mixing zones are closed.
  • the metering pumps are not driven through separate motors, but instead have a common drive.
  • measuring sensors and regulating devices are preferably provided at the end of the mixing zone.
  • measuring control vessels are incorporated both in the upstream end of the tubular pipe and between the inlets for the additives and their supply vessels for monitoring the mixing ratio.
  • the time required to complete the adsorption of photographically active substances from a partly precipitated heavily diluted solution is greatly reduced.
  • the effect of guiding flow in the manner described is that the solution of the photographically active substances of the emulsion is delivered in small proportions by volume and, through the intensive admixing effect, passes directly to the silver halide grain before precipitation can take place.
  • the effect of this is that there is no need for the hitherto necessary digestion times during preparation of the emulsion.
  • Another advantage of the process according to the invention is that it is possible to quickly change from production of one emulsion of one composition to an emulsion of a different composition.
  • the low overall volume achieved through the special hairpin-like configuration of the mixing zones has a favourable effect.
  • regulating means for continuously regulating the additives at the individual inlets.
  • the installation can be centrally controlled from a process computer to which all regulating systems are linked.
  • the installation according to the invention is extremely easy to maintain and clean. In addition, its reliability in operation is extremely high because there are no mechanically moved parts in the emulsion feed zone as a whole.
  • FIG. 1 diagrammatically illustrates the installation as a whole
  • FIG. 2 is a partial cross-actional view which shows the hairpin-like mixing zone in detail
  • FIG. 2A is a cross-sectional view taken through FIG. 2 along the line 2A2A;
  • FIG. 3 is an enlarged fragmental cross-section which shows how the secondary eddy current is generated
  • FIGS. 4 and 5 are cross-sectional views which show special embodiment of the inlets.
  • FIG. 1 shows how the stream of emulsion is guided.
  • a starting emulsion is continuously introduced into the installation at an inlet 1, flows through a measuring control vessel 2 and is then pumped by a mainstream metering pump 3 into the hairpin-like mixing zones 4 which are arranged one behind the other.
  • Additives A, to A are successively introduced into the main stream 1 by reciprocating metering pumps 5 through inlets 6.
  • the main stream pump 3 and all the metering pumps 5 have a common drive. All the pumps are best adjusted in phase in such a way that they deliver the additives in synchronism with one another.
  • the throughput in the mixing zone can be adjusted substantially as required by a rotational speed adjustment (not shown), or alternatively can be automatically regulated in dependence upon their levels and thus adapted to consumption.
  • the mixing ratio and hence the composition of the emulsion, remains constant irrespective of the througput.
  • the mixing ratio is additionally monitored at fixed time intervals by the measuring control vessel 2 and by further measuring control vessels (not shown) which are installed in the feed pipes for additives A to A Incorrect metering, if any, can be immediately detected in this way.
  • the average residence time of any one unit of volume of the components added in the mixing zone 4 is governed by the throughput. In the practical operation of the installation, residence time of b 50 seconds are generally not exceeded because otherwise the emulsions can change their properties.
  • Additives A to A can include dyes for optical sensitisation, organochemical substances for stabilisation, wetting agents, hardeners, dye components, optical brighteners, pH-regulators, etc.
  • the mixing effect in the zone 4 is so intense that complete admixture of a given component with a volume of the main stream always takes place before a new additive is introduced into that volume.
  • Spirals 7, which generate a secondary turbulent flow, are shown in the mixing zones 4.
  • the last two mixing zones are provided with detectors 8, 9 and control systems 8', 9 which are adapted to keep the pH-value and the viscosity, respectively, constant. These values can be influenced by the additives A and A
  • the last two metering pumps 5 are provided with an adjustable piston stroke which is controlled by the regulating systems 8' and 9'. In certain cases, it can be of advantage to distribute an additive through several metering pumps and mixing zones 4 rather than introducing it through a single metering pump 5.
  • the emulsion, ready for casting, is removed from an outlet 10 of the installation and can be directly delivered to a coating machine.
  • FIG. 2 and FIG. 2A show hairpin-like mixing zone 4 in detail.
  • It consists of two tubes 11 which are arranged one behind the other and in which the spirals 7 are fixed by means of holders 12.
  • the ends of the tubes 1 1 are provided with quick closures 13.
  • the mixing zones are surrounded by a jacket 14 and can be thermostatically maintained at a temperature of from 30 to 60C by means of a tempering liquid which 'is introduced through the jacket opening 15.
  • the inlet 6 through which additives are introduced is situated at the lower end of a tube 1 1 of the mixing zone.
  • FIG. 3 shows a detail of the mixing zone on a larger scale.
  • a particularly intense mixing effect is achieved if the spiral 7 is dimensioned in such a way that the ratio of lead a to internal space b is about 2:1. With these dimensions, secondary turbulent flow 16 is developed in the spiral 11, as shown in the drawing.
  • FIGS. 4 and 5 show embodiments of the inlet 6.
  • FIG. 4 shows an inlet in the form of a simple tangentially arranged tube.
