Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3781739 A
Publication typeGrant
Publication dateDec 25, 1973
Filing dateMar 28, 1973
Priority dateMar 28, 1973
Publication numberUS 3781739 A, US 3781739A, US-A-3781739, US3781739 A, US3781739A
InventorsL Meyer
Original AssigneeWestinghouse Electric Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Interleaved winding for electrical inductive apparatus
US 3781739 A
Abstract
A transformer winding with coil disc sections having an odd number of conductor-turns per section. During construction, one section is wound with a pair of conductors to provide one less conductor-turn that is desired in that section. Another section is similarly wound with the same pair of conductors to provide one less conductor-turn than is desired. One of the conductors is then crossed-over to the previously wound section so that one conductor may be wound around each section for one additional turn. A splice joint in the previously wound section connects the conductor wound thereon to the proper conductor-turn.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 1111 3,781,739

Meyer Dee 25, 1973 INTERLEAVED WINDING FOR Primary ExaminerThomas J. Kozma ELECTRICAL INDUCTIVE APPARATUS Attorney-C. L. McHale et a1.

[75] Inventor: Lloyd E. Meyer, Greenville, Pa. [73] Assignee: Westinghouse Electric Corporation, [57] ABSTRACT Pittsburgh, A transformer winding with coil disc sections having [22] Filed: Man 28 1973 an odd number of conductor-turns per section. During construction, one section is wound with a pair of con- PP 345,813 ductors to provide one less conductor-turn that is desired in that section. Another section is similarly 52 vs. C! 336/70 29/605 336/187 Wound with the Same Palir Of chdhctts to Provide 51 Int. Cl. 1161: 15/14 one less that is desired one of the 58 Field of Search 336/69 70 186 cohductt is t0 the Ptevtttusty 3 wound section so that one conductor may be wound around each section for one additional turn. A splice [56] References Cited joint in the previously wound section connects the conductor wound thereon to the proper conductor- FOREIGN PATENTS OR APPLICATIONS tum 1,132,803 0/0000 Great Britain 336/187 I 4 Claims, 12 Drawing Figures 5 A 60 T r-lBB A487 A3 B6 A2 B5 A1 B4 A0 62 76 \70 A4 B0 A5 Bl A6 B2 A7 B3 A8 B4 64 /78 A72 B7 A3 B6 A2 B5 Al B4 A0 B3 66 A3 B0 A4 B1 A5 B2 A6 B3 A7 L INTERLEAVED WINDING FOR ELECTRICAL INDUCTIVE APPARATUS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates, in general, to electrical inductive apparatus and, more specifically, to interleaved windings for power transformers.

2. Description of the Prior Art Interleaving the conductors of windings for power transformers is very useful for improving the surge voltage characeristics of the winding. One type of interleaved winding is the two-conductor mutually twin interleaved winding. In this type of winding, two conductors provide conduction paths which are interleaved through two coil disc sections. The interleaving pattern is repeated in each pair of disc sections.

The conductors of the twin interleaved winding are wound together since they parallel each other throughout the winding. Since the conductors are wound together, and since each revolution of the winding tube during the winding process increases the number of conductor-turns in the disc section by two, such windings are limited to coil disc sections having an even number of conductor-turns.

It is desirable, for several reasons, to be able to wind interleaved coil disc sections having an odd number of conductor-turns therein. The number of conductorturns between tap positions is usually determined by the transformer design. If an even number of conductor-turns is necessary for proper tapping between the disc sections, one section must have more turns than the other section according to the prior art. For example, if the total number of conductor-turns for two sections must be 30, one section must have 16 conductorturns and the other section must have 14 conductorturns.

Variations in the radial build of disc sections presents winding problems, reduces the mechanical strength of the winding structure, affects the impedance of the transformer, and provides other detrimental effects. Therefore, it is desirable, and it is an object of this invention, to provide'a conveniently-wound twin interleaved winding which has an odd number of conductorturns per coil disc section.

