Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3780374 A
Publication typeGrant
Publication dateDec 18, 1973
Filing dateMar 8, 1972
Priority dateMar 11, 1971
Also published asDE2211438A1, DE2211438B2, DE2211438C3
Publication numberUS 3780374 A, US 3780374A, US-A-3780374, US3780374 A, US3780374A
InventorsShibano Y, Yamashita S
Original AssigneeSumitomo Electric Industries
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Radome with matching layers
US 3780374 A
Abstract
A radome wall with matching layers wherein a single layer dielectric plate having a dielectric constant of epsilon r is sandwiched by two dielectric matching layers having the dielectric constant of 2ROOT epsilon r. One form of providing the matching layers is with strips of the same dielectric material as the plate. The strips may be spaced in parallel or parallel lattice form with a spacing pitch P between adjacent strips in order to obtain the equivalent dielectric constant of the matching layer 2ROOT epsilon r. The thickness of the core is also determined to be an odd multiple of lambda /4 in order to obtain broader frequency band characteristics.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Shibano et al.

[ RADOME WITH MATCHING LAYERS [75] Inventors: Yoshizo Shibano; Shohachiro Yamashita, Konshana-ku, Osaka,

Japan [73] Assignee: Sumitomo Electric Industries, Ltd.,

Osaka, Japan [22] Filed: Mar. 8, 1972 [21] Appl. No.: 232,897

[30] Foreign Application Priority Data Mar. 11, 1971 Japan 46/13622 [52] U.S. Cl. 343/872, 343/91 1 [51] Int. Cl. IIOlq l/42 [58] Field of Search 343/872, 872 R, 909, 343/91 1 [56] References Cited UNITED STATES PATENTS 3,633,206 1/1972 McMillan 343/909 2,956,281 10/1960 McMillan et al. 343/872 Dec. 18, 1973 3,698,001 10/1972 Masaki Koyama et al. 343/909 FOREIGN PATENTS OR APPLICATIONS 1,043,125 9/1966 Great Britain 343/872 10/1960 Great Britain 343/872 Primary -ExaminerEli Lieberman Atr0rney'Carothers and Carothers [57] ABSTRACT A radome wall with matching layers wherein a single layer dielectric plate having a dielectric constant of e, is sandwiched by two dielectric matching layers having the dielectric constant of VE One form of providing the matching layers is wit h strips of the same dielectric material as the plate. The strips may be spaced in parallel or parallel lattice form with a spacing pitch P between adjacent strips in order to obtain the equivalent dielectric constant of the matching layer V2: The thickness of th cor is a lso determined to be an odd multiple of M4 in order to obtain broader frequency band characteristics.

8 Claims, 11 Drawing Figures RADOME WITH MATCHING LAYERS This invention relates to a radoine with matching layers. Conventional radomes now in use for antennas are usually constructed of thin plates of material or the like. That is to say, they are made of dielectric plates having a uniform single layer with a thickness shorter than the wavelength of an operating wavelength. When the wavelength is sufficiently large as is the case with the VHF and UHF bands, the use of a thin dielectric plate for constructing a radome which crosses the path of the radiation wave from an antenna scarecely affects the electro magnetic properties of the radiation wave. However, in the case of a frequency band in use in which the wavelength of a selected frequency is extremely short, as for example in the case of 12 GHz, if the radome is designed to have a single layer of a 0.4 mm thickness of F.R.P. (Fiber Reinforced Plastic) for the purpose of mechanical strength for the radome structure, the VSWR (Voltage Standing Wave Ratio) for a frontal incidental wave will generally become as high as 1.2.

In such a situation matching between the dielectric plate of the radome and the air'is hardly obtainable. Even if the VSWR is made lower, the matched frequency band becomes very narrow and the power transmission loss becomes great.

Consequently, for such single layer radomes utilized in this high frequency range, as the thickness of the layer of the radome is comparable to the wavelength of the operating frequency, it is not practical for use.

On the other hand, the thickness of the layer of a radome is required to be as thick as possible with respect to mechanical strength.