  • the component to be added flows through an inlet tube 17 substantially perpendicularly of the direction of the main stream at thelower end of the mixing tube 11.
  • the inlet 6 is in the form of a sprinkler as shown in FIG. 5.
  • the component to be added flows through the inlet tube 17 into an annular duct 18 and through openings 19, perpendicularly of the direction of the main stream, into the mixing tube 11.
  • the static form of mixing zone is provided by omitting spirals 7 from mixing zones 4, and a complete static mixing zone apparatus is as shown in FIGS. 1, 2 and 2A without any spirals 7.
  • a process for the continuous preparation of photographic emulsions which are ready for casting wherein individual emulsion components are introduced into a stream of staring emulsion at different locations in a series of closed tubular bodies and dispersed in the stream, the individual components being introduced continuously and I in succession to one another by means of metering pumps, and a succession of changes in the direction of flow of the stream are caused by channeling it through a nonlinear static flow channeling element in a mixing zone in the closed tubular body downstream from where each individual component is introduced whereby each individual component is completely admixed with the stream before the next component is introduced.
  • An apparatus for the continuous preparation of photographic emulsions which are ready for casting, comprising a series of tubular bodies having inlets arranged at different locations between them, each of the inlets communicating through metering pumps with one or more individual emulsion component storage vessels, a mixing zone which as no parts adapted to be mechanically moved being arranged between each adjacent pair of inlets, and a spiral flow channeling element in each of the mixing zones for causing a succession of changes in the direction of flow in the mixing 9.
  • An apparatus according to claim 5 comprising a measuring control vessel located before the first tubular body in the series.
  • a mixing zone for introducing a liquid additive into a flow stream comprising at least one tubular conduit, removable heads connected to each end of the tubular conduit for connecting it as part of a tubular body, an additive inlet connected to each of the heads, a spiral lead screw having helical flutes disposed about a longitudinal core rod being removably inserted within each of the tubes for generating a secondary turbulent flow within each of the tubes, and the removable heads being constructed and arranged to permit removal of the spiral lead screws for cleaning.
  • An apparatus for the continuous preparation of photographic emulsions which are ready for casting comprising a series of tubular bodies having inlets arranged at different locations between them, each of the inlets communicating through metering pumps with one or more individual emulsion component storage vessels, a mixing zone which has no parts adapted to be mechanically moved being arranged between each adjacent pair of inlets, and each mixing zone comprises two adjacent tubes arranged in hairpin-fashion in each of which is arranged a spiral flow channel having a diameter substantially identical in the internal diameter of the respective tube.
  • An apparatus for the continuous prepartion of photographic emulsions which are ready for casting comprising a series of tubular bodies having inlets arranged at different location between them,-each of the inlets communicating through metering pumps with one or more individual emulsion component storage vessels, a mixing zone which has no parts adapted to be mechanically moved being arranged between each adjacent pair of inlets, each of the mixing zones includes at least one tubular conduit, removable heads connected to each end of the conduit for connecting it as part of the tubular body, one of the inlets being connected to each of the heads, a spiral lead screw having helical flutes disposed about a longitudinal core rod being removably inserted within each of the tubes for generating a secondary turbulent flow within each of the tubes, and the removable heads being constructed and arranged to permit removal of the spiral lead screws for cleaning.
  • each of the heads includes a pair of openings for connection to a pair of the tubes, one of the heads connecting one end of each of the tubes to each other, and the other of the heads including an inflow connection to one of the tubes and an outflow connection to the other of the tubes.
  • a mixing zone for introducing a liquid additive into a flow stream comprising at least one tubular conduit, removable heads connected to each end of the tubular conduit for connecting it as part of a tubular body, an additive inlet connected to each of the heads, spiral lead screw having helical flutes disposed about a longitudinal core rod being removably inserted within each of the tubes for generating a secondary turbulent flow within each of the tubes, and the removable heads being constructed and arranged to permit removal of the spiral lead screws for cleaning, each of the heads includes a pair of openings for connection to a pair of the tubes, one of the heads connecting one end of each of the tubes to each other, and the other of the heads including an inflow connection to one of the tubes and the outflow connection to the other of the tubes.
  • An apparatus for the continuous preparation of photographic emulsions which are ready for casting comprising a series of tubular bodies having inlets arranged at different locations between them communicating through metering pumps with one or more individual emulsion component storage vessels, a mixing zone which has no parts adapted to be mechanically moved being arranged between each adjacent pair of inlets, and the inlets comprising tubes arranged tangential to the series of tubular bodies.

