Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3784790 A
Publication typeGrant
Publication dateJan 8, 1974
Filing dateSep 9, 1971
Priority dateSep 11, 1970
Also published asDE2145405A1
Publication numberUS 3784790 A, US 3784790A, US-A-3784790, US3784790 A, US3784790A
InventorsHatanaka Y, Shigemori H, Ueba A
Original AssigneeKobuei Kikai Seisakusho Kk
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Automatic money-issuing apparatus
US 3784790 A
Abstract
An automatic money-issuing system adapted to automatically issue bank notes and a necessary amount of money of predetermined denominations with the aid of a tape information input or a manual input, which comprises a device adapted to indicate an amount of money to be paid, a circuit storing a signal from the device, a means to issue bank notes or coins, a circuit adapted to compare the amount of money issued with the amount of money indicated, and a device adapted to stop the operation of the device issuing money by a coincidence signal issued from a comparison circuit.
Images(4)
Previous page
Next page
Description  (OCR text may contain errors)

tlnited @tate s Patent [191 Hatanalta et a1. ,]Ian. G, 1974 AUTOMATHC MONEY-ISSUHNG 3,527,238 9/1970 Stamp 133/4 R APPARATUS 3,675,816 7/1972 Bourke et a1. 22I/I3 3,588,449 6/1971 Paterson 235/6I.7 B

[75] Inventors: Yoshihiro Hatan ka; Hide 3,648,020 3 1972 Tateisi et a1 235/6117 B Shigemori; Aldo Ueba, all of Himeji, Japan [73] Assignee: Kabushilgi Kaisha Koblrej Kilkai Seisakusho, Himeji-shi, Hyogo-ken, Japan [22] Filed: Sept. 9, 1971 21 Appl. No; 179,045

[30] Foreign Application Priority Data References Cited UNITED STATES PATENTS Fitzsimons 221/9 X Primary Examiner-Maynard R. Wilbur Assistant Exan11'ner-Joseph M. Thesz, Jr. Atmrney-Ho1man & Stern [57] ABSTRACT An automatic money-issuing system adapted to automatically issue bank notes and a necessary amount of money of predetermined denominations with the aid of a tape information input or a manual input, which comprises a device adapted to indicate an amount of money to be paid, a circuit storing a signal from the device, a means to issue bank notes or coins, a circuit adapted to compare the amount of money issued with the amount of money indicated, and a device adapted to stop the operation of the device issuing money by a coincidence signal issued from a comparison circuit.

4 Claims, 6 Drawing Figures MEMORY CIRCUIT DRUM DRIVING CIRCUIT TI GATE CIRCUIT READING SR1 DEVICE RD SIGNAL FOR SWITCHING A TAPE INPUT AND A MANUAL INPUT SWITCHING BUFFER CIRCUIT REGISTER REGISTRATION INSTRUCTION SHIFT INSTR CONDITIONAL I 'LIP FLOP Em I ENCODER GENERATOR CLOCK PULSE OSCILA'IUR RESET SIGNAL TAPE TK READER FEED SIGNAL PAIENIEDJAM 81974 3 784, 790

saw 2 or 4 FIG.2

PERSONAL it CODE MONEY CODE 1 1 h ISSU I Ne BLANK INSTRACTION T CODE suwaum i w :5 k 1 H j 3 m \L owwa ww 5z g M cm A L NHE Em 1 Wait L H Jn F k 586 m O m wziww znmo PAIENIE JAM 81974 PAIENTEBJAN BlBH SHEET t BF 4 mmomi N no ZOFOMEQ 20m 20mm L l y ($08 100 VlVCl) 80G OOO AUTOMATIC MONEY-ISSUING APPARATUS BACKGROUND OF THE INVENTION The present invention relates to an automatic money dispensing system in which bank notes and a necessary amount of money of predetermined denominations are issued by a tape information input or a manual input.

Manual or semi-manual systems of dispensing currency would'be acceptable only under certain limitations.

