Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3783868 A
Publication typeGrant
Publication dateJan 8, 1974
Filing dateMay 6, 1971
Priority dateMay 6, 1971
Also published asCA976443A1, DE2219640A1, DE2219640B2, DE2219640C3
Publication numberUS 3783868 A, US 3783868A, US-A-3783868, US3783868 A, US3783868A
InventorsJ Bokros
Original AssigneeGulf Oil Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Percutaneous implant
US 3783868 A
Abstract
A percutaneous device for drug injection in a living body which is implanted through the skin and which has a pyrolytic carbon coating. The device has a stem and a stabilizing flange, and a collar associated with the stem for preventing the progressive growth of epithelium tissue along the stem and for anchoring the device. A normally closed valve is in a passageway through the stem for administration of medication.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1 Bokros 'Jan. 8,1974

[73] Assignee: Gulf Oil Corporation, Pittsburgh,

22 Filed: May 6,1971

21 App1.No.: 140,869

[52] 11.8. C1 128/260, 3/1, 128/348, 128/2 R [51] Int. Cl. A6111] 31/00, A61f 1/00 [58] Field of Search 3/1; 128/2 R, 2 F, 128/260, 348-351, 214 R, 215, 216, 213,1 R, 334

[56] References Cited UNITED STATES PATENTS 3,526,005 9/1970 Bokros et al. 128/334 R 3,640,269 2/1972 Delgado 128/260 3,540,451 11/1970 Zeman 128/348 X 2,564,399 8/1951 Franken 3/1 UX 3,461,869 8/1969 Hargest 128/214 R 3,447,161 6/1969 Weikel 128/260 X 3,527,220 9/1970 Summers 3/1 X 3,310,051 3/1967 Schulte 128/350 R 3,216,420 11/1965 Smith et a1 v 3/1 UX 3,663,965 5/1972 Lee et a1 3/1 3,402,710 9/ 1968 Paleschuck 128/1' R FOREIGN PATENTS OR APPLICATIONS 1,161,436 8/1969 GreatBritain 128/348 141,591 3/1961 U.S.S.R 128/35[) R 245,277 11/1969 U.S.S.R 128/348 Primary ExaminerRichard A. Gaudet Assistant Examiner-J. C. McGowan Attorney-Fitch, Even, Tabin & Luedeka [57] ABSTRACT A percutaneous device for drug injection in a living body which is implanted through the skin and which has a pyrolytic carbon coating. The device has a stem and a stabilizing flange, and a collar associated with the stem for preventing the progressive growth of epithelium tissue along the stem and for anchoring the device. A normally closed valve is in a passageway through the stem for administration of medication.

12 Claims, 7 Drawing Figures PATENTEU 8 SHEET 1 OF 2 FIGI FIGZ

7.0 m i i FIGZA 5 www z wm O m. M w m W? PERCUTANEOUS IMPLANT There is a need for a reliable percutaneous implant for circumstances requiring prolonged subcutaneous administration of medication, and particularly for circumstances where controlled, even, and continuous release of medication is desirable.

One requirement of such a percutaneous implant is that it should be capable of providing a bacteria-tight seal in conjunction with the surrounding tissues so that the implantation of the percutaneous device does not provide a source for infection, or otherwise permit entry of pathogens or other undesired foreign material. Another important criterion is that the percutaneous implant device should be biologically compatible with the living tissues in which it is to be implanted. In this regard, the percutaneous implant should not prevent healing, irritate tissues, or stimulate a strong or prolonged rejection response. Moreover, the device should be readily anchored in the surrounding tissues, should reside comfortably in the surrounding tissues, should be physiologically inert over extended time periods, and should be mechanically strong and reliable, particularly with regard to surface properties.

Furthermore, there is a natural tendency for the epithelium tissue to progressively grow down and around a percutaneous implant and eventually to encapsulate it. Upon such epithelial encapsulation, the device is merely held in a pocket which is outside the body, and accordingly does not retain its intended percutaneous nature. An implant which is thus encapsulated tends to be gradually extruded from its encapsulated pocket in the body. Accordingly, an additional criterion is that the implant prevent epithelial encapsulation.

It is an object of the present invention to provide an improved percutaneous implant device.

It is another object of the present invention to provide a percutaneous implant device for drug injection into a living body, which will provide a bacteria-tight seal in conjunction with surrounding tissues, and which is suitable for prolonged implantation without tissue irritation or rejection. It is a further object to provide a percutaneous implant which is readily anchored in the surrounding tissues, which prevents epithelial encapsulation due to the progressive growth of the epithelium, and which provides a high degree of mechanical and physiological reliability. An additional object is the provision of a percutaneous implant which is capable of providing controlled, even and continuous release of medication into a living body.

These and other objects of the invention are more particularly set forth in the following detailed description and in the accompanying drawings of which:

FIG. 1 is a perspective view of a percutaneous implant device embodying various features of the present invention adapted for administration and controlled release of medication;

FIG. 2 is a cross-sectional view of the percutaneous device of FIG. 1 taken through line 2--2 showing the device after implantation;

FIG. 2a is an illustration of an element of the percutaneous device of FIGS. 1 and 2; and

FIGS. 3, 4, S and 6 are cross-sectional views of various other embodiments of the present invention.

The present invention is directed to a percutaneous implant deviceparticularly suitable for subcutaneous drug administration to a living body. The implant device comprises a stern having a passageway therethrough, a stabilizing flange adjacent the base of the stem for stabilizing the implant device in the surrounding tissues, means associated with said stem for preventing the progressive growth of the epithelium along the stem and anchoring the implant device by epithelium growth therethrough, and normally closed valve means in the passageway for administering medication through the passageway and for preventing entrance through the passageway of external pathogens or other undesired material. It is important that at least a portion of the surface of the percutaneous implant which is to come into contact with living tissues and preferably the entire surface of the stem, stabilizing flange and epithelium stopping means should have a pyrolytic carbon coating.

In addition,'the percutaneous implant may have medication reservoir and release means in communication with the passageway for retaining a reservoir of medication administered through the valve means of the passageway, and for releasing into the body in a predetermined manner the reservoir of medication thus retained.

Illustrated in FIGS. 1 and 2 is percutaneous implant device 10 which is adapted for controlled, even and continuous percutaneous administration of medication to a living body. The implant device 10 comprises a stem 12 having a passageway l4therethrough, a stabilizing flange 26 at the base 16 of the stem 12, epithelium stopping means 18 about the stem 12, and valve means 20 in the passageway 14. In addition, medication reservoir and release means 22 is provided in communication with the passageway 14. In the embodiment depicted in FIGS. 1 and 2, the stem 12 is cylindrical in exterior shape and is provided with an upper flange 24 at one end and with the subcutaneous stabilizing flange 26 at its other end. The passageway 14 through the stem 12 is defined by the interior surface 13 of the stem 12 and is also generally cylindrical in shape, having the same axis 28 of radial symmetry as the cylindrical exterior 30 of the stem. The generally cylindrical passageway 14 itself is comprised of an upper cylindrical zone 32 adjacent the end of the stem having upper flange 24, and a lower cylindrical zone 34 adjacent the stem end having the subcutaneous stabilizing flange 26. The upper zone 32 of the passageway 14 is of larger diameter than the lower zone 34. The transition in the passage way 14 between the upper zone 32 and the lower zone 34 is discontinuously abrupt and accordingly provides a washer-shaped shoulder 36 which lies in a plane orthagonal to the axis 28 of the passageway, and which has as its inner and outer circumferences 38 and 40, the respective interior terminal ends 38 and 40 of the lower and upper zones 34 and 32 of the passageway 14.