SUMMARY OF THE INVENTION There is disclosed herein a new and useful interleaved transformer winding with coil disc sections having an odd number of conductor-turns and amethod of constructing same. The winding includes two conductors which are spirally wound through each'coil disc section of the winding. The two conductors are first wound simultaneously to form one disc section having an even number of conductor turns. The two conductors are also wound simultaneously to form another disc section having an even number of conductor-turns. One of the conductors is crossed-over to the previously wound section and both sections are wound with one more turn of the conductor thereon. The conductor around the previously wound section is cut and joined to one of the conductor-turns of that section. With the use of this invention, coil disc sections may be provided which have an odd number of conductor-turns per section. The disc sections are provided without complicated winding procedures or an excessive number of conductor splices.

BRIEF DESCRIPTION OF THE DRAWING Further advantages and uses of this invention will become more apparent when considered in view of the following detailed description and drawing, in which:

FIG. 1 is a partial view of a transformer core having a coil disc section disposed therearound;

FIG. 2 is a schematic diagram of an interleaved winding constructed according to the prior art with each section having an even number of conductor-turns;

FIG. 3 is a schematic diagram of an interleaved winding constructed according to one embodiment of this invention;

FIG. 4 is a schematic diagram of an interleaved winding constructed according to another embodiment of this invention;

FIGS. 5 through 11 are views illustrating steps performed in winding a pair of coil disc sections according to this invention; and

FIG. 12 is a partial view of the outer turns of a pair of coil disc sections constructed according to this invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Throughout the following description, similar reference characters refer to similar elements or members in all the figures of the drawing.

Referring now to the drawing, and to FIG. I in particular, there is shown a section of a transformer core 10 with a winding structure 12 disposed thereon. The winding structure 12 includes the low-voltage winding 14 which is supported from the core 10 by the spacers 16, a winding tube 18, and a high-voltage winding 20 which is wound around the winding tube 18.

FIG. 1 illustrates one coil disc section 22 of the winding 20. The disc section 22 is formed by strap conductors 24 and 26 which are disposed radially adjacent to each other throughout the disc section 22. The finish ends 28 and 30 of the conductors 24 and 26 are located on the outside of the disc section 22. The start ends 32 and 34 of the conductors 24 and 26 are located on the inside of the disc section 22. This invention relates to the arrangement of the conductors in disc sections such as section 22, and to the method of winding such sections.

FIG. 2 illustrates schematically an interleaved winding structure 36 having at least four coil disc sections 38, 40, 42 and 44. Start-start connections 46, 48 and 50 and finish-finish connections 52, 54 and 56 interconnect the various coil disc sections. Line leads 58 may be appropriately connected to other disc sections or to the line terminals of the winding 36.

The winding 36 is formed from conductors A and B which are wound together as a conductor pair. Each conductor-turn in FIG. 2 is denoted by a letter and number. The letter represents the conductor which forms the conductor-turn, and the number represents the number of electrical turns, and hence the relative voltage, between the conductor-turns of both conductors.

By conventional representation, FIG. 2 illustrates the start and finish ends of the conductors. Thus, in each coil disc section, there is illustrated two more conductor-turns than the number of actual electrical turns of each conductor in the section. In each coil disc section of FIG. 2, there are electrically four turns each comprising two conductors. This type of representation will also be used in describing and claiming the embodiments of this invention.

According to the prior art, disc sections interleaved in the manner illustrated in FIG. 2 have contained an even number of conductor-turns. FIG. 2 illustrates ten conductor-turns per section. Since the conductors A and B are always wound together according to the prior art, variations in the radial build of a section could only be accomplished in intervals of two conductors. Without excessive splices or joints in the conductors A and B, an odd number of conductor-turns could not be wound into the coil disc sections according to the prior art.