However, it may not be possible to increase the thickness of the layer of a radome because of the restrictions of the VSWR, transmission loss and other requirements on the electric properties. As one solution of this problem, a sandwich radome is well known. It is, however, difficult to make such a radome, because there are various problems in the designing and manufacturing techniques.

The present invention provides a new radome with matching layers which is free from the drawbacks of conventional techniques as mentioned above. The purpose of the present invention is to provide a radome which has a low VSWR over a broad frequency band and a small transmission loss, and further has a radome layer thickness with sufficient mechanical strength.

The explanation in detail of this invention will be followed with reference to the drawings.

FIG. 1 shows the construction of an embodiment of the present invention.

FIG. 1a is a perspective view and b a view in cross section of the structure shown in FIG. la.

FIG. 2 is a diagrammatic section view of the structure shown in FIG. 1 for explaining the electric properties of the radome of the present invention.

FIG. 3, FIG. 4 and FIG. 5 are graphic illustrations showing the transmission loss versus frequency range curve and VWSR to frequency range curve in accordance with changing thickness of the plate of unilayer radome of the present invention.

FIGS. 6a, 6b, and 6c are cross sectional views of the radome wall of the present invention for explaining the methods of manufacturing the radome according to the teachings of the present invention.

FIG. 7 is a perspective view in partial cross section showing a lattice construction of the single layer radome of the present invention.

FIG. 8 is a perspective view of an embossed type construction of the single layer radome of the present invention.

FIG. la is a slant view of the radome of the present invention with matching layers. FIG. lb shows a section of the radome shown in FIG. la. In these Figures, 1 de' notes a dielectric plate which constitutes a single layer radome and 2 impedance matching layers. The matching layers (2) are made of strips having width W and thickness 1, of a dielectric material which are arranged in parallel and attached to the surface of the single layer radome plate having the thickness t with the spacing pitch P.

In this radome, the direction of the strips is in conformity with the direction of the polarized electric field.

Where the electric field has two perpendicular components it will be better to use thelattice like structure shown in FIG. 7 or 8. As shown in FIG. 1, P is the pitch of the strips. If P is given a sufficiently small value in comparison with the wavelength of an operating frequency, the matching layers (2) which are made of the arrangement of strips of the material of a dielectric constant e,, may be equivalent uniform dielectric layers having the dielectric constant e... There will be found a relation between 6, and 6,. as follows:

1 1 WIP where W is the width of the strip and P is the pitch of strips.

Thus the matching layer of a thickness t may be equivalently converted into a uniform dielectric layer of thickness t having an equivalent dielectric constant 6 The function of the matching layers is to provide an intermediate impedance layer between the plate (1) forming a single layer radome and free space in order to match the impedance of the plate of the radome to the characteristic impedance of the free space. In the circuit theory, such an impedance conversion is widely known as a 1/4 wavelength transformer.

As is well known, the characteristic impedance of the dielectric plate of the specific dielectric constant e, where, that of free space is I, will be given by l/ /T Accordingly, the characteristic impedance of the matching layer will be given as follows:

e V r When 6,, is given by formula (2), WIP can be obtained from formula (1).

If the materials of the matching layer and the plate of the radome are different from each other, the e,- of formula (l) is not the same as the e, of formula (2). The thickness t, of the matching layer being effectively A the wavelength is given by the free space wavelength )to and the equivalent dielectric constant 6 or the dielectric constant e, as follows.

1, mm Air/4" V6 The value of pitch P may be selected freely under the condition that P is sufficiently smaller than the wavelength in the material of the equivalent dielectric constant 6,. (where A )to/ E).

For practical purposes, it may be around a value of M4.