The exterior end 42 of the upper zone 32 of the passageway 14 is provided with connecting means 44 such as the illustrated threads 46 for connecting a medication injecting device to the percutaneous implant 10.

The purpose of, the connecting means 44 and the shoulder 36 in the passageway 14 will be explained more fully hereinafter.

The stem 12 having passageway 14 therethrough, the

upper flange 24, and the subcutaneous stabilizing flange 26 are all formed as a single unit from a substrate 48 which is subsequently provided with a pyrolytic carbon coating 50 over the entire surface of the unit. Suitable materials for the substrate 48, and the properties and deposition of the pyrolytic carbon coating will also be described more fully hereinafter.

About the stem 12 is epithelium stopping means 18 which in the illustrated embodiment of FIGS. 1 and 2 comprises a collar 52 formed from metallic screen 54 or an equivalent perforated metal sheet, of an alloy of 50 percent Molybdenum, 50 percent Rhenium. The screen 54 of the collar, appearing in more detail in FIG.

20, has a planar rim 56 which is blunted at its outer circumference 57 to avoid tissue damage, and an internal edge 58. The wire of the screen has a diameter of from about 0.02 mm to about 0.5 mm, and preferably from about 0.05 mm to about 0.1 mm. The spacing between wires is sufficient to prevent closure during coating with pyrolytic carbon. The spacing between the wires after coating should be sufficiently large to permit growth of the epithelium tissue therethrough, but not so large as to permit progressive growth of the epithelium tissue down the stem of the implant. The maximum spacing between wires after coating is one-eighth inch and the minimum is about 0.05 mm. Preferably the spacing is about 1 mm. The screen 54 is placed about the stem. 12 portion of the substrate 48 prior to deposition of the pyrolytic carbon thereupon, so that the internal edge 58 resides in a groove 60 circumferentially located around the substrate stem.

As shown in FIG. 2a, the metal screen 54 of the collar 52 is split to facilitate placement about the substrate stem, and after such placement the screen 54 may be held in place in the groove 60 in any suitable manner such as by a wire (not shown), until the pyrolytic carbon coating 50 is deposite upon the substrate 48 including the screen 54. Of course, the deposition of the pyrolytic carbon coating serves to-permanently affix the screen 54 to the percutaneous implant 10.

As noted hereinabove, medication reservoir and release members 22 is provided in communication with the passageway 14, at the end thereof adjacent the stabilizing flange 26. In the-illustrated embodiment, the reservoir and release means 22 comprises a porous membrane 62 which is selected to provide the desired medicinal release characteristics for the selected course of treatment and the type of medication or drug to be administered by means of the percutaneous device 10. Generally the membrane 62 will be selected to provide controlled, even, and continuous medicinal release at a predetermined rate.

The porous membrane 62 is tube-shaped and has an outside diameter approximately equivalent to the inside diameter of the lower zone 34 of the passageway 14. The upper end 64 of the tube-shaped porous membrane 62 is open, and is affixed, after the deposition of the pyrolytic carbon coating 50, to the lower zone 34 of the passageway 14. The lower, (i.e., opposite) end 66 of the tube-shaped membrane 63 is closed, so that upon attachment of the upper end 64 of the membrane 62 to passageway 14, a reservoir 68 for drugs and/or medication is provided adjacent the interior surface 70 of the membrane, and the exterior surface 71 of the membrane 62 will be exposed to subcutaneous tissues 72 upon percutaneous implantation of the device 10. Accordingly, medication contained in the reservoir will be released through the membrane into the surrounding subcutaneous tissues 72 of the living body in the desired manner.

As the inside diameter of the lower zone 34 of the passageway 14 is approximately the same diameter as the outside diameter of the tube-shaped membrane 62, an effective method of affixing the membrane 62 in communication with the passageway 14 is to insert and adhesively bond the open end 64 of the membrane with the lower zone 34. A suitable adhesive such as silicon cement may be employed for this purpose.

The porous membrane itself may be selected and fabricated from any material having the desired medicinal release properties, and adequate properties with regard to tissue compatibility and resistance to physiological degradation. For example, thin flexible membranes of cellulose nitrate-cellulose acetate are suitable for some situations, and may be readily produced by solutioncasting techniques. Porous membranes of other suitable materials may also be used.

Valve means 20 in the embodiment of FIGS. 1 and 2 is an elastomeric plug 74 which snugly resides in the passageway 14 at a location in the passageway generally above (i.e., toward the upper flange 24) the medication reservoir and release means 22, and such that the shoulder 36 and the terminal ends 38 and 40 of the upper and lower zones 32 and 34 of the passageway ar adjacent an intermediate position of the plug 74. Accordingly, the plug 74 is seated against the shoulder 36 in order to resist forces applied to the plug in a direction toward the end of the passageway 14 adjacent the stabilizing flange 26. In addition, the upper surface 76 of the plug 74 lies below threads 46 of the connecting means 44. The plug 74 may be provided in any suitable manner such as by insertion and adhesive bonding of a preformed plug (e.g., of medical grade silicone), or by in situ casting of an elastomer such as a silicone elastomer prepolymer.

The elastomeric plug 74 is provided with a latent" or pressure operable passageway 78 therethrough generally along the axis 28 of the passageway 14. The passageway 78 is constructed so that, because of the elastomeric nature of the plug 74 and/or a state of transverse compression of the plug in the passageway 14, the passageway is normally closed, and accordingly the plug will not permit the passage of any materials through the passageway in either direction. However, when fluid medication is applied under a predetermined pressure at the upper surface 76 of the plug or by means of a suitable injection device having blunted needle tip for partial insertion in the passageway, the latent passageway 78 opens to permit passage of the medication through the plug and into the closed drug reservoir 68 defined by the lower surface 80 of the plug 74 and the interior surface of the membrane 62.

The percutaneous device 10 is implanted by any suitable surgical procedure. Generally, a vertically incision is made through the skin at the desired location for the implant. The incision is of a length-sufficient to permit the edgewise insertion of the stabilizing flange 26 and of a depth sufficient to accommodate the medication reservoir and release means 22 and to place the epithelium stopping means 18 below the surface of the skin. A horizontal incision is then made in the subcutaneous tissues to accommodate the stabilizing flange 26 and the percutaneous device is inserted with the upper flange 24 outward so that the lower surface 82 of the upper flange lies adjacent the surface of the skin 84. Al-

tematively, for hygienic reasons, the upper flange may extend somewhat about the skin surface. The horizontal incision is then closed. A convenient method involves advancing the percutaneous device so that the stem 12 lies adjacent one end of the incision, and suturing the remaining portion of the incision at its other end.