FIG. 3 represents schematically an interleaved winding 60 having disc sections with both an even and an odd number of conductor-turns. Coil disc sections 62 and 64 contain an even number of conductor-turns and coil disc sections 66 and 68 contain an odd number of conductor-turns. The finish-finish connections 70, 72 and 74 are made by a continuous conductor and without any splices or joints between the disc sections. The finish-finish connections 70, 72 and 74, together with the start-start connections 76, 78 and 80, provide the same type of interleaving of the conductors as exists in the winding 36 shown in FIG. 2.

FIG. 4 represents schematically an interleaved winding82 in which the coil disc sections 84, 86, 88 and 90 each contain an odd number of conductor-turns. Development, or progression, of the conduction paths provided by conductors A and B can be determined by following the letter-number designators for each conductor-turn. The start-start connections 92, 94 and 96 the finish-finish connections 98, 100 and 102 provide the same type of interleaving as shown in FIG. 2, but with an odd number of conductor-turns per coil disc section.

Other winding arrangements using the teachings of this invention are possible and' are within the contemplation of this invention. In addition, the conduction paths furnished by the conductors A and B are normally connected together at the ends of the winding to effectively place the paths in parallel.

FIGS. through'll illustrate steps performed in the construction of a pair of coil disc sections having an odd numer of conductor-turns therein. For convenience in indicating the position of the conductors in the disc sections, the sections wound in the illustrations of FIGS. 5 through 11 generally represent the coil disc sections 84 and 86 shown in FIG. 4.

As shown in FIG. 5, the conductors A and B are pulled from the spools 104 and 106, respectively. Conductor B is positioned on the winding tube 18 beneath conductor A. Suitable clamping means, which are not illustrated, may be used to secure the conductors to the winding tube 18. When winding other than the first coil disc section onto the winding tube 18, clamping means may not be required since at least one of the conductors will be attached to the previously wound section. Normally, a portion of at least one conductor from a previously wound disc section is positioned under the conductors A and B for later connection to a coil disc section which is to be formed by the conductors. However, this conductor connection is not illustrated for 6 clarity of the figures.

The winding tube 18 is rotated in the direction indicated by the arrow 105 a sufficient number of times to provide one less radially disposed conductor-turn than is desired in the finished section 84. The winding tube 18 would be rotated three times for the coil disc section 84. FIG. 6 illustrates the partially wound disc section 84. Conductor B is cut and the connection 94 is properly shaped for splicing to another conductor-turn developed later in the construction process.

The pre-wound" coil disc section 84 is then broken down and hand-wound" into section 84" as shown in FIG. 7. This procedure inverts the coil, or places the last wound conductor-turns near the inside of the section 84". I

Conductor A is then moved to the position where the next coil disc section is to be wound as shown in FIG. 8. This also forms the start-start connection 92. Conductor B is positioned on top of conductor A and is normally connected to the conductor connection which was not illustrated in the interest of clarity. The winding tube 18 is then rotated to wind the conductors into coil disc section 86' as shown in FIG. 9. As with the winding of section 84, the winding tube 18 would be rotated a sufficient number of times to provide one conductor turn less than the number of conductorturns desired in the finished section 86. In this specific embodiment, of the invention, the winding tube 18 would be rotated three times in the direction indicated by the arrow 105. I I

The conductor B is then crossed-over onto section 84" as shown in FIG. 10. This procedure establishes the finish-finish connection 98. The winding tube 18 is then rotated one more turn in the direction 105 to wind the conductor B one conductor-turn around the coil disc section 84" and the conductor A one conductorturn around the coildisc section 86'. The result is illustrated in FIG. 11. Conductor Bis cut and the end thereof is spliced or joined to the next conductor-turn of conductor B at position 110. This completes the conduction path through the coil disc sections 84 and 86 of conductor B. The spacing of the sections 84 and 86 is exaggerated in FIG. 11 to show the interconnections. Normally, section 86 is wound closer to section 84 and is separated therefrom by pressboard radial spacers.

FIG. 12 is a partial view of the outer conductor-turns of the coil disc sections 84 and 86. The conductor-turns are labeled with the corresponding characters shown in FIG. 4. The conductor-turns B3 and B4 are joined together at position by a suitable welding or brazing operation. The conductor-turns B3 and B4 may be overlapped for a short distance to facilitate the joining operation.