Abstract

A continuous preparation of photographic emulsions by adding a plurality of individual components, the individual components being introduced continuously and successively by metering pumps. Each individual component is completely mixed with the main stream of emulsion before the next component is introduced. Mixing is carried out in a static mixing zone or alternatively by producing a secondary turbulent flow in a particularly designed mixing zone.

Description

United States Patent 1191 Koepke et al.
CONTINUOUS PIIOTOGRAPI-IIC EMULSION PROCESSING inventors: Giinther Koepke, Leverkusen;
Wolfgang Miiller-Bardorff, Cologne;
Peter I-Ierzhoff, Leverkusen; I-Ians Gref, Cologne; Wolfgang Schweicher, Leverkusen; Hans Frenken, Leverkusen; Karl Voss, Leverkusen; Willi Wasser, Leverkusen; Kurt Browatzki, Opladen; Josef Friedsan,
I Langenfeld, all of Germany Assignee:
AGFA-Gevaert Aktiengesellschaft,
Leverkusen, Germany Filed:
Feb. 10, 1972.
Appl. No.: 225,194
Foreign Application Priority Data Feb. 11, 1971 Germany P 21 06 526.9
U.S. Cl 259/18, 137/92, 137/93,
137/567, 137/571, 259/4, 259/60 Int. Cl. 8011' 5/00, BOlf 15/02 Field of Search 259/4, 7, 8, 18,
1451 Dec. 18, 1973 [56] References Cited UNITED STATES PATENTS 3,655,166 4/1972 Sauer et al 259/4 X 3,532,102 10/1970 Glassey 137/93 X 3,430,925 3/1969 Buhner 259/8 3,582,048 6/1971 Sarem 259/4 2,751,425 6/1956 Rupp 259/4 x 3,475,392 lO/l969 McCoy et a1. 137/93 X 3,684,251 8/1972 Bowling 259/8 Primary Examiner-Robert W. Jenkins Assistant Examiner-Philip R. Coe Attorney-Arthur G. Connolly et al.
57' ABSTRACT A continuous preparation of photographic emulsions by adding a plurality of individual components, the individual components being introduced continuously andsuccessively by metering pumps. Each individual component is completely mixed with the main stream of emulsion before the next component is introduced. Mixing is carried out in a static mixing zone or alternatively by producing a secondary turbulent flow in a particularly designed mixing zone.
18 Claims, 6 Drawing Figures Pmmmum 18 ms 3,779,51
SHEE? 10F 4 FIG. I
PAIENTEB 81975 3,779,518-
snm ear 4 FIG. 2
FIG.2A
. PATENTED 3.779.518
SHEEY 30F 4 FIG. 3
PATENTEUDECI a ma SHEEI Q UF 4 FIG. 5
CONTINUOUS PHOTOGRAPHIC EMULSION PROCESSING The present invention relates to a process for the continuous preparation of photographic emulsions which are ready for casting in which the individual components are introduced together into a closed, tubular body with the starting emulsion and dispersed in one another, and to an apparatus for carrying out this process.
It is known that metering pumps can be used to carry out reactions in which reactants cannot all be immediately combined. By means of such metering pumps, the different reactants can be delivered in graduated quantities to a reaction vessel. It is possible in this way for the reaction to be controlled quantitatively and for its duration to be controlled also.
Various processes for the continuous preparation of I emulsions are already known. Unfortunately, particular problems arise where even small quantities of certain additives have an appreciable effect upon the photographic properties of the emulsion. For this reason, any process in which two or more reactants are continuously delivered to a reaction vessel and a quantity equal to the sum total of all the reactants is continuously run off from the reaction vessel, cannot be considered for use in this case. Through calculations well known in process technology based upon the residence time in finite reaction vessels, it is possible to show that the parts by volume removed from the vessel contain parts by volume which have a non-uniform residence time in the vessel.
Processes in which the usual sequences of events takes place successively in different apparatus, are equally unsuitable.
Even in cases where these ideas are further developed, it is of course not possible with simple formulations to mix the liquids, for example, to satisfy the stringent requirements made of the process as to accuracy which are determined by the characteristics of the photographic emulsion The particular recipe for preparing photographic emulsions makes it necessary for the additives to be individually introduced because otherwise certain properties cannot be achieved. Accordingly, it is extremely important to only introduce one additive at a time into the mixture, rather than to combine several additives, because of the mixing effect at high speeds.
Two liquids can be effectively admixed with one another. However, suitable apparatus for such admixture has the disadvantage that it includes mechanically moving components and, if several additives are to be introduced, it becomes unweildy and unsuitable for the purpose envisaged.
in another known process, the basic component is carried along in an ascending stream, whilst the additional components are superimposed in continuous succession upon the basic component rotationally symmetrically in a cross-stream. One disadvantage of this process is that admixture is always incomplete and that it is impossible to establish consistent mixing times for different parts of the emulsion.
The object of the invention is to react the smallest possible proportions by volume of the emulsion and additives as directly and as quickly as possible. An apparatus which provides the reactants with temporary protection from the mixture, is thus unsuitable in principle.
The problem which the invention seeks to solve is discussed in more detail in the following:
Hitherto, photographic emulsions have been provided in accordance with certain recipes with a number of additives which impart to these emulsions advantages such as for example sensitivity in certain spectral regions, stability during casting, stability during storage, and favourable fogging characteristics. These substances have to be added in a certain order and in a certain chronological sequence in order to achieve the required objective. This is associated with the fact that, in order to become active, these substances have to be adsorbed onto the silver halide grain. A place on the grain surface which is occupied by substance A either cannot be taken up by substance B at all, or can only be taken up after a desorption process. These processes are subject to known physical laws. In general, attempts were made to allow a small quantity of an active substance to act upon a large proportion of emulsion for a certain period of time and, in this way, to ensure that equilibrium is adjusted in the mixture. One disadvantage of this procedure is that the active substance is introduced in concentrated form in a relatively small quantity by volume into a large quantity of emulsion and subsequently has to be dispersed therein by stirring. The fact that the substances are insoluble in water is often particularly unfavourable so far as effective distribution over the grain surfaces ofv the silver halide grains is concerned. Accordingly, the idea behind the process was to rapidly bring one unit by volume of the emulsion into direct contact with one unit by volume of the active solution so that not only does rapid admixture in the accepted sense occur, but also the rate at which adsorption takes place is comparable with the rate at which precipitation takes place.
Accordingly to the present invention, there is provided a process for the continuous preparation of photographic emulsions which are ready for casting, wherein individual emulsion components are introduced into a stream of starting emulsion in a closed tubular body and dispersed in the stream, the individual components being introduced continuously and in succession to one another by means of metering pumps, each individual component being completely admixed with the stream in a mixing zone downstream from where it is introduced before the next component is introduced.
