Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3781379 A
Publication typeGrant
Publication dateDec 25, 1973
Filing dateAug 16, 1971
Priority dateAug 16, 1971
Also published asCA979139A1, DE2240314A1, DE2240314B2, US4091048
Publication numberUS 3781379 A, US 3781379A, US-A-3781379, US3781379 A, US3781379A
InventorsA Theodore, S Labana
Original AssigneeFord Motor Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Powdered coating compositions containing glycidyl methacrylate copolymers with anhydride crosslinking agents and flow control agent
US 3781379 A
Abstract
Powder coating compositions are disclosed which, exclusive of pigments and other nonreactive components, comprise a coreactive mixture of: (A) a copolymer of between about 5 and about 20 weight percent of a glycidyl ester of a monoethylenically unsaturated acid and between about 95 to about 80 weight percent of other monoethylenically unsaturated monomers, said copolymer having a glass transition temperature in the range of 40 DEG C to 90 DEG C and a number average molecular weight (Mn) of between about 2500 and about 8500; and (B) an organic carboxylic acid anhydride crosslinking agent, said anhydride being present in the amount of from about 0.4 to about 1.0 anhydride groups for each epoxy group in the copolymer.
Images(9)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 3,781,379 POWDERED COATING COMPOSITIONS CONTAIN- ING GLYCIDYL METHACRYLATE COPOLY- MERS WITH ANHYDRIDE CROSSLINKING AGENTS AND FLOW CONTROL AGENT Ares N. Theodore, Farmington, and Santokh S. Labana, Dearborn Heights, Mich., assignors to Ford Motor Company, Dearborn, Mich. No Drawing. Filed Aug. 16, 1971, Ser. No. 172,224 Int. Cl. C08g 45/04 US. Cl. 260-836 9 Claims ABSTRACT OF THE DISCLOSURE Powder coating compositions are disclosed. In general, individual powder coating compositions of this invention are a mixture of several materials. One of the important materials is a copolymer of glycidyl methacrylate and an ethylenically unsaturated compound formed to obtain a copolymer with a glass transition temperature in the range of 40 C. to 90 C. and a molecular weight (fi in the range of 2500 to 8500. The glycidyl methacrylate is present in the copolymer from at least about by weight to no more than about 20% by weight. Another important material of each coating composition is a crosslinking agent formed in an anhydride of a dicarboxylic acid present in the amount of 0.4 to 1.0 anhydride groups for each epoxy group in the copolymer. A third important material used in forming each powder coating composition is a flow control agent which forms at least 0.05% by weight of the mixture. The flow control agent is a polymer having a molecular weight (M of at least 1000. The flow control agent also has a glass transition temperature at least 50 C. below the glass transition temperature of the copolymer. Other materials such as pigments, catalysts, antistatic agents and plasticizers may be used in individual compositions.

BACKGROUND OF THE INVENTION Powder coating compositions for use in the painting of surfaces are extremely desirable. Such coating compositions are desirable because they eliminate the solvents utilized in liquid paint systems as, for example, the paint system shown in U.S. Pat. 2,857,354, issued Oct. 21, 1958. A powder coating paint composition is curable by heat in a manner that little, if any, volatile material is given off to the surrounding environment. This is substantially diiferent from a liquid paint system as the liquid paint vehicle must be volatilized during the drying of the paint. Volatilization of the liquid vehicle carries such vaporized material into the ambient.

This invention is directed to powder coating compositions which are suitable for finishing surfaces of articles with a protective and decorative coating. The coatings produced by the compositions of this invention are comparable on all-terms with the coatings produced by the prior art liquid paint systems. The liquid paint system disclosed in 'U.S. Pat. 2,857,354 is apparently similar but, in reality, substantially different than the powder coating compositions of this'invention. A full discussion of these differences is set forth in the last portion of this specification.

SUMMARY OF THE INVENTION This invention is directed to powder coating compositions and, more particularly, to powder coating compositions which are curable by heat, have an excellent resistance to solvents, produce very hard coatings, have good stabilityat room temperature and have a fast cure time at elevated temperatures.

A powder coating composition formed in accordance "Ice with the teachings of this invention comprises an intimate mixture of several materials. A first material of the mixture is a copolymer of glycidyl methacrylate or glycidyl acrylate and an ethylenically unsaturated compound in such proportions as to obtain a copolymer with a glass transition temperature in the range of 40 C. to C. and with a molecular weight (M in the range of 2500 to 8500. The glycidyl methacrylate is present in the copolymer from at least about 5% by weight to no more than about 20% by weight. Another material of the mixture is a cross linking agent formed of an anhydride of a dicarboxylic acid present in the amount of 0.4 to 1.0 anhydride groups for each epoxy group in the copolymer. Another material of the mixture is a flow control agent which forms at least 0.05% by weight of the mixture. This flow control agent is a polymer having a molecular weight (M of at least 1000. The flow control agent also has a glass transition temperature at least 50 C. below the glass transition temperature of the copolymer.

In greater detail, a powder coating composition formed in accordance with the teachings of this invention may include a small weight percent of a catalyst which produces a .gel time for the powder coating composition greater than 1 minute at the baking temperature of the composition. The coating composition may also use therein a pigment which forms from about 6% by weight to about 35% by weight of the total mixture depending on the pigment selected and the gloss required for the baked coating. The powder coating composition may also include a small weight percentage of an antistatic agent and a plasticizer.

The preferred ranges for individual contents of the materials for the powder coating compositions described above is as follows. The glycidyl methacrylate which forms a portion of the copolymer in the mixture should be present in the copolymer in the range of at least 5% by weight to no more than 20% by weight. A desirable range of glycidyl methacrylate in the copolymer is at least 8% by weight to no more than 15% by weight with the most desirable copolymer containing approximately 10% by weight of the glycidyl methacrylate. Also, the preferred glass transition temperature for the copolymer is in the range of 50 C. to 80 C. with a molecular weight (fi in the range of 3000 to 6500. The most desirable glass transition temperature for the copolymer is 60 C. to 70 C. with a molecular weight (M in the range of 3000 to 4000.

With respect to the anhydride crosslinking agent, the preferred anhydride is an anhydride selected from the group consisting of phthalic anhydride, p-chloro phthalic anhydride, tetrabromo phthalic anhydride, cyclohexane- 1,2-dicarboxylic anhydride, 4 methylhexane 1,2 dicarboxylic anhydride, cyclopentane 1,2 dicarboxylic anhydride, dodecyl succinic anhydride, succinic anhydride, maleic anhydride, methyl succinic anhydride and polyazelaic anhydride. In general, the preferred anhydrides are those which are ring compounds having a melting point in the range from 35 C. to C.

With respect to the flow control agents used in the powder coating mixture, an individual agent selected for a mixture may be an acrylic polymer having a glass transition temperature at least 50 C. below the glass transition temperature of the mixtures copolymer. Preferred acrylic polymers which may be used for the flow control agent are polylauryl acrylate, polybutyl acrylate, poly (Z-ethylhexyl acrylate), polylauryl methacrylate and polyisodecl methacrylate.

The flow control agent may also be a fluon'uated polymer having a surface tension, at the baking temperature of the powder, lower than that of the copolymer utilized in the mixture. Preferred flow control agents, if the agent is a fluorinated polymer are esters of polyethyleneglycol or polypropyleneglycol and fluorinated fatty acids. For example, an ester of polyethyleneglycol of molecular weight of over 2500 and perfluoro octanoic acid is a useful flow control agent.

In addition to the glycidyl methacrylate monomer used in all copolymer forming mixtures, other monomers which may be used are methyl methacrylate, butyl methacrylate, butyl acrylate, ethyl acrylate, Z-ethylhexyl acrylate, styrene, alpha methl styrene, acrlonitrile and methacrylonitrile. The glycidyl methacrylate and the ethylenically unsaturated monomers are mixed and reacted in such proportions as to obtain the copolymer for the powder coating mixture which has a glass transition temperature and a molecular weight as set forth above.