In an embodiment of the present invention, the plate of the unilayer radome and strips for the matching layer are made of the same material, F.R.P. (Fiber Reinforced Plastic), the operating frequency is 12 GHz and e,- is 4. v

From formula (2), 66 2. From formula (1), WIP

will be given as V3. When P is selected to be )to/4= 6.25 mm (where AO= mm at 12 GI-Iz), W will be calculated as 2.08 mm. t is obtained from Formula 3 as 4.42 mm, 7} 15 A D= cos (2 nf'eTh/Ao) (4) B=j 1/ /a sin (2 11- Ve t /ko) (5) =j v r. sin 1r \fT, mo) (6) The four-terminal constants of the plate of the unilayer 5 radome will be given by the following formulae, where the transmission loss thereof is taken into account;

cos (2 1r fer, t lko) cosh A 1r w t lko tan 8) j sin (2 11' P5,, 1 0.0 sinh 2 1r VF, 1 tan (7) B l/ 6,, cos (2 1r ve t /M) sinh (562 1r t lko tan 8) +j l/ VE sin (2 1r a m/k0) cosh (k2 1r fe t lk tan 8) C= fe cos (2 1r Q/k0 )sinh (562 1r Pe n /A0 tan 8) +j msin (2 7T ve t lko) cosh (#2 1r f'gT l /ho tan8 9 Four terminal circuit constants A0, B0, C0 and Do equivalent to the three serially connected four-terminal circuits will be given easily from the above constants. The transmission coefficient T and reflection coefficient F of the radome with matching layers will be given as follows:

i/T= A0 Bo +Co Do/2 The transmission loss in dB and the VSWR for the normal wave incident the radome of the present invention are calculated and illustrated in FIGS. 3, 4 and 5 over the frequency range 11.0 GHz to 13.0 HGz, where the material of radome plate and matching layers are both F.R.P., P 6.3 mm and W 2.1 mm.

Under such conditions, when the t of the plate of the unilayer radome is made 6.25 mm, 3 mm and 1 mm, the curves of the transmission loss and the VSWR are shown in FIG. 3, FIG. 4 and FIG. 5 respectively.

As is easily understood from FIGS. 3, 4 and 5, there will be found an optimum value for the thickness 1 of the unilayer radome. In the examples of these calculations, when 1 is 2 mm, the broadest band is obtained. The fact that t is 3 mm shows that the thickness of the unilayer radome is approximately M4. It is seen from the above that the thickness of the plate of the unilayer radome will be optimum if it is approximately an odd number multiple of )\/4, as well as would be the thickness of the matching layers.

According to this invention, as already stated, both surfaces of a dielectric plate having a dielectric constant of a, may be provided with matching layers made of the same or a different material and the surfaces are given a lattice-like or embossed construction as shown in FIGS. 7 and 8 with parts of the matching layers left missing so as to make the average dielectric constant of the matching layers R1, the thickness of the matching layers being equivalently made 54 wavelength. In the afore-mentioned examples, an instance where the directions of polarization of the matching layers and electric field are made to coincide with each other was described in detail. In the case where the electric field has components of two directions perpendicular to each other, it is preferable to use matching layers of a latticelike shape. See FIG. 7 for example. If convenient for the manufacture or for the use of the radome, the matching layers may be given a regular spacingly embossed configuration as shown in FIG. 8.

The manufacturing method of the radome of the present invention will be briefly explained. FIGS. 6a, 6b and 6c are sketches for the purpose of explaining the manufacturing processes. FIG. 6a shows, as an example, a method wherein matching layers (dielectric strips) 2 are attached to a dielectric plate I by means of an interposed material of an adhesive or the like. FIG. 6b shows a method wherein cutting is done into a dielectric plate of a large thickness to form the matched layers. FIG. 60 shows a method wherein a plastic material is moulded by means of metal moulds conforming to the shape of the matching layers.

It is very easy to make the construction of this invention by the methods described above. It can provide radomes with matching layers which are found highly effective when used for various kinds of antennas.

What we claim is:

l. A radome wall with matching layers comprising a single layer dielectric plate of any desired thickness having a dielectric constant of 6,, and two dielectric matching layers sandwiching said plate therebetween, each of said matching layers having the average dielectric constant of V6,- and a thickness which is an odd number multiple of M4 where )t is the wavelength in the matching layer.

2. The radome wall with matching layers as claimed in claim 1 wherein said two matching layers are made of a dielectric material which is different from said plate.