Upon healing, the epithelium 86 grows around and down the stem 12 until it encounters the pyrolytic carbon coated screen 54 of the collar 52. The epithelium encircles the individual pyrolytic carbon coated wires of the mesh screen collar 52, forms a bacteria-tight seal, and stops its downward growth, which if continued would encapsulate the percutaneous device 10. In addition, this interaction of the collar 52 with the growth of the epithelium 86 therethrough, anchors the implant and prevents it from being torn loose. ln addition, this anchoring, in conjunction with the stabilizing flange 26, stabilizes the position and location of the percutaneous device in the subcutaneous tissues 72. The upper flange 24 serves to protect the implantation site.

Because of the tissue compatibility and physiological properties of the pyrolytic carbon coating 50 of the device 10, healing is rapid, without significant rejection reaction or tissue inflammation and the percutaneous implant is relatively comfortable for the patient. After healing, a medication injector (not shown) is attached to the percutaneous device 10 through the connecting means 44. In the illustrated embodiment in FIGS. 1 and 2, a syringe or other device capable of providing a measured amount of fluid medication at a predetermined pressure sufficient to activate the latent passageway 78 of the plug 74, is screwed into the threads 46 and seated against the upper surface 76 of the plug 74. The medication is then forced through the passageway 78 in the plug 74 into the reservoir 68, and is released from the reservoir into the surrounding tissues 72 in the desired manner. The stabilizing flange and the anchoring at the encapsulation stopping means serve to stabilize the position of the implant, and disipate the forces associated with drug injection. After administration of the medication, the syringe or other device is unscrewed, and will normally be replaced by a cap (not shown) for protecting and keeping clean the upper surface 76 of the plug 74 between medication administration.

As noted above, the percutaneous implant devices are coated with pyrolytic carbon. The coating is provided by depositing pyrolytic carbon on a suitable substrate material. Pyrolytic carbon is capable not only of significantly increasing the strength and wear resistance of the percutaneous device, but also is compatible with the surrounding tissue over prolonged time periods when implanted through the skin of a living body.-

While reference is herein generally made to the use of percutaneous devices in a living human body, it should also be recognized that the percutaneous devices may also have veterinary or scientific applications in other living animals, domestic or wild.

In general, the pyrolytic carbon coating is applied to a suitable substrate material which is shaped to form a part of the percutaneous device, such that the pyrolytic carbon covers at least a major portion of the surface thereof. The thickness of the pyrolytic carbon coating should be sufficient to provide the necessary strength for its intended use, and often it is desirable to employ the coating to impart additional strength to the particular substrate being coated. Some substrates such as certain types of graphite or refractory metals may require only relatively thin pyrolytic carbon coatings, while other substrates should employ thicker coatings. In general, the coating should be at least 10 microns thick and usually at least about 25 to 50 microns or more thick. If a fairly weak substrate is being employed, for instance, one made of bulk artiticial graphite, it may be desirable to provide a thicker coating of pyrolytic carbon to strengthen the composite percutaneous device.

Moreover, although an outer coating which is relatively pure has adequate structural strength and is generally preferred, pyrolytic carbon coatings obtained through the codeposition of silicon or some other carbide-forming additive may also be employed. For example, as described in more detail hereinafter, silicon in an amount up to about 20 weight percent can be dispersed as SiC throughout the pyrolytic carbon without detracting from its compatibility with the epidermal and subcutaneous tissues in which it is implanted.

For use on complex shapes and in order to obtain maximum structural strength, it is desirable that a pyrolytic carbon coating on the substrate be nearly isotropic. anisotropic carbons tend to delaminate when complex shapes are cooled after depositing the pyrolytic coating at high temperatures. Thus, for coating complex shapes (i.e., those having a radius or radii of curvature less than one-fourth inch), the pyrolytic carbon should have a BAF (Bacon Anisotrophy Factor) of not more than about 1.3. For non-complex shapes, higher values of BAF up to about 2.0 may be used, and for flat shapes, pyrolytic carbon having a BAF as high as about 20 may be used. The BAF is an accepted measure of preferred orientation in the layer planes in the carbon crystalline structure. The techniques of measurement and a complete explanation of the scale of measurement is set forth in an article by G.E. Bacon entitled A method for Determining the Degree of Orientation of Graphite" which appeared in the Journal of Applied Chemistry, Vol. 6. p. 477, (1956). For purposes of explanation, it is noted that 1.0 (the lowest point on the Bacon scale) signifies perfectly isotropic carbon, while higher values indicate increasing degrees of anisotrophy.

The density of the pyrolytic carbon is considered to be an important feature in determining the additional strength which the pyrolytic carbon coating will provide the substrate. The density is further important in assuring tissue compatibility, and mechanical reliability of the coating. It is considered that the pyrolytic carbon should at least have a density of about 1.5 grams per cubic centimeter, and may range up to a density between about 1.9 grams/cm and about 2.2 grams/cm". Preferablythe density will be about 1.9 grams per cubic centimeter.

Another important characteristic of the pyrolytic carbon coating is its crystallite height or apparent crystallite size. The apparent crystallite size is herein termed L,: and can be obtained using an X-ray diffractometer. In this respect wherein:

A is the wavelength in Angstroms B is the half-height (002) line width, and 6 is the Bragg angle.

Pyrolytic carbon coatings for use in percutaneous devices should have crystallite size no greater than about 200 A, and preferably between about 20 and about 50 A.

Since the substrate material for the prosthetic device will preferably be completely encased in pyrolytic carbon, choice of the material from which to form the substrate is not of utmost importance per se. However, the substrate material should have'sufficient strength and structural properties to reliably withstand the conditions of use of the particular percutaneous application for which it is going to be employed. However, portions of the substrate are to be exposed to bodily tissues, for example, as might occur from machining into final form after the basic shape has been coated with pyrolytic carbon, the substrate should be selected from materials which are relatively biologically inert, preferably artificial graphite.

It is very important that the substrate material be compatible with pyrolytic carbon, and more particularly that it be suitable for use in the process conditions for coating with pyrolytic carbon. Although it is desirable that the substrate material have sufficient structural strength to resist possible failure-during its end use, materials which do not have sufficiently high structural strengths (by themselves) may be employed by using the pyrolytic carbon deposited thereupon to supply additional structural strength for the prosthetic device.

Because pyrolytic carbon is, by definition, deposited by the pyrolysis of a carbon-containing substance, the substrate will be subjected to the fairly high temperatures necessary for pyrolysis. Generally, hydrocarbons are employed as the carbon-containing substance to be pyrolyzed, and temperatures of at least about l,0OO C. are used. Some examples of the deposition of pyrolytic carbon to produce coated articles having increased stability under high temperature and neutron radiation conditions are set forth in U.S. Pat. No. 3,298,921. Processes illustrated and described in this U.S. patent employ methane as the source of carbon and utilize temperatures generally in the range from about l,200 to 2,300 C. Although it is possible to deposite'pyrolytic carbon having the desired properties with regard to the instant invention at somewhat lower temperatures by using other hydrocarbons, for example, propane or butane, generally it is considered that the substrate materials should remain substantially unaffected by temperatures of at least about l,000 C. and preferably by even higher temperatures. The pyrolytic carbons deposited either with or without silicon at temperatures below about 1,500 C. are particularly suited for use in percutaneous devices because such pyrolytic carbons have exceptional tissue compatibility and mechanical reliability.