A small weight percentage of a catalyst is added to the powder coating composition in order to increase the cross linking rate of the powder coating composition at the baking temperature thereof. In preference, the catalyst produces a gel time for the powder coating composition of at least 1 minute but no greater than 40 minutes. The preferred catalyst is one which produces a gel time of at least 1 minute but no greater than minutes. In general, the catalyst is present in the range of from 0.05 by Weight to 1% by weight of the weight of the mixture. The most desirable gel time produced by the catalyst is in a time range of from about 2 minutes to about 6 minutes. These catalyst gel times are at baking temperatures for the powder coating compositions in the range of 130 C. to 200 C.

The powder coating compositions of this invention may also contain from about 6% by weight to about 35% by weight of a pigment. The various pigments already known in the art may be employed in the powder coating compositions. The pigments are generally selected for color, ap pearance or corrosion protection properties.

A small weight percent of an antistatic agent may also be employed in the powder coating composition. For example, 0.05% by weight to 0.5% by weight of the powder coating composition may be an antistatic agent so that the coating may be applied in an electrostatic spraying operation.

A plasticizer may also be employed in individual powder coating compositions of this invention. Such a plasticizer is included up to about 10 percent by weight of the total mixture.

DESCRIPTION OF THE PREFERRED EMBODIMENT A general discussion of the various materials which may be employed in the powder coating compositions of this invention will be set forth below. Also, a plurality of examples will be employed to show the manner in which various, individual, powder coating compositions, which fall within the scope of this invention, are prepared and utilized.

The principal material in individual powder coating compositions is a copolymer form from glycidyl methacrylate or glycidyl acrylate and an ethylenically unsaturated monomer in such proportions as to obtain a copolymer with a glass transition temperature in the range of 40 C. to 90 C. and a molecular weight (fi in the range of 2500 to 8500. The ethylenically unsaturated monomer employed to form the copolymer is any one, or a mixture of the many diiferent monomers known to those skilled in the art. In forming the copolymer, the glycidyl methacrylate is present in the final copolymer from at least about 5% by weight to no more than about 20% by weight. The balance of the weight of the copolymer is formed from the ethylenically unsaturated monomers.

The preferred ethylenically unsaturated monomers which are employed to form the copolymer with the gly cidyl methacrylate are methyl methacrylate, butyl methacrylate, butyl acrylate, ethyl acrylate, styrene, 2-ethylhexyl acrylate. Suitable modifying monomers such as alpha methyl styrene, acrylonitrile, and methacrylonitrile can be used with the preferred monomers. When used, a modifying monomer is present in the copolymer from a weight percent of about 0% by weight to no more than about 35% by weight. Thus, when the preferred ethylenically unsaturated monomers are used with glycidyl methacrylate to form the copolymer, the glycidyl methacrylate is present in the copolymer from 5% by weight to about 20% by weight, the modifying monomer is present from about 0% by weight to no more than about 35 by weight, and the preferred monomer is present from about by weight to about 45% by weight.

In accordance with detailed teachings of this invention, the copolymer for the powder coating composition is formed from glycidyl methacrylate, methyl methacrylate, and butyl methacrylate. In this instance, the glycidyl methacrylate is present in the copolymer from about 5% by weight to no more than about 20% by weight, the methyl methacrylate is present in the copolymer from about 25% by weight to about 60% by weight, and the balance of the copolymer is butyl methacrylate.

The copolymers of glycidyl methacrylate can be prepared by a variety of methods. Generally, a free radical initiator is needed to induce polymerization reaction. A large number of free radical initiators are known in the art. These include benzoyl peroxide, lauryl peroxide, tbutylhydroxyperoxide, acetylcyclohexane sulfonyl peroxide, diisobutyryl peroxide, di(2-ethylhexyl) peroxydicarbonate, di-isopropyl peroxydicarbonate, t-butylperoxypivalate, decanoyl peroxide, azobis (Z-methylpropionitrile), etc. The polymerization is preferably carried out in solution using a solvent in which the glycidyl methacrylate copolymer is soluble. Toluene, xylene, dioxane, butanone, etc., are suitable solvents for polymerization. If the glycidyl methacrylate copolymer is prepared in solution, the solid copolymer can be obtained by evaporating the solvent under vacuum or spray drying techniques. Alternatively, the copolymer can be precipitated by pouring the solution at a slow rate into a non-solvent liquid such as hexane, octane or water under a suitable agitation condition at a slow rate. The copolymer thus obtained should be further dried so that it contains less than three percent of the materials that volatilize at the temperatures used for baking the coatings.

Glycidyl methacrylate copolymers can also be prepared by emulsion polymerization, suspension polymerization, bulk polymerization or their suitable combinations. In these methods of preparing glycidyl methacrylate copolymers, chain transfer agents may be required to control the molecular weight of the copolymer to a desired range. The solid copolymers obtained by these methods must also be dried to contain less than three percent of the materials that volatilize at the temperatures used for baking the coatings.

For powder coating applications, molecular weight and molecular weight distribution of the glycidyl methacrylate copolymer is important. Copolymer of average molecular weight (M in the range of 2500 to 8500 are suitable. These copolymers, however, must not contain significant amount of higher molecular weight fractions. No more than 2 percent of the copolymer can be of molecular weight greater than 20,000. The molecular weight distri- 'bution as measured by the ratio of weight average molecular weight to number average molecular weight (M /Ti should be in the range of 1.6 to 2.1. The preferred range of molecular weight distribution is in the range of 1.7 to 1.8.

Another one of the materials of individual ones of the powder coating compositions of this invention is a cross linking agent formed of an anhydride of a dicarboxylic acid. The anhydride is present in the amount of 0.4 to 1.0 anhydride groups for each epoxy group in the copolymer. In still greater detail, the most desirable anhydride is an anhydride selected from the group consisting of phthalic anhydride, p-chloro phthalic anhydride,

tetrabromo phthalic anhydride, cyclohexane 1,2-dicarboxylic anhydride, 4 methylhexane-1,2-dicarboxylic anhydride, cyclopentane-1,2-dicarboxylic anhydride, succinic anhydride, dodecyl succinic anhydride, maleic anhydride, methyl succinic anhydride, and polyazelaic anhydride.

A flow control agent is also included in forming each individual one of the powder coating compositions of this invention. The flow control agent forms at least 0.05% by weight of an individual powder coating. The flow control agent generally does not exceed about 4% by weight of any individual powder coating composition. In general, the flow control agent is a polymer having a molecular Weight (M of at least 1000. Further, the flow control agent has a glass transition temperature at least 50 C. below the glass transition temperature of the copolymer employed in forming the composition.

' One type of material which is used as a flow control agent in the powder coating compositions is an acrylic polymer. Some acrylic polymers which are preferred as flow control agents are polylauryl acrylate, polybutyl acrylate and poly (2-ethylhexyl acrylate). Acrylic polymers to be used as flow control agents can be prepared by polymerization of the acrylate or methacrylate monomers in bulk or in suitable solvent using Well known free radical initiators. The amount of the initiator and the polymerization conditions are chosen so that polymer formed has molecular Weight (M above 1000. The preferred molecular Weight range of the acrylate polymer is above 5000. The most preferred range of the acrylate polymer is 6000 to 20,000.

Although polymeric acrylate flow control agents are preferred, fluorinated polymers act as flow control agents for the powder coating compositions. Such fluorinated polymers may, for example, be esters of polyethyleneglycol or polypropyleneglycol and fiuorinated fatty acids. Esters of polyethyleneglycol of molecular weight (M of over 2500 and perfiuoro octanoic acid are useful as flow control agents for the compositions of this invention.