Admixture advantageously takes place in a static mixing zone. in a mixing zone of this kind, a particularly intense mixing effect'can be achieved by generating a secondary turbulent flow in the mixing zone.
In a further development of the process according to the invention, the rate of flow of the main stream is selected in such a way that the average residence time of a particular component in its respective mixing zone is at most 50 seconds.
Accordingly to the present invention, there is also provided an apparatus for the continuous preparation ofphotographic emulsion which are ready for casting, comprising a tubular body having inlets arranged along its length which each communicate through metering pumps with one or more individual emulsion component storage vessels, a mixing zone which has no parts adapted to be mechanically moved being arranged between each adjacent pair of inlets.
In one advantageous embodiment of the apparatus, the mixing zone consists of two tubes arranged onebehind the other in hairpin-fashion in each of which tubes a spiral is arranged whose diameter is substantially identical to the internal diameter of the tube. The spiral is best dimensioned in such a way that the ratio of its lead to the distance between its core and the inner surface of-the respective tube is 2:1.
The inlets for the individual components are simply formed by tangential tubes or, in preferred embodiment, are in the form of sprinkler heads.
To make cleaning easy, the hairpin-like mixing zones are provided with quick closures, the spirals being locked in position by holders when the mixing zones are closed.
Preferably, the metering pumps are not driven through separate motors, but instead have a common drive.
In order to keep both the pI-I-value and the viscosity of the completed mixture constant, suitable measuring sensors and regulating devices are preferably provided at the end of the mixing zone. In addition, measuring control vessels are incorporated both in the upstream end of the tubular pipe and between the inlets for the additives and their supply vessels for monitoring the mixing ratio.
By virtue of the process according to the invention, and additives are quickly and completely admixed with the main stream.
By comparison with the conventional process for the continuous preparation of emulsions, the time required to complete the adsorption of photographically active substances from a partly precipitated heavily diluted solution is greatly reduced. The effect of guiding flow in the manner described is that the solution of the photographically active substances of the emulsion is delivered in small proportions by volume and, through the intensive admixing effect, passes directly to the silver halide grain before precipitation can take place. The effect of this is that there is no need for the hitherto necessary digestion times during preparation of the emulsion. In the past, it has for the same reason not been possible to use a large number of very promising photographically active substances because they change their physical and chemical qualities during the digestion period. Accordingly, the process according to the invention also opens up the use of a new group of photographically active additives.
Another advantage of the process according to the invention is that it is possible to quickly change from production of one emulsion of one composition to an emulsion of a different composition. In this respect the low overall volume achieved through the special hairpin-like configuration of the mixing zones has a favourable effect.
It is also readily possible to provide regulating means for continuously regulating the additives at the individual inlets. In this case, the installation can be centrally controlled from a process computer to which all regulating systems are linked.
The installation according to the invention is extremely easy to maintain and clean. In addition, its reliability in operation is extremely high because there are no mechanically moved parts in the emulsion feed zone as a whole.
Referring to the accompanying drawings;
FIG. 1 diagrammatically illustrates the installation as a whole;
FIG. 2 is a partial cross-actional view which shows the hairpin-like mixing zone in detail;
FIG. 2A is a cross-sectional view taken through FIG. 2 along the line 2A2A;
FIG. 3 is an enlarged fragmental cross-section which shows how the secondary eddy current is generated;
FIGS. 4 and 5 are cross-sectional views which show special embodiment of the inlets.
FIG. 1 shows how the stream of emulsion is guided. A starting emulsion is continuously introduced into the installation at an inlet 1, flows through a measuring control vessel 2 and is then pumped by a mainstream metering pump 3 into the hairpin-like mixing zones 4 which are arranged one behind the other. Additives A, to A are successively introduced into the main stream 1 by reciprocating metering pumps 5 through inlets 6. The main stream pump 3 and all the metering pumps 5 have a common drive. All the pumps are best adjusted in phase in such a way that they deliver the additives in synchronism with one another. The throughput in the mixing zone can be adjusted substantially as required by a rotational speed adjustment (not shown), or alternatively can be automatically regulated in dependence upon their levels and thus adapted to consumption. The mixing ratio, and hence the composition of the emulsion, remains constant irrespective of the througput. The mixing ratio is additionally monitored at fixed time intervals by the measuring control vessel 2 and by further measuring control vessels (not shown) which are installed in the feed pipes for additives A to A Incorrect metering, if any, can be immediately detected in this way.
The average residence time of any one unit of volume of the components added in the mixing zone 4 is governed by the throughput. In the practical operation of the installation, residence time of b 50 seconds are generally not exceeded because otherwise the emulsions can change their properties.
Additives A to A, can include dyes for optical sensitisation, organochemical substances for stabilisation, wetting agents, hardeners, dye components, optical brighteners, pH-regulators, etc. The mixing effect in the zone 4 is so intense that complete admixture of a given component with a volume of the main stream always takes place before a new additive is introduced into that volume. Spirals 7, which generate a secondary turbulent flow, are shown in the mixing zones 4.
The last two mixing zones are provided with detectors 8, 9 and control systems 8', 9 which are adapted to keep the pH-value and the viscosity, respectively, constant. These values can be influenced by the additives A and A For this purpose, the last two metering pumps 5 are provided with an adjustable piston stroke which is controlled by the regulating systems 8' and 9'. In certain cases, it can be of advantage to distribute an additive through several metering pumps and mixing zones 4 rather than introducing it through a single metering pump 5. The emulsion, ready for casting, is removed from an outlet 10 of the installation and can be directly delivered to a coating machine.
, FIG. 2 and FIG. 2A show hairpin-like mixing zone 4 in detail.- It consists of two tubes 11 which are arranged one behind the other and in which the spirals 7 are fixed by means of holders 12. The ends of the tubes 1 1 are provided with quick closures 13. When the mixing zones 4 are closed, the spirals 7 are locked in position by the holders 12. When the quick closure 13 is re leased, the spirals 7 can be readily removed so that the tubes can be cleaned. The mixing zones are surrounded by a jacket 14 and can be thermostatically maintained at a temperature of from 30 to 60C by means of a tempering liquid which 'is introduced through the jacket opening 15. The inlet 6 through which additives are introduced is situated at the lower end of a tube 1 1 of the mixing zone.