3. The radome wall with matching layers as claimed in claim 1 wherein said two matching layers are made with strips of the same dielectric material as the plate, said strips having the width W and the thickness t and arranged in parallel with each other with'a spacing pitch P where P is sufficiently smaller than the wavelength of an operating frequency so as to make the equivalent dielectric constant of the matching layer 4. The radome wall with matching layers as claimed in claim 3 wherein said two matching layers are made of a dielectric. material which is different from the plate.

5. The radome wall with matching layers as claimed in claim 1 wherein the thickness of the plate of the radome is approximately. an odd number multiple of M4 frequency.

8. The radome wall with matching layers as claimed in claim 2 wherein said two matching layers are integrally formed with said plate.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2956281 *Sep 8, 1954Oct 11, 1960Edward B McmillanDielectric walls for transmission of electromagnetic radiation
US3633206 *Jan 30, 1967Jan 4, 1972Mcmillan Edward BellamyLattice aperture antenna
US3698001 *Nov 5, 1970Oct 10, 1972Nippon Telegraph & TelephoneFrequency group separation filter device using laminated dielectric slab-shaped elements
GB851923A * Title not available
GB1043125A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4148039 *Jul 17, 1978Apr 3, 1979The Boeing CompanyLow reflectivity radome
US4179699 *Jul 5, 1977Dec 18, 1979The Boeing CompanyLow reflectivity radome
US4189731 *Jun 12, 1978Feb 19, 1980General Dynamics Electronics DivisionRadome with tilted dielectric strips
US4358772 *Apr 30, 1980Nov 9, 1982Hughes Aircraft CompanyForming alternating layers of silicon nitride and fused silica
US4506269 *May 26, 1982Mar 19, 1985The United States Of America As Represented By The Secretary Of The Air ForceLaminated thermoplastic radome
US4725475 *Aug 25, 1986Feb 16, 1988General Dynamics Electronics DivisionMulti-octave thick dielectric radome wall
US4901086 *Mar 6, 1989Feb 13, 1990Raytheon CompanyLens/polarizer radome
US6897820Aug 13, 2002May 24, 2005Anafa-Electromagnetic Solutions Ltd.Electromagnetic window
US6975279 *May 30, 2003Dec 13, 2005Harris FoundationEfficient radome structures of variable geometry
US7817099Dec 8, 2005Oct 19, 2010Raytheon CompanyBroadband ballistic resistant radome
US8054239Oct 24, 2008Nov 8, 2011Raytheon CompanyHoneycomb-backed armored radome
US8368610 *Sep 28, 2007Feb 5, 2013Raytheon CompanyShaped ballistic radome
US8599095Jan 18, 2008Dec 3, 2013Raytheon CompanyBroadband ballistic resistant radome
US8763453Apr 23, 2010Jul 1, 2014Endress + Hauser Gmbh + Co. KgArrangement for measuring fill level with a fill level measuring device working with microwaves
DE3812029A1 *Apr 11, 1988Oct 31, 1996Thomson CsfWall separation construction for radomes
DE3812029C2 *Apr 11, 1988Dec 17, 1998Thomson CsfWandung für Antennenkuppel und mit dieser hergestellte Antennenkuppeln
EP0248958A1 *Jun 12, 1986Dec 16, 1987Varian Associates, Inc.Triple pane waveguide window
EP0359504A1 *Sep 11, 1989Mar 21, 1990British Aerospace Public Limited CompanyRadomes
WO1988001440A1 *Aug 20, 1987Feb 25, 1988Indep Broadcasting AuthorityImprovements in and relating to the reduction of radio frequency transmission loss
WO2012080317A1Dec 14, 2011Jun 21, 2012Dsm Ip Assets B.V.Material for radomes and process for making the same
WO2013037811A1Sep 12, 2012Mar 21, 2013Dsm Ip Assets B.V.Composite radome wall
Classifications
U.S. Classification343/872, 343/911.00R
International ClassificationH01Q1/42
Cooperative ClassificationH01Q1/422
European ClassificationH01Q1/42C