Transformer windings constructed according to this invention, preferred embodiments of which are dis closed herein, conveniently contain an odd number of conductor-turns in their coil disc sections. Since numerous changes may be made in the above-described apparatus and method, and since different embodiments of the'invention may be made without departing from the spirit thereof, it is intended that all of the matter contained in the foregoing description or shown in the accompanying drawing, shall be interpreted as illustrative rather than limiting.

I claim as my invention:

1. A winding for electrical inductive apparatus, comprising:

flrst and second electrical conductors;

at least first and second coil disc sections each disposed at different axial positions in the winding,

each of said coil disc sections having a plurality of radially disposed turns of said conductors forming conductor-turns with each of said coil disc sections having an odd number of total conductor-turns,

start and finish conductor-turns in said first coil disc section formed by the same conductor in that section;

start and finish conductor-turns in said second coil disc section formed by the same conductor in that section;

start-start and finish-finish connections which interconnect said coil disc sections; and

a conductor-turn connection joint which connects together the finish conductor-turn of one of said coil disc sections with the next conductor-turn of the same conductor in the same coil disc section.

2. The winding of claim 1 wherein the first and second electrical conductors are interleaved to form first and second conduction paths, respectively;

said first conduction path progressing in a first radial direction through the first coil disc section, then in a second radial direction through the second coil disc section;

said second conduction path progressing in the second radial direction through the second coil disc section, then in the first radial direction through the first coil disc section;

said first radial direction being opposite to said second radial direction.

3. A method of providing an odd number of conductor-turns in first and second interleaved coil disc sections of a transformer winding, comprising the steps of:

winding each first and secondcoil disc section with an even number of conductor-turns from first and 10 comprising the steps of:

positioning a first conductor on a winding tube;

positioning a second conductor on top of the first conductor;

rotating the winding tube an even number of times to form a first coil disc section;

separating the second conductor from the first coil disc section;

breaking down and hand-winding the first coil disc section;

placing the second conductor over the first conductor and rotating the winding tube an even number of times to form a second coil disc section;

moving the second conductor to the outside of the first coil disc section;

rotating the winding tube substantially one additional turn to wind one conductor on each coil disc section;

separating the second conductor from the last conductor-turn of the first coil disc section; and