FIG. 3 shows a detail of the mixing zone on a larger scale. The tempering vessel 14, which is filled with a heating medium, concentrically surrounds the tube 11 of the mixing zone. A particularly intense mixing effect is achieved if the spiral 7 is dimensioned in such a way that the ratio of lead a to internal space b is about 2:1. With these dimensions, secondary turbulent flow 16 is developed in the spiral 11, as shown in the drawing.
FIGS. 4 and 5 show embodiments of the inlet 6. FIG. 4 shows an inlet in the form of a simple tangentially arranged tube. The component to be added flows through an inlet tube 17 substantially perpendicularly of the direction of the main stream at thelower end of the mixing tube 11.
An improved mixing effect is obtained where the inlet 6 is in the form of a sprinkler as shown in FIG. 5. In this case, the component to be added flows through the inlet tube 17 into an annular duct 18 and through openings 19, perpendicularly of the direction of the main stream, into the mixing tube 11.
The static form of mixing zone is provided by omitting spirals 7 from mixing zones 4, and a complete static mixing zone apparatus is as shown in FIGS. 1, 2 and 2A without any spirals 7.
What we claim is:'
l. A process for the continuous preparation of photographic emulsions which are ready for casting, wherein individual emulsion components are introduced into a stream of staring emulsion at different locations in a series of closed tubular bodies and dispersed in the stream, the individual components being introduced continuously and I in succession to one another by means of metering pumps, and a succession of changes in the direction of flow of the stream are caused by channeling it through a nonlinear static flow channeling element in a mixing zone in the closed tubular body downstream from where each individual component is introduced whereby each individual component is completely admixed with the stream before the next component is introduced.
2. A process according to claim 1, wherein the admixture takes place in a static mixing zone.
3. A process according to claim 1, wherein a secondary turbulent flow is generated in the mixing zone.
4. A process according to claim 1,- wherein the average residence time in the mixing zone of an introduced component is at most 50 seconds.
5. An apparatus for the continuous preparation of photographic emulsions which are ready for casting, comprising a series of tubular bodies having inlets arranged at different locations between them, each of the inlets communicating through metering pumps with one or more individual emulsion component storage vessels, a mixing zone which as no parts adapted to be mechanically moved being arranged between each adjacent pair of inlets, and a spiral flow channeling element in each of the mixing zones for causing a succession of changes in the direction of flow in the mixing 9. An apparatus according to claim 5 comprising a measuring control vessel located before the first tubular body in the series.
10. A mixing zone for introducing a liquid additive into a flow stream comprising at least one tubular conduit, removable heads connected to each end of the tubular conduit for connecting it as part of a tubular body, an additive inlet connected to each of the heads, a spiral lead screw having helical flutes disposed about a longitudinal core rod being removably inserted within each of the tubes for generating a secondary turbulent flow within each of the tubes, and the removable heads being constructed and arranged to permit removal of the spiral lead screws for cleaning.
11. A mixing zone according to claim 10, wherein the outer dimension of the flutes is slightly less than the inside dimension of the tube to form a spiral flow channel within the tube between the core and the inner wall of the tube.
12. An apparatus for the continuous preparation of photographic emulsions which are ready for casting, comprising a series of tubular bodies having inlets arranged at different locations between them, each of the inlets communicating through metering pumps with one or more individual emulsion component storage vessels, a mixing zone which has no parts adapted to be mechanically moved being arranged between each adjacent pair of inlets, and each mixing zone comprises two adjacent tubes arranged in hairpin-fashion in each of which is arranged a spiral flow channel having a diameter substantially identical in the internal diameter of the respective tube.
13. An apparatus for the continuous prepartion of photographic emulsions which are ready for casting, comprising a series of tubular bodies having inlets arranged at different location between them,-each of the inlets communicating through metering pumps with one or more individual emulsion component storage vessels, a mixing zone which has no parts adapted to be mechanically moved being arranged between each adjacent pair of inlets, each of the mixing zones includes at least one tubular conduit, removable heads connected to each end of the conduit for connecting it as part of the tubular body, one of the inlets being connected to each of the heads, a spiral lead screw having helical flutes disposed about a longitudinal core rod being removably inserted within each of the tubes for generating a secondary turbulent flow within each of the tubes, and the removable heads being constructed and arranged to permit removal of the spiral lead screws for cleaning.
14. An apparatus according to claim 12, wherein the spiral flow channel has a core and a lead along the core, and the ratio of the lead of the spiral to the distance between the core ofthe spiral and the inside of the tube is about 2 l 15. An apparatus according to claim 13, wherein each of the heads includes a pair of openings for connection to a pair of the tubes, one of the heads connecting one end of each of the tubes to each other, and the other of the heads including an inflow connection to one of the tubes and an outflow connection to the other of the tubes.
16. An apparatus according to claim 13, wherein the outer dimension of the flutes is slightly less than the inside dimension of the tube to form a spiral flow channel within the tube between the core and the inner wall of the tube.
17. A mixing zone for introducing a liquid additive into a flow stream comprising at least one tubular conduit, removable heads connected to each end of the tubular conduit for connecting it as part of a tubular body, an additive inlet connected to each of the heads, spiral lead screw having helical flutes disposed about a longitudinal core rod being removably inserted within each of the tubes for generating a secondary turbulent flow within each of the tubes, and the removable heads being constructed and arranged to permit removal of the spiral lead screws for cleaning, each of the heads includes a pair of openings for connection to a pair of the tubes, one of the heads connecting one end of each of the tubes to each other, and the other of the heads including an inflow connection to one of the tubes and the outflow connection to the other of the tubes.
18. An apparatus for the continuous preparation of photographic emulsions which are ready for casting, comprising a series of tubular bodies having inlets arranged at different locations between them communicating through metering pumps with one or more individual emulsion component storage vessels, a mixing zone which has no parts adapted to be mechanically moved being arranged between each adjacent pair of inlets, and the inlets comprising tubes arranged tangential to the series of tubular bodies.