Because the substrate is coated at relatively high temperatures and the percutaneous device will be employed at temperatures usually very close to ambient, the coefficients of thermal expansion of the substrate and of the pyrolytic carbon deposited thereon should be relatively close to each other if the pyrolytic carbon is to be deposited directly upon the substrate and a firm bond between them is to be established. While the aboveidentified U.S. patent contains a description of the deposition of an intermediate, low density pyrolytic carbon layer, the employment of which might provide greater leeway in matching the coefficients of thermal expansion, it is preferable to deposite the pyrolytic carbon directly upon the substrate or an intermediate dense carbon layer. Pyrolytic carbon having the desired characteristics can be deposited having an average thermal coefficient of expansion in the range of between about 3 and about 6 X 10"/ C. measured between 20 C. and 1,000 C. Accordingly, substrate materials are chosen which have the aforementioned stability at high temperatures and which have thermal coefficients of expansion within or slightly above this general range, for example up to about 8 X lO C. Examples of suitable substrate materials include artificial graphite, boron carbide, silicon carbide, refractory metals (and alloys) such as tantalum, molybdenum, tungsten, and various ceramics, such as mullite. A preferred substrate material is polycrystalline graphite. An example of such a graphite is the polycrystalline graphite sold under the trade name POCO AXF Graphite, which has a density of about 1.9 grams per cubic centimeter, an average crystallite size (L) of about 300 A, and an isotrophy of nearly 1.0 on the Bacon scale. Ceramic and metallic substrate materials which may be readily molded or shaped are particularly desirable with regard to mass-production and cost considerations. Refractory fibers and screens, particularly of refractory metal fibers, and perforated thin metal sheets are particularly suited for substrates for the epithelium encapsulation stopping means.

The pyrolytic carbon coating is applied to the substrate using a suitable apparatus for this purpose. Pret erably, an apparatus is utilized which maintains a substrate in motion while the coating process is carried out to assure that the coating is uniformly distributed on the desired surfaces of the substrate. A rotating drum coater or a vibrating table coater may be employed. When the substrates to becoated are small enough to be levitated in an upwardly flowing gas stream, a fluidized bed coater is preferably used. When larger substrates are employed, or where it-is desired to vary the thickness or other characteristics of the pyrolytic carbon coating over different portions of the substrate, different coating methods may be employed, such as supporting the substrate on a rotating or stationary mandrel within a large fluidized bed.

As discussed in detail in the above-identified United States patent, the characteristics of the carbon which is deposited may be varied by varying the conditions under which pyrolysis is carried out. For example, in a fluidized bed coating process wherein a mixture of a hydrocarbon gas, such as methane, and an inert gas, such as helium or argon, is used, variance in the volume percent of the hydrocarbon gas, the total flow rate of the fiuidizing gas stream, and the temperature at which pyrolysis is carried out, all affect the characteristics of the pyrolytic carbon which is deposited. Control of these various operational parameters not only allow deposition of pyrolytic carbon having the desired density, apparent crystallite size, and isotropy, but it also permits regulation of the desired thermal coefficient of expansion of the deposited pyrolytic carbon. This control may also be used to grade a coating in order to provide a variety of exterior surfaces. One can deposit a strong base isotropic pyrocarbon coating, having a BAF of 1.3 or less, and near the end of the coating operation, the coating conditions can be gradually changed to obtain a highly oriented outer layer. Using this technique, suitable coatings having outer surfaces which are highly anisotropic and, for example, are about 25 microns thick, can be conveniently deposited.

Generally, when pyrolytic carbon is deposited directly upon the surface of the substrate material, the pyrolysis conditions are controlled so that the pyrolytic carbon which is deposited has a coefficient of expansion matched to within plus or minus 25 percent of the coefficient of expansion of the'substrate material, and preferably to within about plus or minus 20 percent. Because pyrolytic carbon has greater strength when placed in compression than when placed in tension, the thermal coefficient of expansion of the pyrolytic carbon is most preferably about equal to or less than that of the substrate. Under these conditions, good adherence to the substrate is established and maintained during the life of the prosthetic devices, and upon cooling of the pyrolytic coating-substrate composite, the pyrolytic carbon coating is placed in compression under conditions of its intended use at about ambient temperature.

As previously indicated, the coating may be substantially pure pyrolytic carbon, or it 'may contain a carbide-forming additive,such as silicon, which has been found to enhance the overall mechanical properties of the coating. Silicon in an amount of up to about 20 weight percent, based on the total weight of silicon plus pyrolytic carbon, may be included without detracting from the desirable physiological properties of the pyrolytic carbon, and when silicon is used as an additive, it is generally employed in an amount between about 10 and about weight percent. Other carbide-forming elements which are non-toxic, such as zirconium and titanium, may also be used as additives in equivalent weight percents. Generally, such an element would not be used in an amount greater than 10 atom percent, based on the total atoms of pyrolytic carbon plus the element.

The carbide-forming additive is co-deposited with the pyrolytic carbon by selecting a volatile compound of the element in question and supplying this compound to the deposition region. Usually, the pyrolytic carbon is deposited from a mixture of an inert gas and a hydrocarbon or the like, and in such an instance, the inert gas is conveniently employed to carry the volatile compound to the deposition region. For example, in a fluidized bed coating process, all or a percentage of the fluidizing gas may be bubbled through a bath of methyltrichlorosilane or some other suitable volatile liquid compound. Under the temperature at which the pyrolysis and co-deposition occurs, the particular element employed is converted to the carbide form and appears dispersed as a carbide throughout the resultant product. As previously indicated, at temperature below about l,500 C. the presence of such a carbide-forming additive does not significantly change the crystalline structure of the pyrolytic carbon deposited from that which would be deposited under the same conditions in the absence of such an additive.

After deposition of the pyrolytic carbon coating on the substrate, it may be desirable to physically and/or chemically modify the pyrolytic carbon surface thus provided. For example, chemisorbed gases, such as oxygen, may be removed by a vacuum-heat treatment to provide a less reactive, more hydrophobic surface, suchas may facilitate more easyremoval of the implant. Generally, however, for percutaneous implants which are to be attached to tissue, it is desirable that the surface reactivity of the pyrolytic carbon surface be enhanced such as by the provision of carboxyl, hydroxyl or quinone groups at the surface of the pyrolytic carbon coating.