joining together the last conductor-turn of the first coil disc section and the next conductor-turn of the second conductor in the first coil disc section.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
GB1132803A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3899763 *May 30, 1974Aug 12, 1975Westinghouse Electric CorpInterleaved winding for electrical inductive apparatus
US3958201 *Nov 29, 1974May 18, 1976General Electric CompanyInterlaced disc coil winding having offset cross-connections
US4270111 *Feb 25, 1980May 26, 1981Westinghouse Electric Corp.Electrical inductive apparatus
US4492944 *Oct 7, 1983Jan 8, 1985Mitsubishi Denki Kabushiki KaishaTransformer winding
US4554523 *Oct 5, 1984Nov 19, 1985Hitachi, Ltd.Winding for static induction apparatus
US4571570 *Oct 5, 1984Feb 18, 1986Hitachi, Ltd.Winding for static induction apparatus
US6261437Nov 4, 1997Jul 17, 2001Asea Brown Boveri AbDevice comprising holder configured to support and hold metallic conductor wire at contact points in predetermined position during anodizing, including cam guides each having guide slots, said wire being spirally wound in guide slots
US6279850Nov 4, 1997Aug 28, 2001Abb AbCable forerunner
US6357688Feb 2, 1998Mar 19, 2002Abb AbCoiling device
US6369470Nov 4, 1997Apr 9, 2002Abb AbAxial cooling of a rotor
US6376775May 27, 1997Apr 23, 2002Abb AbConductor for high-voltage windings and a rotating electric machine comprising a winding including the conductor
US6396187Nov 4, 1997May 28, 2002Asea Brown Boveri AbLaminated magnetic core for electric machines
US6417456May 27, 1997Jul 9, 2002Abb AbInsulated conductor for high-voltage windings and a method of manufacturing the same
US6429563Feb 2, 1998Aug 6, 2002Abb AbMounting device for rotating electric machines
US6439497Feb 2, 1998Aug 27, 2002Abb AbMethod and device for mounting a winding
US6465979Feb 2, 1998Oct 15, 2002Abb AbSeries compensation of electric alternating current machines
US6525265Nov 30, 1998Feb 25, 2003Asea Brown Boveri AbHigh voltage power cable termination
US6525504Feb 23, 2000Feb 25, 2003Abb AbMethod and device for controlling the magnetic flux in a rotating high voltage electric alternating current machine
US6577487May 27, 1997Jun 10, 2003Asea Brown Boveri AbReduction of harmonics in AC machines
US6646363Feb 2, 1998Nov 11, 2003Abb AbRotating electric machine with coil supports
US6801421Sep 29, 1998Oct 5, 2004Abb AbSwitchable flux control for high power static electromagnetic devices
US6822363May 27, 1997Nov 23, 2004Abb AbElectromagnetic device
US6825585Feb 2, 1998Nov 30, 2004Abb AbEnd plate
US6828701Feb 2, 1998Dec 7, 2004Asea Brown Boveri AbSynchronous machine with power and voltage control
US6831388May 27, 1997Dec 14, 2004Abb AbSynchronous compensator plant
US6867674Nov 30, 1998Mar 15, 2005Asea Brown Boveri AbTransformer
US6873080Sep 29, 1998Mar 29, 2005Abb AbSynchronous compensator plant
US6885273Feb 14, 2002Apr 26, 2005Abb AbInduction devices with distributed air gaps
US6891303May 27, 1997May 10, 2005Abb AbHigh voltage AC machine winding with grounded neutral circuit
US6894416May 27, 1997May 17, 2005Abb AbHydro-generator plant
US6906447May 27, 1997Jun 14, 2005Abb AbRotating asynchronous converter and a generator device
US6919664May 27, 1997Jul 19, 2005Abb AbHigh voltage plants with electric motors
US6936947May 27, 1997Aug 30, 2005Abb AbTurbo generator plant with a high voltage electric generator
US6940380May 27, 1997Sep 6, 2005Abb AbTransformer/reactor
US6970063Feb 2, 1998Nov 29, 2005Abb AbPower transformer/inductor
US6972505May 27, 1997Dec 6, 2005AbbRotating electrical machine having high-voltage stator winding and elongated support devices supporting the winding and method for manufacturing the same
US6995646Feb 2, 1998Feb 7, 2006Abb AbTransformer with voltage regulating means
US7019429Nov 27, 1998Mar 28, 2006Asea Brown Boveri AbMethod of applying a tube member in a stator slot in a rotating electrical machine
US7045704Apr 19, 2001May 16, 2006Abb AbStationary induction machine and a cable therefor
US7046492Dec 20, 2004May 16, 2006Abb AbPower transformer/inductor
US7061133Nov 30, 1998Jun 13, 2006Abb AbWind power plant
US7141908Mar 1, 2001Nov 28, 2006Abb AbRotating electrical machine
WO1999028923A1 *Nov 30, 1998Jun 10, 1999Asea Brown BoveriTransformer
Classifications
U.S. Classification336/70, 336/187, 29/605, 174/DIG.240
International ClassificationH01F27/34, H01F27/28, H01F41/06
Cooperative ClassificationY10S174/24, H01F27/343
European ClassificationH01F27/34B
Legal Events
DateCodeEventDescription
Jun 7, 1990ASAssignment
Owner name: ABB POWER T&D COMPANY, INC., A DE CORP., PENNSYLV
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WESTINGHOUSE ELECTRIC CORPORATION, A CORP. OF PA.;REEL/FRAME:005368/0692
Effective date: 19891229