Claims (18)

1. A process for the continuous preparation of photographic emulsions which are ready for casting, wherein individual emulsion components are introduced into a stream of staring emulsion at different locations in a series of closed tubular bodies and dispersed in the stream, the individual components being introduced continuously and in succession to one another by means of metering pumps, and a succession of changes in the direction of flow of the stream are caused by channeling it through a nonlinear static flow channeling element in a mixing zone in the closed tubular body downstream from where each individual component is introduced whereby each individual component is completely admixed with the stream before the next component is introduced.
2. A process according to claim 1, wherein the admixture takes place in a static mixing zone.
3. A process according to claim 1, wherein a secondary turbulent flow is generated in the mixing zone.
4. A process according to claim 1, wherein the average residence time in the mixing zone of an introduced component is at most 50 seconds.
5. An apparatus for the continuous preparation of photographic emulsions which are ready for casting, comprising a series of tubular bodies having inlets arranged at different locations between them, each of the inlets communicating through metering pumps with one or more individual emulsion component storage vessels, a mixing zone which as no parts adapted to be mechanically moved being arranged between each adjacent pair of inlets, and a spiral flow channeling element in each of the mixing zones for causing a succession of changes in the direction of flow in the mixing zones whereby each component is completely admixed before the next is introduced.
6. An apparatus according to claim 5, wherein the inlets are in the form of sprinklers.
7. An apparatus according to claim 5, wherein each metering pump has a common drive shaft which also drives a main stream pump.
8. An apparatus according to claim 5, comprising sensors adapted to sense the pH value and viscosity of the substantially completed emulsion and regulating system adapted to maintain these values constant.
9. An apparatus according to claim 5 comprising a measuring control vessel located before the first tubular body in the series.
10. A mixing zone for introducing a liquid additive into a flow stream comprising at least one tubular conduit, removable heads connected to each end of the tubular conduit for connecting it as part of a tubular body, an additive inlet connected to each of the heads, a spiral lead screw having helical flutes disposed about a longitudinal core rod being removably inserted within each of the tubes for generating a secondary turbulent flow within each of the tubes, and the removable heads being constructed and arranged to permit removal of the spiral lead screws for cleaning.
11. A mixing zone according to claim 10, wherein the outer dimension of the flutes is slightly less than the inside dimension of the tube to form a spiral flow channel within the tube between the core and the inner wall of the tube.
12. An apparatus for the continuous preparation of photOgraphic emulsions which are ready for casting, comprising a series of tubular bodies having inlets arranged at different locations between them, each of the inlets communicating through metering pumps with one or more individual emulsion component storage vessels, a mixing zone which has no parts adapted to be mechanically moved being arranged between each adjacent pair of inlets, and each mixing zone comprises two adjacent tubes arranged in hairpin-fashion in each of which is arranged a spiral flow channel having a diameter substantially identical in the internal diameter of the respective tube.
13. An apparatus for the continuous prepartion of photographic emulsions which are ready for casting, comprising a series of tubular bodies having inlets arranged at different location between them, each of the inlets communicating through metering pumps with one or more individual emulsion component storage vessels, a mixing zone which has no parts adapted to be mechanically moved being arranged between each adjacent pair of inlets, each of the mixing zones includes at least one tubular conduit, removable heads connected to each end of the conduit for connecting it as part of the tubular body, one of the inlets being connected to each of the heads, a spiral lead screw having helical flutes disposed about a longitudinal core rod being removably inserted within each of the tubes for generating a secondary turbulent flow within each of the tubes, and the removable heads being constructed and arranged to permit removal of the spiral lead screws for cleaning.
14. An apparatus according to claim 12, wherein the spiral flow channel has a core and a lead along the core, and the ratio of the lead of the spiral to the distance between the core of the spiral and the inside of the tube is about 2 : 1 .
15. An apparatus according to claim 13, wherein each of the heads includes a pair of openings for connection to a pair of the tubes, one of the heads connecting one end of each of the tubes to each other, and the other of the heads including an inflow connection to one of the tubes and an outflow connection to the other of the tubes.
16. An apparatus according to claim 13, wherein the outer dimension of the flutes is slightly less than the inside dimension of the tube to form a spiral flow channel within the tube between the core and the inner wall of the tube.
17. A mixing zone for introducing a liquid additive into a flow stream comprising at least one tubular conduit, removable heads connected to each end of the tubular conduit for connecting it as part of a tubular body, an additive inlet connected to each of the heads, spiral lead screw having helical flutes disposed about a longitudinal core rod being removably inserted within each of the tubes for generating a secondary turbulent flow within each of the tubes, and the removable heads being constructed and arranged to permit removal of the spiral lead screws for cleaning, each of the heads includes a pair of openings for connection to a pair of the tubes, one of the heads connecting one end of each of the tubes to each other, and the other of the heads including an inflow connection to one of the tubes and the outflow connection to the other of the tubes.
18. An apparatus for the continuous preparation of photographic emulsions which are ready for casting, comprising a series of tubular bodies having inlets arranged at different locations between them communicating through metering pumps with one or more individual emulsion component storage vessels, a mixing zone which has no parts adapted to be mechanically moved being arranged between each adjacent pair of inlets, and the inlets comprising tubes arranged tangential to the series of tubular bodies.
US00225194A 1971-02-11 1972-02-10 Continuous photographic emulsion processing Expired - Lifetime US3779518A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2106526A DE2106526C3 (en) 1971-02-11 1971-02-11 Process and apparatus for the continuous preparation of photographic emulsions

Publications (1)

Publication Number Publication Date
US3779518A true US3779518A (en) 1973-12-18

Family

ID=5798488

Family Applications (1)

Application Number Title Priority Date Filing Date
US00225194A Expired - Lifetime US3779518A (en) 1971-02-11 1972-02-10 Continuous photographic emulsion processing

Country Status (8)