For example, the following procedures might be followed to increase the chemical surface reactivity of the pyrolytic carbon coatings:

l. Oxidation at about 700 C in dry 0 to form quinone groups, or such formation of quinone groups followed by steam autoclaving to form hydroquinone groups,

2. Oxidation at about 300 C in dry oxygen to form COO groups, and similarly followed by steam autoclaving to form carboxyl groups,

3. Oxidation at about 500 C to form both quinone and COO groups, and similarly followed by steam autoclaving to' form both hydroxyl and carboxyl groups, and

4. Oxidation with atomic oxygen at room temperature to form a monolayer of chemisorbed oxygen, followed by steam autoclaving if desired.

Pyrolytic carbon having the physical properties mentioned hereinbefore, is considered to be particularly advantageous for constituting the surface for a percutaneous implant because of its physiological inertness and exceptional compatability with living tissues. The pyrolytic carbon coating does not tend to irritate the surrounding tissues and promotes the establishment of a barrier to external pathogens.

Having described in detail the specific embodiment of FIGS. 1 and 2, the following modiifications are described to further illustrate the invention. Illustrated in cross-sectional view in FIGS. 3, 4, 5 and 6 are percutaneous implants depicting various specific embodiments of the elements of the present invention.

In FIG. 3 is illustrated a percutaneous implant device comprising a unit 101 having a stem 102 with a passageway 104 therethrough, a stabilizing flange 106, and an upper flange 108. The unit 101 is formed from a suitable substrate and has a pyrolytic carbon coating 1 10 thereon. Prior to deposition of the pyrolytic carbon coating, in order to provide epithelium-stopping means 111 associated with the stem 102, a folded strip of refractory metal screen or equivalently perforated metal sheet 112 is secured on the stem 102 by wire 114 and the pyrolytic carbon coating is subsequently deposited on the unit 101, screen 112 and wire 114 to weld them as a single and strong structure. An unperforated elastomer plug 116 through which medication may be administered by means of a hypodermic needle serves as the valve means in the passageway, and the flexible microporous membrane 118, secured adjacent the passageway 104 to the underside 120 of the stabilizing flange 106, provides in combination with the passageway and the plug 116 a reservoir 122 from which administered medication may be released through the membrane into the surrounding tissues.

-In FIG. 4, a percutaneous implant device similar to that of FIG. 3 is depicted; however, the implant device 150 has no upper flange, and the upper surface 152 of the stem 154 is implanted flush with the skin and accordingly has no projections from the body that may be caught on other objects or interfere with movement. In addition, the implant device 150 is constituted to provide a relatively large medication reservoir 156, and has epithelium stopping means 158 formed from a pyrolytic carbon coated roll of multiple layers of refractory metal screen.

FIG. also depicts a similar percutaneous implant device 180. The implant device 180 has no means for slowly releasing administered medication, but rather is designed for direct injection of medication into a living body. Bayonet connecting means 182 is provided in upper flange 184, and the epithelium stopping means 186 circumferentially about the stern 188 is formed from pyrolytic carbon coated, carbon-fiber mesh tube substrate as illustrated in FIG. 3. The valve means is an elastomer plug 190 secured in the passageway 192 which has a pressure-activated passage 194 therethrough to prevent entrance of external pathogens or other undesirable material, but which permits administration of fluid medication under the proper conditions of applied pressure.

illustrated in FIG. 6 is a percutaneous implant device 200 which is designed to facilitate fabrication and application. The stem 202 is formed from a substrate 208 having a pyrolytic carbon coating 210 thereon, and is constructed in two pieces, the main body 204 of the stem, and a cap portion 206. The main body 204 of the stern 202 is constructed so that the epithelium stopping means 212 and the stabilizing flange 211 may be sequentially assembled about the main body 204 of the stem 202 and secured in place after such assembly by means of the cap portion 206, such as by cementing or screwing on the cap, or by other suitable means such as a bayonet type fastening.

The epithelium stopping means 212 may be any porous, carbonaceous surfaced, physiologically inert aggregate into and through which epithelium tissue will grow, and which will thereby arrest the progressive growth of the epithelium tissue'down and around the stern. For example, the epithelium stopping means 212 may be a pyrolytic carbon coated, washer-shaped, layer of a fibrous carbon substrate such as carbon felt or cloth or yarn or the means 212 may be a carbon flber ring such as Carbotex manufactured by Carborundum, and preferably having at least a very thin pyrolytic carbon coating. Or the epithelium stopping means 212 may be a porous carbon ring such as produced by pyrolyzing a structure formed of sintered plastic beads, or of a porous graphite such as sold under the trade name POCO-Type AX having a density of about 1.0 grams/cc. In all cases after coating, the ring of pyrocarbon is removed by machining or grinding to provide access to the porous underlying structure.

The stabilizing flange 211 may be a rigid pyrolytic carbon coated graphite or ceramic substrate, or may be of a more flexible material such as felted carbon fibers (preferably with at least a very thin pyrolytic carbon coating), or even of a more flexible material such as medical grade silicone rubber.

An alternative method of construction is to assemble the epithelium stopping means and the stablizing flange on the main body of the stem substrate and secure them with the cap portion substrate prior to coating with pyrolytic carbon. The assembled unit is then coated with pyrolytic carbon, the pyrolytic carbon coating removed circumferentially over a portion of the stem to expose the epithelium stopping means. The valve means and if desired the medicinal reservoir and release means, are then assembled subsequent to the pyrolytic carbon coating.

It is also contemplated that the percutaneous devices of the present invention might have multiple passageways each having a normally closed valve means. For example, a percutaneous device might have two passageways through the stem, each with a separate medication and release means respectively in communication therewith for separate administration of two medicants. Or, the two passageways could be connected by a single semipermeable membrane passageway to provide a U-shaped conduit which could more readily be flushed free of medication when desired by forcing a washing fluid through one passageway and out the other.

Various embodiments in addition to those described will become apparent to those skilled in the art in view of the present disclosure.

Various of the features of the invention are set forth in the following claims.

What is claimed is:

l. A percutaneous implant device for drug injection in a living body, comprising a pyrolytic carbon coated refractory stem having a passageway therethrough, a pryolytic carbon coated refractory stabilizing flange adjacent the base of said stem for stabilizing the implant device in surrounding subcutaneous tissues, a pyrolytic carbon coated refractory mesh collar located curcumferentially about and projecting outwardly from said stern for preventing encapsulation of the device by the progressive growth of epithelium tissue along said stem and for anchoring the implant device upon epithelium growth therethrough, a normally closed elastomeric plug valvein said passageway for administering medication through said passageway and to prevent entrance through said passageway of external pathogens or other undesired material, and medication reservoir and release means in communication with said passageway for retaining a reservior of medication administered through said valve and for releasing medication in the reservoir into the surrounding subcutaneous tissues in a predetermined manner, said pyrolytic carbon coating on said stem, collar and flange being an integral pyrolytic carbon coating having a thickness of at least about 10 microns, a density of at least about 1.5 grams per cubic centimeter, and a Bacon Anistrophy Factor of about 1.3 or less.

2. A percutaneous implant device in accordance with claim 1 wherein said medication reservoir and release means comprises a porous membrane which is affixed to the end of said passageway adjacent said stabilizing flange.