The individual powder coating compositions of this invention each contain a small, effective, weight percentage of a catalyst. In general, the catalyst is present in an individual composition in a range from 0.05 by Weight to 1.0% by weight. The catalyst is selected to produce a gel time for the powdercoating composition greater than at least 1 minute at the baking temperature of the composition. A suitable catalyst is also one which will produce a gel time that does not exceed 40 minutes. As used herein, the gel time of a coating composition is that time in which the coating composition develops elasticity and resistance'to flow at the baking temperature. Some catalyst which are suitable for use in the powder coating composition include tetralkylammonium salts, imidazole type catalyst, tertiary amines and metal salts of organic carboxylic acids. The tetralkylammonium salts catalyst include the followingz'tetrabutyl ammonium chloride (bromide or iodide), tetraethyl ammonium chloride/(bromide or iodide), tetramethyl ammonium chloride (bromide or iodide), trimethylbenzyl ammonium chloride, dodecyl dimethyl (2-phenoxyethyl) ammonium bromide and diethyl (2-hydroxy ethyl) methyl ammonium bromide. Suitable catalysts of the imidazole type include: 2-methyl-4-ethyl imidazole, 2-methyl imidazole, imidazole, 2-[(N-benzylanilino) methyl]-2-imidazoline phosphate, and 2-benzyl-2-imidazoline hydrochloride. Suitable tertiary amine catalysts for the powder coating compositions of this invention include: triethylenediamine, N,N-diethylcyclohexylamine, and N-methyl morpholine. The metal salts of organic carboxylic acid which are catalyst for the powder coatings of this invention include, but are not limited to: stannous octoate, zinc naphthenate, cobalt naphthenate, zinc octoate, stannous 2-ethylhexoate, phenylmercuric propionate, lead neodecanoate, dibutyl tin dilaurate and lithium benzoate.

The catalyst used in an individual powder coating composition is generally solid at room temperature and 6 has a melting point of from 50 C. to 200 C. As previously specified, the catalyst is present in a powder coating composition from 0.05% by weight to 1.0% by weight of the total weight of the powder composition. Further, the catalyst produces a gel time of at least 1 minute and no greater than 40 minutes. Generally, the preferred gel time of the composition is in the range of from 1 minute to approximately 10 minutes at the baking temperature of the composition.

Since individual powder coating compositions of this invention can be applied toan article to be painted by electrostatic methods, it is preferred to include a small weight percentage of an antistatic agent in such compositions so that the deposition thereof is accomplished in a proper manner. In particular, the antistatic agent is included in a range from 0.05 to 1.0% by weight of the total powder composition. Suitable antistatic agents include, but are not limited to, tetralkylammonium salts as discussed previously and which also serve as catalysts. Other suitable antistatic agents include: alkyl-poly (ethyleneoxy) phosphate or alkylaryl poly (ethyleneoxy) phosphates as, for example, ethyl benzyl poly (ethyleneoxy) phosphate; polyethyleneimine, poly (2-vinyl pyrolidone), pyridinium chloride, poly (vinyl pyridinium chloride), polyvinyl alcohol or inorganic salts.

In order to give individual powder coating compositions of this invention a suitable color, a pigment is included in the coating composition. In general, the pigment forms from about 6% by weight to about 35% by weight of the total powder coating composition. Pigments which are suitable for powder coating compositions include, but are not limited to, the following: basic lead silico chromate 30% by weight (orange); titanium dioxide 30% by weight (white); titanium dioxide 15% by weight plus ultra marine blue 10% by weight (blue); phthalocyanine blue 7% by Weight plus titanium dioxide 10% by Weight (blue); phthalocyanine green 7% by weight plus titanium dioxide 10% by weight (green); ferrite yellow 7% by weight plus titanium dioxide 10% by weight (yellow); carbon black pigment 6% by weight (black); black iron oxide 10% by weight (black); chromium green oxide 8% by weight plus titanium dioxide 10% by weight (green); quindo red 5% by weight plus titanium dioxide 16% by weight (red); and iron oxide transparent orange pigment 10% by weight (orange). Metallic aluminum pigment may also be included to give the baked coating a metallic look. Such an aluminum pigment is included up to 10% by weight.

A plasticizer may be used in powder coating composition of this invention if desired. The type of plasticizers used very often include adipates, phosphates, phthalates, sebacates, polyesters derived from adipic acid or azelaic acid, and epoxy or epoxidized plasticizers. Some of these plasticizers are: adipates: di-hexyl adipate, diisooctyl adipate, dicyclohexyl adipate; phosphates: triphenylphosphate, tricresylphosphate, tributylphosphate; phthalates; dibutylphthalate, dioctylphthalate, butyl octyl phthalate; and sebacates: dioctyl sebacate, butyl benzyl sebacate, and dibenzyl sebacate, butanediol-1,4-diglycidyl ether and cellulose acetate butyrate.

Having generally described the various materials which are employed in formulating the powder coating compositions of this invention, a plurality of examples will be set forth to illustrate various individual powder coating compositions.

EXAMPLE 1 The monomers, glycidyl methacrylate 15% by weight, methyl methacrylate 45% by weight and butyl methacrylate 40% by weight are mixed together. Three weight percent of a catalyst 2,2'-azobis-(Z-methylpropionitrile) (AIBN) is dissolved in the monomer mixture. The mixture is slowly added to refluxing toluene parts) which is stirred vigorously under a nitrogen atmosphere. A condenser is provided at the top of the toluene con tainer to condense the toluene vapors and return them to the container: The monomer mixture is added through a regulating valve and the rate of addition is controlled to maintain a reflux temperature (109 C.-112 C.)

with only a small fraction of heat supplied from an external heater. After the addition of the monomer mixture is complete, the refluxing is maintained by external heat source for 3 additional hours.

The solution is poured into shallow stainless steel trays. These trays are placed in a vacuum oven and the solvent evaporated therefrom. As the solvent is removed, the copolymer solution becomes more concentrated. The temperature of the vacuum oven is raised to about 110 C. Drying is continued until the solvent content of the copolymer is below 3 percent. The trays are cooled and the copolymer collected and ground to pass through 20 mesh screen. The copolymer has a glass transition temperature of 53 C. and a molecular weight (Ma of 4000.

One hundred parts by weight of the ground copolymer are mixed with the following materials:

The materials are mixed together in a ball mill for 2 hours. The mixture is milled rolled at 85 C. to 90 C. for 5 minutes. The solid obtained is ground in a ball mill to pass through a 140-mesh screen.

The resulting powder thus obtained is a powder coat ing composition of the invention. The powder is sprayed on an electrically grounded, steel panel by using electrostatic powder spray gun operating at 50 kv. charging voltage. After spraying, the panel is heated at 175 C. for minutes.

The coating obtained on the panel has good adhesion to the steel panel and good impact strength. The coating also is applied to and has good adhesion on panels of glass, brass, zinc, aluminum, copper and bronze. The coating obtained is not soluble in toluene, gasoline, butanone or methanol.

EXAMPLE 2 The procedure of Example 1 is repeated. The formation of the copolymer, however, begins with a monomer mixture having glycidyl methacrylate 5% by weight, methyl methacrylate 55% by weight and butyl methacrylate 40% by weight. Three weight percent of the catalyst AIBN is employed. When the procedure of Example 1 is followed, the resulting copolymer has a glass transition temperature of 58 C. and a molecular weight of 4000.

One hundred parts of the copolymer produced is mixed with the same additional ingredients set forth in Example 1, except using 5.5 parts maleic anhydride. The quality of the painted panels obtained after application of the powder coating to various materials is about the same as achieved in Example 1.

EXAMPLE 3 A monomer mixture having the following composition is prepared: glycidyl methacrylate 12% by weight, methyl methacrylate 48% by weight, and butyl methacrylate 40% by weight. The monomer mixture is processed in the same manner as described in Example 1 with 3% by weight of the catalyst AIBN employed. The resulting copolymer has a glass transition temperature of 56 C. and a molecular weight of 4000. One hundred parts of the copolymer produced is mixed with the same additional ingredients described in Example 1, except 9.4 parts itaconic anhydride are used.