Country Link
US (1) US3779518A (en)
JP (1) JPS5634854B1 (en)
BE (1) BE779230A (en)
CH (1) CH537207A (en)
DE (1) DE2106526C3 (en)
FR (1) FR2125404B1 (en)
GB (1) GB1354841A (en)
IT (1) IT948478B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092013A (en) * 1974-09-13 1978-05-30 Gustaf Adolf Staaf Mixer with no moving parts
US4241023A (en) * 1977-12-10 1980-12-23 Agfa-Gevaert, A.G. Apparatus for the continuous preparation of photographic emulsions
US4305669A (en) * 1980-04-24 1981-12-15 Hope Henry F Mixing apparatus
US4643336A (en) * 1984-12-05 1987-02-17 Kent-Moore Corporation Mixing and dispensing gun
US5083872A (en) * 1990-12-14 1992-01-28 Eastman Kodak Company Liquids mixing and dispensing system
US5182190A (en) * 1988-01-18 1993-01-26 Eastman Kodak Company Method for obtaining a photographic coating composition
US5191910A (en) * 1990-11-14 1993-03-09 Eastman Kodak Company Method and apparatus for continuous liquefaction of gelled photographic materials
US5482682A (en) * 1993-05-17 1996-01-09 Florida Scientific Laboratories Inc. Apparatus for direct fluorination of a hydrocarbon by molecular fluorine gas
US5909959A (en) * 1997-11-04 1999-06-08 Gerich; Horst Compact fluid mixer
US6004025A (en) * 1997-05-16 1999-12-21 Life Technologies, Inc. Automated liquid manufacturing system
US20020048213A1 (en) * 2000-07-31 2002-04-25 Wilmer Jeffrey Alexander Method and apparatus for blending process materials
US6495166B1 (en) 1999-11-12 2002-12-17 Alkermes Controlled Therapeutics Inc. Apparatus and method for preparing microparticles using in-line solvent extraction
US6517232B1 (en) * 1996-05-20 2003-02-11 Becker-Underwood, Inc. Mixing systems
US6540393B1 (en) * 1999-11-12 2003-04-01 Alkermes Controlled Therapeutics Inc. Ii Apparatus for preparing microparticles using in-line solvent extraction
US20030095473A1 (en) * 2001-06-01 2003-05-22 Etchells Arthur William Process for blending fluids of widely differing viscosities
US20050185506A1 (en) * 2003-04-30 2005-08-25 Allen Thomas E. Gel mixing system
US20080053904A1 (en) * 1999-11-12 2008-03-06 Alkermes, Inc. Apparatus and method for preparing microparticles using in-line solvent extraction
WO2012000581A1 (en) * 2010-06-30 2012-01-05 Khs Gmbh Process and plant for production of fluid mixtures, for example beverages
EP2735604A1 (en) * 2012-11-22 2014-05-28 Castrol Limited Method of preparing a lubricant composition
US20160175784A1 (en) * 2014-12-17 2016-06-23 Caterpillar Inc. Mixing system for aftertreatment system
US20180111138A1 (en) * 2016-10-25 2018-04-26 Advanced Solutions Life Sciences, Llc Static Mixing Device and Method of Manufacturing Static Mixing Device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332483A (en) * 1979-09-17 1982-06-01 Hope Henry F Mixing apparatus
US5277494A (en) * 1993-05-11 1994-01-11 Graco Fluid integrator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2751425A (en) * 1951-02-01 1956-06-19 Exxon Research Engineering Co Method and apparatus for mixing and contacting fluids
US3430925A (en) * 1966-05-25 1969-03-04 Willy Buhner Apparatus for continuous dispersion of predominantly viscous substances
US3475392A (en) * 1963-09-23 1969-10-28 Phillips Petroleum Co Process control system for maintaining constant polymerization conditions
US3532102A (en) * 1968-04-01 1970-10-06 Exactel Ind Co Blending control system
US3582048A (en) * 1969-06-12 1971-06-01 Union Oil Co Inline fluid mixing device
US3655166A (en) * 1969-12-24 1972-04-11 Theo Sauer Process and device for continuous preparation of emulsions
US3684251A (en) * 1970-09-08 1972-08-15 Us Army Apparatus for continuous emulsification

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2751425A (en) * 1951-02-01 1956-06-19 Exxon Research Engineering Co Method and apparatus for mixing and contacting fluids
US3475392A (en) * 1963-09-23 1969-10-28 Phillips Petroleum Co Process control system for maintaining constant polymerization conditions
US3430925A (en) * 1966-05-25 1969-03-04 Willy Buhner Apparatus for continuous dispersion of predominantly viscous substances
US3532102A (en) * 1968-04-01 1970-10-06 Exactel Ind Co Blending control system
US3582048A (en) * 1969-06-12 1971-06-01 Union Oil Co Inline fluid mixing device
US3655166A (en) * 1969-12-24 1972-04-11 Theo Sauer Process and device for continuous preparation of emulsions
US3684251A (en) * 1970-09-08 1972-08-15 Us Army Apparatus for continuous emulsification