However in case when different notes and denominations are to be issued to a number of people for instance, such prior art systems are troublesome and are apt to cause errors while counting and dispensing.

SUMMARY OF THE INVENTION It is accordingly a main object of the present invention to eliminate the above-mentioned disadvantages.

Another object of the present invention is to provide an automatic money-dispensing system in which currency notes and coins of predetermined denominations are automatically issued out with a necessary amount of money or with a minimum number of sheets thereof by reading information punched on a tape or by manually depressing the push buttons ofa decimal keyboard.

The features of the present invention are as follows:

As apparent from the contents of the specification hereinafter described, according to the present invention, predetermined notes can be issued correctly and quickly with a necessary amount of money through a simple operation. Therefore, the present invention is useful for saving man power and the notes can be issued with a minimum number of sheets thereof as required. Furthermore, a code for people to be paid is also displayed, and therefore confirmation or identification of the people to be paid can be readily accomplished. In addition, the note-issuing operation is performed by either reading of the information on the tape or operation of a decimal keyboard, and therefore it should be noted that there is flexibility in use of the system according to the present invention.

Various further and more specific objects, features and advantages of the present invention will be apparent from the description given below, taken in conjunction with the accompanying drawings illustrating by way of example a preferred embodiment of this invention.

BRIEF DESCRIPTION OF THE DRAWING In the accompanying drawings:

FIG. 1 is a block diagram illustrating an embodiment according to the present invention;

FIG. 2 exhibits the contents of information punched on a tape;

FIG. 3 is a schematic diagram illustrating a note drum;

FIG. 4 is a circuit diagram exhibiting the connection of a memory check circuit and a numeral display tube;

FIG. 5 is a circuit diagram explaining in detail a note counting memory circuit shown in FIG. 1; and

FIG. 6 is a block diagram illustrating a further embodiment according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION With reference now to FIG. 1, a tape punched with information as shown in FIG. 2 is fed to a tape reader TR where the information is read out. In case of a wage payment, the tape T is punched in advance, in the order of inputs, with information such as a symbol code a personnel code, a symbol code a code for an amount of money to be paid, an instruction code for issuing notes and a tape-stopping code as shown in FIG. 2.

Now, when a start button (not shown) is depressed, the tape T is fed to the tape reader by a feed signal thereby firstly to read a at signal positioned first in the information and then the signal is once stored in a conditional flip-flop FF. The symbol means that a signal following it represents the personnel code.

Therefore, a signal representing is converted into a personneLcode-switching instruction by an encoder En, and then the instruction is applied to a switching circuit C, through a lead wire 1., thereby to switch the circuit C, over to the personal code side, as a result of which a shift pulse input lead wire I, of the circuit C, is connected to a lead wire 1 running to a shift register SR,. The information thus stored by the flip-flop FF is reset by a reset signal before the tape reader TR completes reading-out of the next code.

Then, after having been stored in the flip-flop FF, a signal representing a numeral on the most significant digit of said code is fed to the encoder En thereby to be converted into a binary-coded decimal signal BCD. The signal BCD is fed to a buffer register BR through a circuit C which is adapted to switch a tape input and a manual input. The switching circuit C, is kept switched over to a tape input side during an operation of the tape reader TR. At the same time, a registration instruction is given to the buffer register BR through a pulse generator PG from the encoder En. Therefore, the buffer register BR stores one digit by the abovementioned BCD input and register instruction.

Then, together with a shift instruction four shift pulses comprising one-digit shift pulses are applied to the buffer register BR'from the pulse generator PG, as a result of which the buffer register BR transfers the registered information to a shift register SR, adapted for display of the personal code and on the next stage. The above-mentioned four shift pulses are fed to the personal code display shift register SR, through the switching circuit C,. Therefore, the register SR, receives the information and shift pulse from the buffer register BR thereby to store one digit and then to display it by means of a display unit DP.