The powder coating composition obtained by following the process steps set forth in Example 1 is applied to test panels in the same manner as described in Example 1. The coating is baked at a temperature of 170 C. for 30 minutes. The coating obtained has good adhesion to steel, glass, brass, zinc, aluminum, copper and bronze.

EXAMPLE 4 -A monomer mixture having the following composition is prepared: glycidyl methacrylate 20% by weight, methyl methacrylate 40% by Weight and butyl methacrylate 40% by weight. A copolymer is formed from this monomer mixture in accordance with the same procedure as is outlined in Example 1. In this case, 1% by weight of the catalyst AIBN is added. The copolymer produced has a glass transition temperature of 51 C. and a molecular weight of 8500.

The ground copolymer parts by weight) is added to the following materials:

Parts Glutaric anhydride 16.0 Tetrabutylammonium chloride 0.1 Polybutylacrylate (fin=9000) 4 Titanium dioxide 15 Transparent blue 4 Metallic aluminum flakes 4 The above ingredients are mixed together and processed in accordance with the procedure of Example 1 to obtain a powder coating composition. The powder coating composition is sprayed on various test panels of steel, glass, brass, zinc, aluminum, copper and bronze. The coating obtained on each test panel after curing of the powder coating composition at a temperature of 200 C. for 10 minutes is of good quality, is solvent and scratch resistant, and has a metallic appearance.

EXAMPLE 5 A monomer mixture having the following composition is prepared: glycidyl methacrylate 25% by weight, methyl methacrylate 40% by Weight and butyl methacrylate 35% by weight. The monomers are reacted as described in Example 1 to produce a copolymer. In this case, 6% by weight of the catalyst AIBN is employed. The resulting copolymer has a glass transition temperature of 53 C. and a molecular weight of 2000.

One hundred parts by weight of the copolymer obtained is mixed with the following materials:

Parts Glutaric anhydride 20.0 2-methyl-4-ethylimidazole 0.05 Dibutyl poly(ethyleneoxy) phosphate 0.05 Polyisododecyl methacrylate 4 Titanium dioxide 10 Phthalocyanine blue 7 A powder coating composition is obtained by following the process steps set forth in Example 1. The coating composition is applied to a series of test panels and baked at the temperature of and for the same time as Example 4. The coating obtained on the various test panels is of poor quality with respect to its adhesion, appearance and impact characteristics.

EXAMPLE 6 9. One hundred parts by weight of the copolymer obtained is added to the following materials:

Parts Phthalic anhydride 15.6 Triethylene diamine 0.1 Tetraethylammonium chloride 0.5 Polylaurylmethacrylate (fi =6000) 2 Phthaloycanine green 7 Titanium dioxide 10 The above described materials are processed as described in Example 1 in order to produce a powder coating composition. The powder coating composition is applied to. test panels as described in Example 1 and baked on the panels at a temperature of 150 C. for minutes.

The coating obtained has good adhesion to steel, glass, brass, zinc, aluminum, copper and bronze and is insoluble in toluene, gasoline, methanol and butanone.

EXAMPLE 7 Parts Tetrahydrophthalic anhydride 16.2 Tetramethylammonium chloride 1 Poly(2-ethylhexyl acrylate) 2 Ferrite yellow 7 Titanium dioxide 10 Di (N-hexyl) adipate 5 V This mixture is processed as described in Example 1 in order to form a powder coating composition. The powder coatingcomposition is applied to test panels as described in Example 1. The panels are baked at a temperature of 180 C. for 5 minutes. The adhesion quality of the powder coatingafter baking on the various test panels is good. The coating on each panel possesses good solvent and scratch resistance.

' EXAMPLE 8 A monomer mixture having the following composition is formed: glycidyl methacrylate 18% by weight, ethyl acrylate 20% by weight, methyl methacrylate 40% by weight, vinyl chloride 22% by weight. The monomer mixture is polymerized by using 2 weight percent of AIBN as the initiator.

One hundredparts of the ground copolymer obtained is added to the following materials:

. Parts Cyclohexane-l,2 dicarboxy anhydride 18.6 Trimethyl benzyl ammonium chloride 0.1 Poly (2-et hylhexyl acrylate) (M =11,000) 2 Carbon black 6 The above materials are mixed and processed as set forth in Example 1. The resulting powder coating composition is applied to test panels as specified in Example 1. The. coating'composition is baked at 170 C. for 15 minutes. All the painted panels exhibit good adhesion and solvent resistant properties.

EXAMPLE 9' A monomer mixture having the following composition is formed: glycidyl methacrylate 15% by weight, methyl methacrylate 30% by weight, isobutyl acrylate 25% by weight, alpha methyl styrene 15 by weight and methacrylonitrile 5% by weight. The monomer mixture is reacted in the same manner as described in'Example 1.

10 Three percent of the catalyst AIBN is employed. The resulting copolymer has a glass transition temperature of 46 C. and a molecular weight of 4500.

One hundred parts of the ground copolymer obtained is added to the following materials:

Parts Phthalic anhydride 15.6 Dodecyldimethyl (2 phenoxy ethyl) ammonium bromide 0.5

Polyethylene glycol perfluoro octanoate (fi :=3400) 2 Black iron oxide 10 The mixture so formed is processed as described in Example 1 to produce a powder coating composition. This powder coating composition is applied to test panels as it is described in Example 1. The coated panels are baked at C. for 15 minutes. The coating on each panel has good adhesion and solvent resistance.

EXAMPLE 10 A monomer mixture having the following composition is prepared: glycidyl methacrylate 5% by weight, methyl methacrylate 55% by weight, and butyl methacrylate 40% by weight. The monomer mixture is reacted as described in Example 1 with 6% by weight of the catalyst AIBN. The resulting copolymer has a glass transition temperature of 55 C. and a molecular weight of 3000.

One hundred parts by weight of the ground copolymer is mixed with the following materials:

Parts Cyclohexane-1,2 dicarboxy anhydride 5.3 Tetraethylammonium bromide 1 Ethyl benzyl(ethyleneoxy) phosphate 5 Poly(2-ethylhexyl acrylate) 0.4 Chromium green oxide 8 Titanium dioxide 10 The above mixture is processed as described in Example 1 to produce a powder coating composition. The powder coating composition is applied to a plurality of test panels. The panels are baked at a temperature of C. for 20 minutes. The adhesion to the test panels of the powder coating material is good.

EXAMPLE 11 A monomer mixture is formed having the following composition: glycidyl methacrylate 12% by weight, methyl methacrylate 50% by weight, 2-ethylhexyl acrylate 10% by weight and acrylonitrile 28% by weight. The monomer mixture is processed as set forth in Example 1 in order to form a copolymer. Four percent by weight of the catalyst AIBN is added. The copolymer formed has a glass transition temperature of 60 C. and a molecular weight of 4000.

One hundred parts by weight of the ground copolymer is mixed with the following materials:

Parts Octric anhydride 15.5 Stannous octoate 0.5 Tetraethylammonium bromide .05

Polyethylene glycol perfiuoro octanoate (M ==3500) 2 Quindo red 4 Metallic aluminum flakes 4 The mixture above described is processed as set forth in Example 1 to produce a powder coating composition. The powder coating composition is applied to test panels as described inExample'l. The panels are baked at 150 C. for 20 minutes. The adhesion to the panels of ,the powder coating is good, each of the coating possesses good solvent resistance and has a metallic appearance.

EXAMPLE 12 A monomer mixture having the following composition is prepared: glycidyl methacrylate 22% by weight, nhexyl methacrylate 20% by weight, butyl methacrylate 25% by weight and acrylonitrile 33% by weight. A copolymer is formed from this monomer mixture in accordance with the same procedure as is outlined in Example 1. In this case, 1.5% by weight of the catalyst AIBN is added. The copolymer produced has a glass transition temperature of 40 C. and a molecular weight of 7500.