3. A percutaneous implant device in accordance with claim 1 wherein said elastomeric plug is provided with a pressure-operable passageway therethrough.

4. A percutaneous implant device in accordance with claim 1 wherein said collar is formed from a refractory metal screen having a wire diameter of from about 0.05 mm to about 0.1 mm and wherein the spacing between the wire of said pyrolytic carbon coated collar is about 1 mm.

5. A percutaneous implant device in accordance with claim 1 wherein said collar substrate is a perforated metal sheet.

6. A percutaneous implant device in accordance with claim 1 wherein said collar substrate is a carbon fiber mesh.

7. A percutaneous implant device in accordance with claim 1 wherein said elastomeric plug valve is an unperforated elastomer plug adapted for use with a hypodermic needle.

8. A percutaneous implant device in accordance with claim 2 wherein said elastomeric plug valve is provided with a pressure-operable latent passageway therethrough.

9. A percutaneous implant device in accordance with claim 1 wherein the surface of said pyrolytic carbon is oxidized.

10. A percutaneous implant device in accordance with claim 2 wherein said stem is provided with a second pyrolytic carbon coated refractory flange, adjacent the externally positionable end of said stem opposite its base, for protection of the implantation site.

1 l. A percutaneous implant device for drug injection in a living body, comprising a pyrolytic carbon coated refractory stern having a passageway therethrough, a pyrolytic carbon coated refractory stabilizing flange adjacent the base of said stem for stabilizing the implant device'in surrounding subcutaneous tissues, a porous, carbonaceous physiologically inert layer into and through which epithelium tissue will grow, said layer being located circumferentially about said stem for preventing encapsulation of the device by the progressive growth of epithelium tissue along said stern and for anchoring the implant device upon epithelium growth therethrough, a normally closed elastomeric plug valve in said passageway for administering medication through said passageway and to prevent entrance through said passageway of external pathogens or other undesired material, and medication and release means in communication with said passageway for retaining a reservoir of medication administered through said valve and for releasing medication in the reservoir into the surrounding tissues in a predetermined manner, said pyrolytic carbon coacting on said stem and flange being an integral pyrolytic carbon coating having a thickness of at least about 10 microns, and a density of at least about 1.5 grams per cubic centimeter.

12. A percutaneous implant device in accordance with claim 12 wherein said elastomeric plug is provided with a pressure-operable passageway therethrough.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent .78%,868 Dated January 8 1974 Invent0r(s) Jack C. BOkrOS It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 3, line 36 "deposited" is misspelled.

Column 3, line 41 "members" should be means Column 3, line 59 "63" should be 62 Column 4, line 56 Y "vertically" should be vertical Column 5, line 2 "about" should be above Claim 12, line 20,

Column 14 "in accordance with Claim 12" should read in accordance with Claim 1.1

Signed and sealed this 17th day of September 197A.

(SEAL) Attest: I

MCCOY M. GIBSON, C. MARSTIALL DANN Attesting Officer' Commissioner of Patents FORM (10-69) uscoMM-oc scan-ps9 .5. GOVERNMENT PRINTING OFFICE: [959 0-355-3!