At this juncture, information positioned at the second place from the most significant digit is read out by the tape reader TR. However, information stored before this reading process is shifted one digit leftwardly, as a consequence of which information of two digits is registered in the shift register SR,.

Similarly, the code having been read by the tape reader TR is succeedingly registered from the higher significant digit thereof in the shift register SR, and is then shifted, as a result of which, when the code on the tape is completely read out, numerals on all the digits are displayed on a code display tube DP.

Next, the tape reader will read the code, which means that the next information is the amount of money to be issued. Therefore, upon completion of reading of theicode, an instruction switching the code over to the amount of money is furnished from the en coder En whereby the switching circuit C, is switched over to the side of amount of money, whereby the lead wire I, is connected to a lead line 1 A code of an amount of money for payment, which is to be read next, is converted into a binary-coded signal of four bits by the encoder En for every digit. However, unlike the case of the foregoing personnel code, in the code of the amount of money for payment, binary-coded signals as shown below are, for instance, used in order to minimize a number of notes or bills to be issued.

TABLE Decimal Code for number binary-coded signal 0 O 0 0 I O O 0 l 2 0 O l 0 3 0 0 1 1 4 O 1 1 I 5 l 0 0 0 6 l 0 0 I 7 1 0 l (1 8 l l 1 9 1 1 1 1 As apparent from the above table, the code of the amount of money for payment, which has been converted into the binary-coded signal code is registered in a shift register SR provided for an amount of money to be paid, in the same manner as that in the case of the personnel code mentioned above.

As a note-issuing instruction described later is not applied to an inhibit gate circuit lG, the content of the register SR, is stored in a memory circuit M, through the inhibit gate circuit 1G, and is then displayed, in a decimal system, by a display unit CDP adapted to display an amount of money. In other words, the amount of money to be payed is displayed, in a dicimal system, on the display unit CDP upon completion of the registering operation.

Hereinafter, a note-issuing operation is described, assuming for example that display of the amount of money to be paid is made for 109,500 yen, or the display is 109,500.

When the tape reader TR has read the note-issuing code, a note-issuing instruction is fed from the encoder En to both the inhibit-gate circuit 10 and a drumdriving circuit DD, and the inhibit-gate circuit lG inhibits the contents of the register SR from being applied to the memory M, Therefore, the display content of the display unit CDP is kept unchanged.

When the note-issuing instruction is fed to the drumdriving circuit DD, it starts issuing notes until a coincidence signal from a comparison circuit CR is applied thereto.

A note-issuing drum D is constructed as shown in FIG. 3, for instance. Note-issuing sections P, through P are positioned in the form of a circuit. These sections rotate in a direction of an arrow mark indicated in FIG. 3. Any of the sections stops at a position B and performs the note-issuing operation one at a time. In the sections P, through P notes of 10,000 yen, 5,000 yen, 1,000 yen, 500 yen and 100 yen, and coins of 10 yen are respectively placed, for instance. The order in which the note-issuing sections are stopped at the position B, is set by a drum-setting circuit DS, and is set as P, P,, P P,, in the case where predetermined notes are to be issued up to nine sheets thereof. In the case when a minumum number of notes or bills that is, a bill of 5,000 yen and four bills of 1,000 yen each are to be issued for the amount of money 9,000 yen, the order is set by a memory check circuit MC and a drumsetting circuit.

Shown in FIG. 4 is a circuit illustrating connection of the memory check circuit MC and a numeral display tube NT of the display unit CDP adapted to display an amount of money. With respect to the places of 1,000 yen for instance, the 0 terminal of the display tube NT becomes low in level when the terminal is on. In detection of this, if display on the display tube is not 0, a circuit A in the memory check circuit MC is made to work. In the case where any of terminals 5 to 9 is low in level, a circuit B of the memory check circuit MC is made to work. Therefore, it can be concluded that when only the circuit A is operated any of the numerals l to 14 is displayed on the display tube while when both circuits A and B are operated any of the numerals 5 to 9 is displayed. Through this arrangement, a program for issuing notes is determined.