The ground copolymer (100 parts by weight) is added to the following materials:

Parts Glutaric anhydride 10.5 Zinc octoate 0.8 Tetrabutylammonium iodide 1.0 Polybutyl acrylate 2.0 Iron oxide transparent orange 4 Metallic aluminum flakes 4 The above ingredients are mixed together and processed in accordance with the procedure of Example 1 to obtain a powder coating composition. The powder coating composition is sprayed on various test panels of steel, glass, brass, zinc, aluminum, copper and bronze. The coating obtained on each test panel after curing of the powder coating composition at a temperature of 140 C. for 20 minutes is of poor quality and has a tendency to chip and crack.

EXAMPLE 13 A monomer mixture having the following composition is prepared: glycidyl methacrylate 10% by weight, methyl methacrylate 45% by weight, butyl methacrylate 35% by weight and vinyl acetate 10% by weight. A copolymer is formed from this monomer mixture in accordance with the same procedure as is outlined in Example 1. In this case, 3% by weight of the catalyst AIBN is added.

The ground copolymer (100 parts by weight) is added to the following materials:

Parts Succinic anhydride 5.6 Tetrabutylammonium bromide 2 Poly (Z-ethylhexyl acrylate) 3.5 Carbon black 6 The above ingredients are mixed together and processed in accordance with the procedure of Example 1 to obtain a powder coating composition. The powder coating composition is sprayed on various test panels. The coating obtained on each test panel after curing of the powder coating composition at a temperature of 160 C. for 10 minutes is of good quality. Also, the coating obtained on each test panel is insoluble in toluene, gasoline, methanol and butanone.

EXAMPLE 14 Parts Phthalic anhydride 7.5 Tetrabutylammonium v bromide 2 Polylauryl acrylate 4 Titanium dioxide 30 Dioctyl sebacate 5 The above ingredients are mixed together and processed in accordance with the procedure of Example 1 to obtain a powder coating composition. The powder coating composition is sprayed on various test panels of steel, brass, glass, zinc, aluminum, copper and bronze. The coating obtained on each test panel after curing of the powder coating composition at a temperature of 130 C.

for 10 minutes is of good quality and is solvent and scratch resistant.

EXAMPLE 15 A monomer mixture having the following composition is prepared: glycidyl acrylate 10% by weight, methyl methacrylate 67% by weight, and n-butyl methacrylate 23% by weight. A copolymer is formed from this monomer mixture in accordance with the procedure as is outlined in Example 1. In this case, 4% by weight of the catalyst AIBN is added. The copolymer produced has a glass transition temperature of 73 C. and a molecular weight of 3000.

The ground copolymer parts by weight) is added to the following materials:

, Parts Tetrabromophthalic anhydride 32 Tetrabutylammonium chloride 0.7 Polybutyl acrylate 2 Titanium dioxide 30 The above ingredients are mixed together and processed in accordance with the procedure of Example 1 to obtain a powder coating composition. The powder coating composition is sprayed on various testpanels. The coating obtained on each test panel after curing of the powder coating composition at a temperature of 180 C. for 15 minutes is of good quality. Also, each of the test panels coatings is resistant to and insoluble in toluene, gasoline, methanol and butanone.

EXAMPLE 16 A monomer mixture having the following composition is prepared: glycidyl acrylate 15% by weight, methyl methacrylate 32% by weight, ethyl acrylate 15% by weight, isobutyl acrylate 8% by weight, and styrene 30% by weight. A copolymer is formed from this monomer mixture in accordance with the same procedure as is outlined in Example 1. In this case, 3% by weight of the catalyst AIBN is added.

The ground copolymer (100 parts by weight) is added to the following materials:

Parts Polyazelaic anhydride l8 Tetraethylammonium bromide 1 Polyisodecyl methacrylate (H =5000) 1.5 Titanium dioxide 30 The above ingredients are mixed together and processed in accordance with the procedure of Example 1 to obtain a powder coating composition. The powder coating composition is sprayed on various test panels of steel, glass, brass, zinc, aluminum, copper and bronze. The coatings obtained on each test panel after curing of the powder coating composition at a temperature of C. for 15 minutes is of good quality and has good adhesion characteristics. The powder coating composition on each panel is resistant to the solvents previously mentioned.

EXAMPLE 17 A monomer mixture having the following composition is prepared: glycidyl methacrylate 15% by weight,'methyl methacrylate 40% by weight, 2-ethylhexyl acrylate 15% by weight, alpha methyl styrene 20% by weight, and acrylonitrile 10% by weight. A copolymer is formed from this monomer mixture using 4% by weight of the catalyst AIBN. 1

The ground copolymer (100 parts by weight) is added to the following materials:

Parts p-Chlorophthalic anhydride 18 Tetraethylammonium bromide 0.4 Poly(2-ethylhexyl acrylate) 2 Titanium dioxide 30 The above ingredients are mixed together and processed in accordance with the procedure of Example 1 to obtain a powder coating composition. The powder coating composition is sprayed on various test panels of steel, glass, brass, zinc, aluminum, copper and bronze. The coating obtained on each test panel after curing of the powder coating composition at a temperature of 170 C. for 20 minutes is of good quality and resistant to the aforementioned solvents.

EXAMPLE 18 Parts Cyclopentane-l,Z-dicarboxylic anhydride 15 Tetraethylammonium bromide 0.5 Polylauryl acrylate 1.0 Titanium dioxide 30 The above ingredients are mixed together and processed in accordance with the procedure of Example 1 to obtain a powder coating composition. The powder coating composition is sprayed on various test panels of steel, glass, brass, zinc, aluminum, copper and bronze. The coating obtained on each test panel after curing of the powder coating composition at a temperature of 180 C. for 10 minutes is of good quality and is resistant to the aforementioned solvents.

EXAMPLE 19 A monomer mixture having the following composition is prepared: glycidyl methacrylate by weight, butyl methacrylate 15% by weight, ethyl acrylate 15 by weight, methyl methacrylate 30% by weight and styrene 25% by weight. A copolymer is formed from this monomer mixture in accordance with the same procedure as is outlined in Example 1. In this case, 4% by weight of the catalyst AIBN is added.

The ground copolymer (100 parts by weight) is added to the following materials:

' Parts Methyl succinic anhydride 11 Tetraethylammonium bromide 1.0 Polylauryl acrylate 0.5 Titanium dioxide 30 The above ingredients are mixed together and processed in accordance with the procedure of Example 1 to obtain a powder coating composition. The powder coating composition is sprayed on various test panels of steel, glass, brass, zinc, aluminum, copper and bronze. The coating obtained on each test panel after curing of the powder coating composition at a temperature of 130 C. for 30 minutes is of good quality and resistant to the aforementioned solvents.

EXAMPLE A monomer mixture having the following composition is prepared: glycidyl methacrylate 15% by weight, 2- ethylhexyl acrylate 10% by weight, methyl methacrylate 50% by weight, methacrylonitrile 15% by weight and alpha methyl styrene 10% by weight. A copolymer is formed from this monomer mixture in accordance with the same procedure as is outlined in Example 1. In this case, 4% by weight of the catalyst AIBN is added.

The ground copolymer (100 parts by weight) is added to the following materials:

Parts Methyl cyclohexane-l,Z-dicarboxylic anhydride 17 Tetraethylammonium bromide 0.5 Polylauryl acrylate 2.5

Titanium dioxide 30 The above ingredients are mixed together and processed in accordance with the procedure of Example 1 to obtain a powder coating composition. The powder coating composition is sprayed on various test panels of steel, glass, brass, zinc, aluminum, copper and bronze. The coating obtained on each test panel after curing of the powder coating composition at a temperature of C. for 30 minutes is of good quality. Also, the coatings are resistant to and insoluble in toluene, gasoline, methanol and butanone.