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2564399 *Jan 26, 1949Aug 14, 1951Franken JosefClosure means for artificial rectal openings
US3216420 *Dec 27, 1962Nov 9, 1965Marvin E ClaycombColostomy attachments
US3310051 *Dec 10, 1963Mar 21, 1967Schulte Rudolf RSurgical reservoir for implantation beneath the skin
US3402710 *Jun 27, 1966Sep 24, 1968Hydra Power CorpSelf-closing valve device for implantation in the human body
US3447161 *Aug 1, 1966Jun 3, 1969Avco CorpDisinfectant dispensing percutaneous connector
US3461869 *Apr 5, 1966Aug 19, 1969Bio Medical Systems IncPermanent skin exit device
US3526005 *Jun 29, 1967Sep 1, 1970Gulf General Atomic IncMethod of preparing an intravascular defect by implanting a pyrolytic carbon coated prosthesis
US3527220 *Jun 28, 1968Sep 8, 1970Fairchild Hiller CorpImplantable drug administrator
US3540451 *Feb 28, 1967Nov 17, 1970William V ZemanDrainage cannula with tissue connecting assemblies on both ends
US3640269 *Oct 24, 1969Feb 8, 1972Delgado Jose M RFluid-conducting instrument insertable in living organisms
US3663965 *Jun 8, 1970May 23, 1972Gordon W CulpBacteria-resistant percutaneous conduit device
GB1161436A * Title not available
SU141591A1 * Title not available
SU245277A1 * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3964470 *Jul 25, 1974Jun 22, 1976Medtronic, Inc.Percutaneous intradermal electrical connection system and implant device
US3991756 *Aug 18, 1975Nov 16, 1976Donald SynderMethod and apparatus for intravenous access
US4015601 *Oct 14, 1975Apr 5, 1977General Atomic CompanyBlood access device
US4016884 *Jul 2, 1975Apr 12, 1977Kwan Gett Clifford SAtriotomy access device
US4033357 *Feb 17, 1976Jul 5, 1977Medtronic, Inc.Non-fibrosing cardiac electrode
US4092983 *Jan 31, 1977Jun 6, 1978General Atomic CompanyBlood access device
US4108173 *Apr 11, 1977Aug 22, 1978General Atomic CompanyBlood access device
US4108174 *Apr 13, 1977Aug 22, 1978General Atomic CompanyCatheter interlock system
US4217664 *Feb 2, 1979Aug 19, 1980Faso Joseph MProsthesis and method for creating a stoma
US4253201 *May 24, 1979Mar 3, 1981Ross David AProsthesis with self-sealing valve
US4344435 *Dec 15, 1978Aug 17, 1982Aubin Norbert TMethod and surgically implantable apparatus for providing fluid communication with the interior of the body
US4400169 *Oct 27, 1980Aug 23, 1983University Of Utah Research FoundationSubcutaneous peritoneal injection catheter
US4405305 *Feb 17, 1981Sep 20, 1983University Of Utah Research FoundationSubcutaneous peritoneal injection catheter
US4405319 *Sep 18, 1981Sep 20, 1983Renal Systems, Inc.Porous titanium coating for blood access device
US4417888 *Mar 15, 1982Nov 29, 1983Renal Systems, Inc.Percutaneous implant
US4464178 *Nov 25, 1981Aug 7, 1984Dalton Michael JMethod and apparatus for administration of fluids
US4479798 *Dec 4, 1980Oct 30, 1984Research Against Cancer, Inc.Subcutaneous implant useful in effecting hyperthermic treatment
US4488877 *Aug 23, 1982Dec 18, 1984Renal Systems, Inc.Percutaneous implant for peritoneal dialysis
US4496349 *Oct 26, 1981Jan 29, 1985Renal Systems, Inc.Percutaneous implant
US4534760 *Jun 26, 1984Aug 13, 1985Bentley Laboratories, Inc.Angular implant device
US4534761 *Oct 6, 1983Aug 13, 1985Bentley Laboratories, Inc.Passageway for anchoring; pyrolytic carbon disposed on a graphite substrate
US4557724 *Aug 12, 1983Dec 10, 1985University Of Utah Research FoundationApparatus and methods for minimizing cellular adhesion on peritoneal injection catheters
US4559033 *Aug 12, 1983Dec 17, 1985University Of Utah Research FoundationApparatus and methods for minimizing peritoneal injection catheter obstruction
US4559039 *Dec 5, 1983Dec 17, 1985Purdue Research FoundationPermanently placed transcutaneous access device to blood vessels
US4634424 *Apr 23, 1984Jan 6, 1987Windsor Medical, Inc.Multiple re-entry implantable septum and method of using same
US4639247 *Nov 2, 1984Jan 27, 1987Carbomedics, Inc.Percutaneous access device
US4654033 *Apr 1, 1985Mar 31, 1987BiomasysDevice for atraumatic access to the blood circuit
US4668222 *May 25, 1984May 26, 1987Thermedics Inc.Percutaneous access device with removable tube
US4676802 *Jan 21, 1986Jun 30, 1987J. Tofield, Et Al.Method and apparatus for securing a prosthesis to the human body
US4695273 *Apr 8, 1986Sep 22, 1987I-Flow CorporationMultiple needle holder and subcutaneous multiple channel infusion port
US4776843 *Nov 21, 1980Oct 11, 1988Minntech CorporationBlood access systems
US4781695 *Jul 11, 1986Nov 1, 1988Dalton Michael JImplantable fluid dispenser
US4813967 *Sep 11, 1987Mar 21, 1989Societe Nationale Industrielle AerospatialeCarbon fibers, biocompatibility
US4854316 *Oct 3, 1986Aug 8, 1989Davis Emsley AApparatus and method for repairing and preventing para-stomal hernias
US4897081 *Feb 17, 1987Jan 30, 1990Thermedics Inc.Percutaneous access device
US5035711 *Sep 5, 1990Jul 30, 1991Kabushiki Kaisya Advance Kaihatsu KenkyujoComposed Of A Ceramic Material Consisting Of Hydroxyapatite, Tricalcium Phosphate Or Tetracalcium Phosphate
US5084151 *Feb 14, 1990Jan 28, 1992Sorin Biomedica S.P.A.Forming a plasma beam, sputtering a carbon cathode and forming a carbon coating
US5120313 *Mar 20, 1990Jun 9, 1992Nancy W. ElftmanMethod for measuring blood pressure in an animal or human using a percutaneous access port
US5181505 *Jun 28, 1991Jan 26, 1993Lew Chel WMethod and apparatus for delivery of a medicament in the oral cavity
US5266071 *Mar 20, 1992Nov 30, 1993Nancy W. ElftmanMethod for using percutaneous accessport
US5370684 *Aug 18, 1992Dec 6, 1994Sorin Biomedica S.P.A.Heart valves, vascular tubing and sutures
US5387247 *Jan 3, 1990Feb 7, 1995Sorin Biomedia S.P.A.Prosthetic device having a biocompatible carbon film thereon and a method of and apparatus for forming such device
US5447499 *Dec 6, 1993Sep 5, 1995New Dimensions In Medicine, Inc.Wound dressing having a cylindrical shape for deep wounds
US5451406 *Jul 14, 1994Sep 19, 1995Advanced Uroscience, Inc.Tissue injectable composition and method of use
US5792478 *Jul 8, 1996Aug 11, 1998Advanced Uro ScienceTissue injectable composition and method of use
US5848989 *Jun 5, 1997Dec 15, 1998Davinci Biomedical Research Products, Inc.Implantable port with low profile housing for delivery/collection of fluids and implantation method
US6071265 *Mar 26, 1998Jun 6, 2000Disetronic Licensing AgCatheter system for skin passage units
US6270475 *Mar 26, 1998Aug 7, 2001Diesetronic Licensing AgPort body for the administration of drugs
US6302866May 13, 1999Oct 16, 2001Disetronic Licensing AgCatheter head for subcutaneous administration of an substance
US6413244Dec 13, 1999Jul 2, 2002Disetronic Licensing AgCatheter system for skin passage units
US6459917 *May 22, 2000Oct 1, 2002Ashok GowdaApparatus for access to interstitial fluid, blood, or blood plasma components
US6503228Mar 31, 2000Jan 7, 2003L-Vad Technology, Inc.Protective assembly for a percutaneous access device
US6726711 *Nov 1, 2002Apr 27, 2004Joan L. RobinsonArtificial blood vessel with transcutaneous access ports
US6736797Jun 19, 1998May 18, 2004Unomedical A/SSubcutaneous infusion set
US6949084Aug 20, 2001Sep 27, 2005Disetronic Licensing AgCatheter head for subcutaneous administration of an active substance