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092013A (en) * 1974-09-13 1978-05-30 Gustaf Adolf Staaf Mixer with no moving parts
US4241023A (en) * 1977-12-10 1980-12-23 Agfa-Gevaert, A.G. Apparatus for the continuous preparation of photographic emulsions
US4334884A (en) * 1977-12-10 1982-06-15 Agfa-Gevaert Ag Process for the continuous preparation of photographic emulsions
US4305669A (en) * 1980-04-24 1981-12-15 Hope Henry F Mixing apparatus
US4643336A (en) * 1984-12-05 1987-02-17 Kent-Moore Corporation Mixing and dispensing gun
US5182190A (en) * 1988-01-18 1993-01-26 Eastman Kodak Company Method for obtaining a photographic coating composition
US5191910A (en) * 1990-11-14 1993-03-09 Eastman Kodak Company Method and apparatus for continuous liquefaction of gelled photographic materials
US5083872A (en) * 1990-12-14 1992-01-28 Eastman Kodak Company Liquids mixing and dispensing system
US5482682A (en) * 1993-05-17 1996-01-09 Florida Scientific Laboratories Inc. Apparatus for direct fluorination of a hydrocarbon by molecular fluorine gas
WO1997025135A1 (en) * 1993-05-17 1997-07-17 Florida Scientific Laboratories Inc. Apparatus and method for direct fluorination of a hydrocarbon by molecular fluorine gas
US6517232B1 (en) * 1996-05-20 2003-02-11 Becker-Underwood, Inc. Mixing systems
US6004025A (en) * 1997-05-16 1999-12-21 Life Technologies, Inc. Automated liquid manufacturing system
US6227695B1 (en) 1997-05-16 2001-05-08 Invitrogen Corporation Automated liquid manufacturing system
US20100197022A1 (en) * 1997-05-16 2010-08-05 Life Technologies Corporation Automated liquid manufacturing system
US20020095241A1 (en) * 1997-05-16 2002-07-18 Kubiak James M. Automated liquid manufacturing system
US6432143B2 (en) 1997-05-16 2002-08-13 Life Technologies, Inc. Automated liquid manufacturing system
US7103450B2 (en) 1997-05-16 2006-09-05 Invitrogen Corporation Automated liquid manufacturing system
US5909959A (en) * 1997-11-04 1999-06-08 Gerich; Horst Compact fluid mixer
US6495166B1 (en) 1999-11-12 2002-12-17 Alkermes Controlled Therapeutics Inc. Apparatus and method for preparing microparticles using in-line solvent extraction
US7510730B2 (en) * 1999-11-12 2009-03-31 Alkermes, Inc. Apparatus and method for preparing microparticles using in-line solvent extraction
US20080054220A1 (en) * 1999-11-12 2008-03-06 Alkermes, Inc. Apparatus and method for preparing microparticles using in-line solvent extraction
US20080053904A1 (en) * 1999-11-12 2008-03-06 Alkermes, Inc. Apparatus and method for preparing microparticles using in-line solvent extraction
US6540393B1 (en) * 1999-11-12 2003-04-01 Alkermes Controlled Therapeutics Inc. Ii Apparatus for preparing microparticles using in-line solvent extraction
US6923568B2 (en) * 2000-07-31 2005-08-02 Celerity, Inc. Method and apparatus for blending process materials
US20020048213A1 (en) * 2000-07-31 2002-04-25 Wilmer Jeffrey Alexander Method and apparatus for blending process materials
US6698917B2 (en) * 2001-06-01 2004-03-02 E. I. Du Pont De Nemours And Company Process for blending fluids of widely differing viscosities
US20030095473A1 (en) * 2001-06-01 2003-05-22 Etchells Arthur William Process for blending fluids of widely differing viscosities
US20050185506A1 (en) * 2003-04-30 2005-08-25 Allen Thomas E. Gel mixing system
US7419296B2 (en) * 2003-04-30 2008-09-02 Serva Corporation Gel mixing system
WO2012000581A1 (en) * 2010-06-30 2012-01-05 Khs Gmbh Process and plant for production of fluid mixtures, for example beverages
EP2735604A1 (en) * 2012-11-22 2014-05-28 Castrol Limited Method of preparing a lubricant composition
US20160175784A1 (en) * 2014-12-17 2016-06-23 Caterpillar Inc. Mixing system for aftertreatment system
US9718037B2 (en) * 2014-12-17 2017-08-01 Caterpillar Inc. Mixing system for aftertreatment system
US20180111138A1 (en) * 2016-10-25 2018-04-26 Advanced Solutions Life Sciences, Llc Static Mixing Device and Method of Manufacturing Static Mixing Device
US10864537B2 (en) * 2016-10-25 2020-12-15 Advanced Solutions Life Sciences, Llc Static mixing device and method of manufacturing static mixing device

Also Published As

Publication number Publication date
BE779230A (en) 1972-08-11
DE2106526B2 (en) 1978-07-13
CH537207A (en) 1973-05-31
DE2106526A1 (en) 1972-08-31
GB1354841A (en) 1974-06-05
FR2125404B1 (en) 1975-10-24
DE2106526C3 (en) 1979-03-15
JPS5634854B1 (en) 1981-08-13
IT948478B (en) 1973-05-30
FR2125404A1 (en) 1972-09-29

Similar Documents

Publication Publication Date Title
US3779518A (en) Continuous photographic emulsion processing
US3827888A (en) Apparatus and process for combining chemically compatible solutions
US3897935A (en) Apparatus for the preparation of a photographic emulsion
CA1115585A (en) Method and apparatus suitable for the preparation of agx-emulsions
EP0895120B1 (en) Method for preparing silver halide emulsion
US4147551A (en) Process for photographic emulsion precipitation in a recycle stream
US4241023A (en) Apparatus for the continuous preparation of photographic emulsions
EP0374954B1 (en) Control process and apparatus for the formation of silver halide grains
JPS6095532A (en) Pulse flow balance double jet settling apparatus and method
US5331364A (en) Apparatus for diluting and mixing chemicals and automatically feeding the diluted chemicals to a photographic processor on demand
US4666669A (en) Apparatus for pulsed flow, balanced double jet precipitation
US3888465A (en) Apparatus for combining chemically compatible solutions
GB1501515A (en) Process for the production of photographic materials
GB787336A (en) A method of and apparatus for producing continuously photographic emulsions
US3476363A (en) Method of adding and mixing
Danckwerts et al. Flow-visualization by means of a time-reaction
US5709990A (en) Method for preparing a photographic emulsion, and apparatus for implementing the method
EP0604934B1 (en) Continuous manufacture of gelled microprecipitated dispersion melts
US5723279A (en) Method for preparing a photographic emulsion, and apparatus for implementing the method
US3507617A (en) Thermometric emulsion sensitometry
SU1005872A2 (en) Apparatus for ajitating
JPH06186656A (en) Method and apparatus for production of silver halide particle
RU2091849C1 (en) Method of manufacturing silver bromide/iodide photographic emulsions
SU583997A1 (en) Method of automatic control of oxyethylation process
JP2000321716A (en) Production of photographic sensitive material and apparatus therefor