The use of glycidyl methacrylate copolymers and dicarboxylic acid cross linking agents in a liquid paint system is described in U.S. Pat. 2,857,354. However, the powder coating compositions of this invention are substantially different than the liquid paint compositions described in the examples of that patent. The difference can be best illustrated by attempting to prepare powder coating compositions by evaporating the solvents from the liquid paint systems described in the examples of the patent. Dry powders cannot be prepared from the com positions of Examples 4 and 5 of the patent. Powders prepared from the compositions of Examples 1, 2, 3 and 6, when deposited on a metal panel, do not fuse together to form a film when the panels are baked at to 200 C. for 20 minutes. The baked coatings on test panels are not smooth, but rather, are rough. Also, the baked coatings possess very low gloss, and have a lack of flexibility and adhesion. It, therefore, can be concluded that compositions which are generally suitable for liquid paint systems are not necessarily suitable for powder paints by simply evaporating the solvents therefrom.

The use of a dicarboxylic acid as a cross linking agent for glycidyl methacrylate terpolymers is mentioned in U.S. Pat. 3,058,947. In order to test these materials, compositions of Example VII of this patent are dried by evaporating solvents under vacuum. The materials are ground to pass through a 200 mesh screen. Samples of the ground powder are deposited on metal panels and baked at C. for 45 minutes. The coatings obtained show an abundance of craters, are inferior in gloss and smoothness, and lack the impact properties described in the Example VII. It is, therefore, concluded that there is a substantial difference in paint films produced on a panel when the coating is produced on one hand by a liquid system, and, on the other hand, by a powder system. Other improvements specific to the powders are needed in order to obtain paints of acceptable quality. The reason for the difference between the properties and appearance of powder coatings derived by solvent evaporation from a liquid coating and the liquid coatings itself are not clear. It is, however, certain that the powders obtained by drying liquid paint compositions are not useful for powder coating compositions.

There has been disclosed herein powder coating compositions which may be employed in the painting of articles. The powder coating compositions have an excellent resistance to solvents, produce very hard coatings, have good stability at room temperature and have a fast cure time at elevated temperatures.

Many modifications of this invention will be apparent to those skilled in the art in view of this specification. It is intended that all such modifications which fall within the scope of this invention be included within the appended claims.

We claim:

f1. A powder coating composition comprising a mixture 0 (A) a copolymer of glycidyl methacrylate or glycidyl acrylate and an ethylenically unsaturated compound in such proportions as to obtain a copolymer with a glass transition temperature in the range of 40 C. to 90 C. and a molecular weight (M,,) in the range of 2500 to 8500, said glycidyl methacrylate or glycidyl acrylate being present in the copolymer from at least about 5% by weight to no more than about 20% by weight; 1

(B) an anhydride of a dicarboxylic acid present in the amount of 0.4 to 1.0 anhydride groups for each epoxy group in the copolymer; and

(C) a flow control agent forming at least 0.05% to 4.0% by weight of the mixture, said flow control agent being a polymer having a molecular weight (fi of at least 1000, and having a glass transition temperature at least 50 C. below the glass transition temperature of the copolymer, said flow control agent further being a polymer or copolymer selected from the group consisting of acrylate esters, methacrylate esters and polyethylene or polypropylene glycol esters of fluorinated fatty acids.

2. The powder coating composition of claim 1 further comprising: a small weight percent of a catalyst which produces a gel time for the powder coating composition greater than 1 minute at the baking temperature of the composition.

3. The powder coating composition of claim 2 further comprising: a pigment forming from about 6% by weight to about 35% by weight of the total mixture.

4. The powder coating composition of claim 3 further comprising: a small weight percentage of an antistatic agent, and a plasticizer which forms from about 2% by weight to about 10% by weight of the total mixture.

5. A powder coating composition which exclusive of catalyst, pigment, plasticizer and antistatic agent, comprises a mixture of:

(A) a copolymer of glycidyl ester of a monoethylenically unsaturated acid and (1) an ethylenically unsaturated monomer selected from the group consisting of methyl methacrylate, butyl methacrylate, butyl acrylate, ethyl acrylate, and 2-ethylhexy1 acrylate, styrene; and (2) a modifying monomer selected from the group consisting of alpha methyl styrene, acrylonitrile and methacrylonitrile, in such proportions as to obtain a copolymer having a glass transition temperature in the range of 40 C. to 90 C. and a molecular weight (31,) in the range of 2500 to 8500, said glycidyl ester being present in the copolymer from at least about 5% by weight to no more than 20% by weight, said modifying monomer being present in the copolymer from by weight to no more than about 35% by weight;

(B) an anhydride of a 1,2-dicarboxylic acid present in the amount of 0.4 to 1.0 anhydride groups for each epoxy group in the copolymer; and

(C) a flow control agent forming at least 0.05% to 4.0% by Weight of the mixture, said flow control agent being a polymer having a molecular weight (fi of at least 1000 and having a glass transition temperature at least 50 C. below the glass transition temperature of the copolymer, said flow control agent further being a polymer or copolymer selected from the group consisting of acrylate esters, methacrylate esters and polyethylene or polypropylene glycol esters of fluorinated fatty acids.

6. A powder coating composition, which exclusive of pigment, plasticizer and antistatic agent, comprises a mixture of:

(A) a copolymer of glycidyl methacrylate or glycidyl acrylate and (1) an ethylenically unsaturated monomer selected from the group consisting of methyl methacrylate, butyl methacrylate, butyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate and styrene; and (2) a modifying monomer selected from the group consisting of alpha methyl styrene, acrylonitrile and methacrylonitrile in such proportions as to obtain a copolymer having a glass transition temperature in the range of 40 C. to 90 C. and a molecular weight (M in the range of 2500 to 8500, said glycidyl methacrylate being present in the copolymer from at least by weight to no more than 20% by weight, said modifying monomer being present in said copolymer from 0% by weight to no more than about 35% by weight;

(B) an anhydride selected from the group consisting of phthalic anhydride, p-chlorophthalic anhydride, tetra bromophthalic anhydride, cyclohexane-l,2-dicarboxy anhydride, 4 methyl hexane-1,2 dicarboxy anhydride, cyclopentane-1,2 dicarboxy anhydride, succinic anhydride, dodecyl succinic anhydride, maleic anhydride, polyazelaic anhydride, and methyl succinic anhydride, said anhydride being present in the amount of 0.4 to 1.0 anhydride groups for each epoxy group in the copolymer;

(C) a flow control agent forming at least about 0.05 to 4.0% by weight of the mixture, said flow control agent being a polymer having a molecular weight (M of at least 1000, and having a glass transition temperature at least 50 C. below the glass transition temperature of the copolymer, said flow control agent further being a polymer or copolymer selected from the group consisting of acrylate esters, methacrylate esters and polyethylene or polypropylene glycol esters of fluorinated fatty acids; and

(D) a small weight percentage of a catalyst suflicient to produce a gel time of at least 1 minute but no greater than 40 minutes for the powder coating composition at its baking temperature in the range of 130 C. to 200 C.

7. The powder coating composition of claim 6 wherein: said copolymer has a glass transition temperature in the range of 50 C. to C., and a molecular weight (M in the range of 3,000 to 6,500.

8. The powder coating composition of claim 6 wherein: said copolymer has a glass transition temperature in the range of 60 C. to 70 C., and a molecular weight (M in the range of 3,000 to 4,000.