US7083648 *Nov 30, 2000Aug 1, 2006East Carolina UniversityTissue lockable connecting structures
US7162308Nov 21, 2003Jan 9, 2007Wilson Greatbatch Technologies, Inc.Nanotube coatings for implantable electrodes
US7632309 *Dec 13, 1999Dec 15, 2009St. Jude Medical, Inc.Pyrolytic carbon and metal/metalloid carbide composites
US7731697Feb 20, 2007Jun 8, 2010Incumed Llc, A Nevada Limited Liability Co.Apparatus and method for percutaneous catheter implantation and replacement
US7766881 *Feb 27, 2004Aug 3, 2010Roche Diagnostics International AgImplant with surface structure
US7794431Jan 6, 2007Sep 14, 2010Incumed LlcApparatus and method for facilitating the replacement of an implanted catheter
US8021340Jan 26, 2009Sep 20, 2011Incumed, LlcEnhanced apparatus for percutaneous catheter implantation and replacement
US8641776 *Mar 15, 2011Feb 4, 2014Cook Biotech IncorporatedMethods for modifying vascular vessel walls
US20110171181 *Mar 15, 2011Jul 14, 2011Case Brian CMethods for modifying vascular vessel walls
US20120123197 *Nov 16, 2010May 17, 2012Woodruff Scott AImplantable injection port with tissue in-growth promoter
US20120130391 *Aug 4, 2010May 24, 2012Mayo Foundation For Medical Education And ResearchImplanting organ ports
US20130103136 *Jun 13, 2011Apr 25, 2013Nikkiso Co., Ltd.Artificial blood vessel and access port of artificial blood vessel
CN102872527BOct 10, 2012Apr 23, 2014广州医学院一种经皮植入的扩散输药器及其制造方法
DE2613072A1 *Mar 26, 1976Oct 6, 1977Siemens AgImplantierbare elektrode
DE3114260A1 *Apr 8, 1981May 13, 1982Renal Systems"implantierbare vorrichtung zur schaffung eines zugangs zum kreislaufsystem"
DE3153394C2 *Apr 8, 1981Aug 16, 1990Renal Systems, Inc., Minneapolis, Minn., UsTitle not available
EP0134340A1 *Aug 22, 1983Mar 20, 1985The University of Utah Research FoundationPeritoneal injection catheter apparatus
EP0164896A1 *May 9, 1985Dec 18, 1985Thermedics, Inc.Percutaneous access device
EP0867197A2 *Mar 13, 1998Sep 30, 1998Disetronic Licensing AGImplantable drug delivery device
EP1649888A2 *Oct 18, 2005Apr 26, 2006Adeva Medical Gesellschaft für Entwicklung und Vertrieb von Medizinischen Implantat-Artikeln mbHAcces site
WO2005056079A1 *Nov 25, 2004Jun 23, 2005Bock Healthcare GmbhImplant with a skin penetration section
WO2007008197A1 *Jul 8, 2005Jan 18, 2007John LangenbachValve for transcutaneous access to existing blood vessel or fistula
Classifications
U.S. Classification604/891.1, 623/1.42, 424/448
International ClassificationA61N1/05, A61M1/00
Cooperative ClassificationA61M2039/0285, A61N1/05, A61M39/0247, A61M2039/0261
European ClassificationA61N1/05, A61M39/02T
Legal Events
DateCodeEventDescription
Mar 21, 1988ASAssignment
Owner name: INTERMEDICS, INC.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MAY PARTNERSHIP, THE, BY: ROLLINS HOLDING COMPANY, INC.;REEL/FRAME:004874/0945
Effective date: 19870112
Aug 25, 1986ASAssignment
Owner name: AMERICAN PACEMAKER CORPORATION A CORP OF MA
Owner name: AMERICAN PACEMAKER CORPORATION, A MASSACHUSETTS CO
Owner name: CALCITEK, INC., A TEXAS CORP.
Owner name: CALCITEK, INC., ALL TEXAS CORPS
Owner name: CARBO-MEDICS, INC.
Owner name: CARBOMEDICS, INC., A TEXAS CORP.
Owner name: INTERMEDICS CARDIASSIST, INC.
Owner name: INTERMEDICS CARDIASSIST, INC., A TEXAS CORP.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:B. A. LEASING CORPORATION;REEL/FRAME:004603/0607
Owner name: INTERMEDICS INTRAOCULAR, INC.
Owner name: INTERMEDICS INTRAOCULAR, INC., A TEXAS CORP.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:B. A. LEASING CORPORATION;REEL/FRAME:004603/0607
Owner name: INTERMEDICS, INC.
Owner name: INTERMEDICS, INC., A TEXAS CORP.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:B. A. LEASING CORPORATION;REEL/FRAME:004603/0607
Owner name: NEUROMEDICS, INC.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CHASE COMMERCIAL CORPORATION;REEL/FRAME:004605/0581
Effective date: 19860804
Owner name: NEUROMEDICS, INC., A TEXAS CORP.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:B. A. LEASING CORPORATION;REEL/FRAME:004603/0607
Effective date: 19860813
Owner name: SURGITRONICS CORPORATION
Owner name: SURGITRONICS CORPORATION, A TEXAS CORP.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:B. A. LEASING CORPORATION;REEL/FRAME:004603/0607
Owner name: INTERMEDICS INTRAOCULAR, INC., A TEXAS CORP., STAT
Owner name: INTERMEDICS, INC., A TEXAS CORP., STATELESS
Owner name: CALCITEK, INC., A TEXAS CORP., STATELESS
Owner name: INTERMEDICS CARDIASSIST, INC., A TEXAS CORP., STAT
Owner name: NEUROMEDICS, INC., A TEXAS CORP., STATELESS
Owner name: SURGITRONICS CORPORATION, A TEXAS CORP., STATELESS
Owner name: CARBOMEDICS, INC., A TEXAS CORP., STATELESS
Jul 8, 1986ASAssignment
Owner name: MAY PARTNERSHIP THE, 2170 PIEDMONT ROAD, N.E., ATL
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC.,;INTERMEDICS CARDIASSIST, INC.;SURGITRONICS CORPORATION;AND OTHERS;REEL/FRAME:004581/0501
Effective date: 19860703
Owner name: MAY PARTNERSHIP, THE,GEORGIA
Jun 9, 1986ASAssignment
Owner name: INTERMEDICS, INC.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CITICORP MULTILEASE (SEF), INC.;REEL/FRAME:004576/0516
Effective date: 19860515
Owner name: INTERMEDICS, INC., INTERMEDICS CARDIASSIST, INC.,
Free format text: SECURED PARTY HEREBY RELEASE THE SECURITY INTEREST IN AGREEMENT RECORDED AUGUST 5, 1985. REEL 4434 FRAMES 728-782;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:004592/0394
Effective date: 19860502
Free format text: SAID PARTIES RECITES OBLIGATIONS RECITED IN SECURITY AGREEMENT RECORDED SEPTEMBER 17, 1984 REEL 4303 FRAMES 077-127 HAVE BEEN PAID IN FULL ALL;ASSIGNOR:CITIBANK, N.A., INDIVIDUALLY AND AS AGENT FOR BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION, THE CHASE MANHATTAN BANK, N.A., THE FIRST NATIONAL BANK OF CHICAGO, TRUST COMPANY BANK, FIRST FREEPORT NATIONAL BANK OF BRAZOSPORT BANK OF TEXAS;REEL/FRAME:004592/0424
Aug 5, 1985ASAssignment
Owner name: B.A. LEASING CORPORATION
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC., A CORP. OF TEXAS;INTERMEDICS CARDIASSIST, INC.;INTERMEDICS INTRAOCULAR, INC., A CORP. OF TEXAS;AND OTHERS;REEL/FRAME:004449/0424
Owner name: CHASE COMMERCIAL CORPORATION
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC., A CORP. OF TEXAS;INTERMEDICS CARDIASSIST, INC., A CORP OF TX.;INTERMEDICS INTRAOCULAR, INC., A CORP. OF TEXAS;AND OTHERS;REEL/FRAME:004449/0501
Effective date: 19850703
Owner name: CITIBANK, N.A.
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC., A TX CORP;INTERMEDICS CARDIASSIST, INC., A TX CORP.;INTERMEDICS INTRAOCULAR, INC., A TX CORP.;AND OTHERS;REEL/FRAME:004434/0728
Owner name: CITICORP MILTILEASE (SEF), INC.
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC.;INTERMEDICS CARDIASSIST, INC.;INTERMEDICS INTRAOCULAR, INC., A CORP. OF TEXAS;AND OTHERS;REEL/FRAME:004452/0900
Sep 17, 1984ASAssignment
Owner name: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIA
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC.;INTERMEDICS CARDIASSIST, INC.;INTERMEDICS INTRAOCULAR, INC.;AND OTHERS;REEL/FRAME:004303/0077
Effective date: 19840726
Owner name: BRAZOSPORT BANK OF TEXAS
Owner name: CHASE MANHATTAN BANK, N.A., THE
Owner name: CITIBANK, N.A., AS AGENT
Owner name: FIRST FREEPORT NATIONAL BANK
Owner name: FIRST NATIONAL BANK OF CHICAGO, THE
Owner name: TRUST COMPANY BANK