9'. A powder coating composition, which exclusive of pigment, plasticizer and antistatic agent, comprises a mixture of:

(A) a copolymer of glycidyl methacrylate, methyl methacrylate, styrene and butyl methacrylate, said glycidyl methacrylate being present in the copolymer from about 5% by weight to no more than about 20% by weight, said methyl methacrylate or styrene being present in the copolymer from about 15% by weight to about 55% by weight, with the balance of the copolymer being said butyl methacrylate, the copolymer having a glass transition temperature in the range of 40 C. to C. and a molecular weight (fi in the range of 2500 to 8500;

(B) an anhydride selected from the group consisting of phthalic anhydride, p-chlorophthalic anhydride, tetra bromophthalic anhydride, cyclohexane-l,2 dicarboxy anhydride, 4 methyl hexane-1,2 dicarboxy anhydride, cyclopentane-1,2 dicarboxy anhydride, succinic anhydride, dodecyl succinic anhydride, maleic anhydride, polyazelaic anhydride, and methyl succinic anhydride, said anhydride being present in the amount of 0.4 to 1.0 anhydride groups for each epoxy group in the copolymer;

(C) a flow control agent forming at least 0.05% to 4.0% by weight of the mixture, said flow control agent being a polymer having a molecular weight (fi of at least 1000, and having a glass transition temperature at least 50 C. below the glass transition temperature of the copolymer, said flow control agent further 'being a polymer or copolymer selected from the group consisting of acrylate esters, methacrylate esters and polyethylene or polypropylene glycol esters of fluorinated fatty acids; and

(D) a small weight percentage of a catalyst sufiicient to cause the coating composition mixture to have a gel time of at least 1 minute but no greater than 40 minutes.

(References on following page) 17 References Cited UNITED STATES PATENTS 12/1965 Jubilee 260-836 PAUL LIEBERMAN, Primary Examiner US. Cl. X.R.

BE; 260-2 EN, 17.4 R, 30.6 R, 31.8 E, C, 78.4 Ep, 830 R, 830 TW, Dig. 16,

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3888943 *Dec 19, 1973Jun 10, 1975Ford Motor CoPowder coating compositions comprising a blend of coreactive polymers - i
US3914333 *Dec 19, 1973Oct 21, 1975Ford Motor CoPowder coating compositions comprising a blend of coreactive polymers - II
US3919345 *Mar 4, 1974Nov 11, 1975Ford Motor CoPowdered coating composition containing polyanhydride, epoxy and anhydride functional copolymer and flow control agent
US3919346 *May 30, 1974Nov 11, 1975Hoechst AgHeat-curable pulverulent coating agent consisting of a mixture of copolymers containing anhydrides and curing accelerators
US3919347 *May 30, 1974Nov 11, 1975Hoechst AgHeat-curable pulverulent coating agent consisting of a mixture of copolymers containing glycidyl groups, dicarboxylic acid anhydrides and curing accelerators
US3923730 *Feb 19, 1974Dec 2, 1975Ciba Geigy CorpWeather-resistant pigmented metallic acrylic resin lacquer
US3925507 *May 30, 1974Dec 9, 1975Hoechst AgHeat-curable pulverulent coating agent consisting of a mixture of copolymers containing glycidyl groups, dicarboxylic acid anhydrides and curing accelerators
US3932320 *Sep 16, 1974Jan 13, 1976Ford Motor CompanyPowder paints containing particulate metal II
US3932347 *Sep 16, 1974Jan 13, 1976Ford Motor CompanyPowder paints containing particulate metal I
US3932348 *Sep 16, 1974Jan 13, 1976Ford Motor CompanyPowder paints having aluminum flakes encapsulated in thermosettable material containing tetraalkylammonium halides
US3932349 *Sep 16, 1974Jan 13, 1976Ford Motor CompanyThermosettable powder paints containing encapsulated aluminum flakes II
US3932367 *Feb 24, 1975Jan 13, 1976Ford Motor CompanyPowder paint with epoxy and hydroxy copolymer and mixture of dicarboxylic acids and polyanhydrides
US3939114 *Sep 16, 1974Feb 17, 1976Ford Motor CompanyPowder paints containing aluminum and nickel I
US3939127 *Feb 24, 1975Feb 17, 1976Ford Motor CompanyPowder paint with epoxy and amide copolymer and mixture of dicarboxylic acids and polyanhydrides
US3940453 *Dec 5, 1973Feb 24, 1976Ford Motor CompanyMethod of preparing homogeneous thermosetting powder paint composition
US3941731 *Sep 16, 1974Mar 2, 1976Ford Motor CompanyPowder paints containing aluminum and nickel II
US3959405 *Dec 19, 1973May 25, 1976Ford Motor CompanyPowder coating compositions comprising a blend of coreactive polymers - III
US3975456 *Feb 24, 1975Aug 17, 1976Ford Motor CompanyPowder paint with epoxy and amide copolymer and anhydride
US3976715 *Aug 21, 1975Aug 24, 1976Ford Motor CompanyPowder coating compositions comprising a blend of coreactive polymers - IIA
US3976716 *Aug 21, 1975Aug 24, 1976Ford Motor CompanyPowder coating compositions comprising a blend of coreactive polymers - IIB
US3976717 *Aug 21, 1975Aug 24, 1976Ford Motor CompanyPowder coating compositions comprising a blend of coreactive polymers - IIC
US3976718 *Aug 21, 1975Aug 24, 1976Ford Motor CompanyPowder coating compositions comprising a blend of coreactive polymers - II E
US3976719 *Aug 21, 1975Aug 24, 1976Ford Motor CompanyPowder coating compositions comprising a blend of coreactive polymers - II D
US3989767 *Feb 28, 1975Nov 2, 1976Dainippon Ink & Chemicals, IncorporatedPowder coating resin compositions of glycidyl copolymers having an internal flowing agent
US3991132 *Feb 24, 1975Nov 9, 1976Ford Motor CompanyPowder paint with epoxy and amide copolymer with anhydrides and hydroxy acids
US3998905 *Feb 18, 1976Dec 21, 1976Ford Motor CompanyPower coating blend of epoxy-functional copolymer and a carboxy and hydroxy-functional copolymer
US4006200 *Jan 7, 1976Feb 1, 1977Ford Motor CompanyPowder paint blend comprising epoxy-functional copolymer and carboxy and amide-functional copolymer
US4027066 *Dec 1, 1975May 31, 1977E. I. Du Pont De Nemours And CompanyThermosetting powder coating composition of an acrylic polymer, dodecanedioic acid, cellulose acetate butyrate and a cross-linking agent
US4039627 *Feb 19, 1975Aug 2, 1977Hoechst AktiengesellschaftHeat-curable pulverulent coating agent of a mixture of a copolymer containing glycidyl groups and an adduct of aliphatic dicarboxylic acid and 2,4,6-tris-(N',N",N'"-dimethylaminomethyl)-phenol
US4042560 *Nov 5, 1975Aug 16, 1977Ford Motor CompanyMethod of preparing homogeneous thermosetting powder paint compositions
US4044070 *Feb 18, 1976Aug 23, 1977Ford Motor CompanyPowder paint blends of an epoxy and hydroxy-functional copolymer and a carboxy-terminated copolymer
US4048136 *Oct 10, 1975Sep 13, 1977Mitsui Toatsu Kagaku Kabushiki Kaisha (Mitsui Toatsu Chem., Inc.)Metallic tone powder coating composition
US4065518 *Feb 18, 1976Dec 27, 1977Ford Motor CompanyPowder paint blend of epoxy and amide-functional copolymer and anhydride-functional copolymer
US4066613 *Nov 5, 1975Jan 3, 1978Ford Motor CompanyMethod of preparing homogeneous thermosetting powder paint compositions
US4069275 *Feb 18, 1976Jan 17, 1978Ford Motor CompanyPower paint blend of an epoxy and hydroxy-functional copolymer and an anhydride-functional copolymer
US4089910 *Jun 20, 1975May 16, 1978Kansai Paint Co., Ltd.Thermosetting powder coating compositions
US4091048 *Dec 18, 1973May 23, 1978Ford Motor CompanyPowder coating compositions containing glycidyl ester copolymers and organic carboxylic acid anhydride crosslinking agent
US4092373 *Feb 24, 1975May 30, 1978Ford Motor CompanyPowder paint with epoxy copolymer with anhydride and hydroxy acids
US4165418 *Feb 8, 1977Aug 21, 1979Imperial Chemical Industries LimitedPaint manufacture
US4246368 *May 5, 1978Jan 20, 1981Kansai Paint Company, LimitedPowder coating compositions for forming multi layer coatings
US4374954 *Feb 24, 1975Feb 22, 1983Ford Motor CompanyPowder paint with epoxy and hydroxy copolymer and anhydride
US4650834 *Jul 2, 1985Mar 17, 1987Nippon Zeon Co., Ltd.Vulcanizable epoxy group-containing elastomer composition
US5492955 *Oct 31, 1994Feb 20, 1996Bayer AktiengesellschaftPowder coating compositions and their use for coating heat resistant substrates
US5521250 *Jul 17, 1995May 28, 1996Bayer AktiengesellschaftPowder coating compositions and their use for the production of coatings
US5601878 *Jun 23, 1993Feb 11, 1997Basf Lacke + Farben. AgProcess for the production of a two-coat finish, and powder coatings suitable for this process
US5703177 *Dec 15, 1995Dec 30, 1997Ems-Inventa AgPartially crystalline block copolyester-polyamides
US5844048 *Mar 26, 1996Dec 1, 1998Ems-Inventa AgThermosetting powder-type coating compositions
US5872192 *Aug 11, 1997Feb 16, 1999Ems--Inventa AgThermosetting powder-type coating compositions
US5905119 *Aug 11, 1997May 18, 1999Ems-Inventa AgThermosetting powder-type coating compositions
US5965213 *Apr 4, 1996Oct 12, 1999Basf Coatings AgAqueous dispersions of a transparent powder coating
US6093774 *Sep 26, 1997Jul 25, 2000Reichhold Chemicals, Inc.Low gloss powder coating composition
US6100342 *Jul 3, 1997Aug 8, 2000Ems-Inventa AgEpoxidizing carboxy-functional acrylate copolymers with epihaloalkane
US6159556 *May 9, 1996Dec 12, 2000Basf Coatings AgProcess for preparing an aqueous powder coating dispersion and using the same
US6242052Nov 25, 1998Jun 5, 2001Basf Coatings AgTriboelectric chargeable coating powder
US6296903Jul 1, 1998Oct 2, 2001Basf Coatings AgAqueous coating powder dispersion, method for the production and use of said dispersion
US6310139Aug 31, 1999Oct 30, 2001Reichhold, Inc.Burnish resistant powder coating compositions
US6344501Mar 31, 1999Feb 5, 2002Basf Coatings AgNon-ionically stabilized transparent powder-coating dispersion
US6360974May 19, 1999Mar 26, 2002Basf CorporationPowder slurry coating composition
US6426147 *Jul 25, 1998Jul 30, 2002Basf Coatings AgSubstrate having a multilayer coat and method for its production
US6428854Aug 31, 2000Aug 6, 2002Bayer AktiengesellschaftOne-component stoving composition and use thereof
US6472071Jul 16, 2001Oct 29, 2002Reichhold, Inc.Burnish resistant powder coating composition
US6485793Jul 24, 1999Nov 26, 2002Basf Coatings AgAqueous dispersion of transparent powder coating material
US6509096Apr 12, 2000Jan 21, 2003Basf Coatings AcLow-yellowing aqueous clear powder coating dispersions, method of making the dispersions, and process for producing clearcoat finishes with the dispersions
US6512026Aug 11, 1999Jan 28, 2003Basf Coatings AgPowder clear varnish and aqueous powder clear varnish slurry
US6562463Oct 9, 1998May 13, 2003Bayer AktiengesellschaftOne-component stoving composition and use thereof
US6624229Oct 28, 1999Sep 23, 2003Basf Coatings AgPowder paints and the use thereof for producing low-noise powder paint coatings
US6624239Sep 27, 1999Sep 23, 2003Basf Coatings AgCoating powder slurry with microencapsulated particles, and production and use of the same
US6747091Jan 28, 2000Jun 8, 2004Basf Coatings AgPowder-slurry that can be hardened by actinic radiation or optionally by thermal means, method for producing said slurry and use of the same
US6770329Oct 17, 2002Aug 3, 2004Basf Coatings AgLow-yellowing aqueous clear powder coating dispersions, method of making the dispersions, and process for producing clearcoat finishes with the dispersions
US6953822Mar 1, 2001Oct 11, 2005Basf Coatings AgAqueous (meth)acrylate copolymer dispersions, method for producing the same, and the use thereof
US7122595Feb 2, 2000Oct 17, 2006Basf Coatings AgPowder-slurry that can be hardened by actinic radiation or by thermal means, method for producing said slurry and use of the same
US7148295Jun 21, 2004Dec 12, 2006Bayer Materialscience AgCarboxy-functional crosslinkers for epoxy-functional powder-lacquer binding agents
US7329717Jun 21, 2004Feb 12, 2008Bayer Materialscience AgPolyisocyanate-modified polycarboxylic acids
US7935746May 24, 2002May 3, 2011Basf Coatings AgPowder coating suspension, process for preparing the same and process for preparing powder coating material
US8586653Sep 13, 2012Nov 19, 2013Basf SeCuring of epoxy resin compositions comprising cyclic carbonates using mixtures of amino hardeners
US8877837Sep 12, 2012Nov 4, 2014Basf SeCuring of epoxy resin compositions comprising cyclic carbonates using mixtures of amino hardeners and catalysts
USRE29028 *Jan 21, 1976Nov 2, 1976Hoechst AktiengesellschaftHeat-curable pulverulent coating agent consisting of a mixture of copolymers containing glycidyl groups, dicarboxylic acid anhydrides and curing anhydrides
USRE31077 *Apr 7, 1976Nov 9, 1982Ford Motor CompanyPowder paint with epoxy and hydroxy copolymer and mixture of dicarboxylic acids and polyanhydrides
DE19744561A1 *Oct 9, 1997Apr 1, 1999Basf Coatings AgPowder-form paint for automobile body
DE102008016050A1Mar 28, 2008Jun 25, 2009Voest-Alpine Stahl GmbhPrimer useful for coating metal substrates comprises binder, additives, pigments, fillers and corrosion inhibitors, crosslinker and solvent
EP0776949A2Nov 26, 1996Jun 4, 1997Ems-Inventa AgHeat-curable powder coating
EP1897894A1May 24, 2002Mar 12, 2008BASF Coatings AGPowder lacquer suspensions (powder slurries) and powder lacquers, method for their manufacture and their application
WO1992001748A1 *Jul 10, 1991Feb 6, 1992Estron Chemical IncThermosetting polyester powder coating compositions containing glycidyl methacrylate copolymers as the crosslinking agent
WO2005047401A2Nov 8, 2004May 26, 2005Basf Coatings AgIntrinsically viscous, aqueous dispersions, method for the production thereof, and use thereof
WO2011157671A1Jun 14, 2011Dec 22, 2011Basf SeUse of cyclic carbonates in epoxy resin compositions
WO2013041398A1Sep 10, 2012Mar 28, 2013Basf SeCuring of epoxy resin compositions comprising cyclic carbonates using mixtures of amino hardeners
WO2013041425A1Sep 12, 2012Mar 28, 2013Basf SeCuring of epoxy resin compositions comprising cyclic carbonates using mixtures of amino hardeners and catalysts
WO2013050311A1Oct 1, 2012Apr 11, 2013Basf SeEpoxy resin compositions, containing a 2-oxo-[1,3]dioxolane derivative
WO2015049229A1Sep 30, 2014Apr 9, 2015Basf SeMulti-component epoxy resin composition
Legal Events
DateCodeEventDescription
Nov 21, 1986ASAssignment
Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, WILMINGTON,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FORD MOTOR COMPANY;REEL/FRAME:004660/0502
Effective date: 19861118
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FORD MOTOR COMPANY;REEL/FRAME:4660/502
Owner name: E. I. DU PONT DE NEMOURS AND COMPANY,DELAWARE
Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FORD MOTOR COMPANY;REEL/FRAME:004660/0502