Accordingly, in the case when the display of the amount of money is 109,500 yen, the order in which the note-issuing sections P, through P of the drum D are stopped at the position B, is set as P P, P, P P If the display is 103,200 yen, the order is set as P, P P P,,.

When registering in the shift register SR is completed and then the note-issuing instruction is applied to the drum-driving circuit DD, the note-issuing section P, begins to issue 10,000 yen notes, and the number ofthe issued notes is read out by a reading device RDv Signals from the reading device RD are succeedingly counted by a count memory circuit CT and are compared with the contents of the most significant digit MSD and of the digit MSD-l next to the most significant digit of the register SR by means of a comparator CR.

When the contents of the most significant digit MSD and the digit MSD l next to the most significant digit MSD coincide with the content of the count memory circuit CT, a coincidence signal is issued. The coincidence signal is fed to the drum-driving circuit DD thereby stopping the note-issuing operation of the noteissuing section P,. Therefore, the drum D rotates until the next note-issuing section comes to stop at the position B. At the same time, the coincidence signal is applied, as a shift pulse, to the shift register SR through the encoder En, pulse generator PG and switching circuit C,, thereby to shift the content of the register SR one digit leftwardly.

Accordingly, a decimal numeral 9 is registered on the digit MSD-1 next to the most significant digit. With respect to digits for 1,000 yen and lower, the comparator CR is arranged so as to compare the contents of the MSD-l digit and those of the count memory circuit CT.

Shown in detail in FIG. 5 are the count memory circuit CT and the gate circuit G illustrated in FIG. 1. An output of the reading device RD is applied through the gate circuit G to the count memory circuit CT where the output is counted. in the count memory circuit CT, a quinary count circuit comprising flip-flops FF, to FF, and a binary count circuit comprising a flip-flop FF are connected in cascade. The outputs of output terminals Y, to Y, are similar to the code outputs shown in the previously mentioned table. Terminals T and T, are adapted to control application of the output of the reading device RD to the count memory circuit according to the denominations of the bills and coins. Thus, when the note-issuing sections P and P, of the drum are stopped at the position B, respectively, the output of the reading device RD is made to pass exclusively through a logic circuit AND, by application of a predetermined voltage to the terminal T and similarly, when the note-issuing sections P, P P and P are stopped at the position B, respectively, the output of the reading device RD is made to pass exclusively through logic circuit AND, by application of a predetermined voltage to the terminal T,

Accordingly, as soon .as one sheet of 5,000 yen note is issued by the note-issuing section P the count memory circuit CT counts 5 and its output will be 0001 which is arranged from the least significant digit. Then, the drum D is rotated thereby to bring the note-issuing section P to the position B and to keep issuing of the notes. When the number of the issued notes becomes four, the output code of the count memory circuit CT will be I l 1 l which is arranged from the least significant digit. At this time, the content 1 1 ll (decimal numeral 9) of the MSD-1 digit of the shift register SR coincides with that of inseam rh emory circuit' CT, whereby a coincidence signal is furnished from the comparison circuit CR. The signal is applied to the drum-driving circuit thereby to stop the note-issuing operation of the note issuing section P and is further applied to a reset terminal T shown in FIG. 5, as a result of which the count memory circuit is reset.

As described above, when an amount of money, 9,000 yen is to be issued, one bill of 5,000 yen and four bills of 1,000 yen are issued. In other words, bills or notes are issued with a minimum number thereof.

Next, the content of the register SR is shifted one digit leftwardly by the coincidence signal. Similarly, the content of the MSD-l digit of the register SR and that of the count memory circuit CT a re c ompared with each other. Thus, when one sheet of 500 yen note is issued, a coincidence signal is furnished from the comparison circuit CR thereby to stop the note-issuing operation of the note-issuing section P The digits for 100 yen and I yen are 0. Therefore, a coincidence signal is issued from the comparison circuit CR and no note is issued from the note-issuing sections P and P Initially, digits for 100,000 yen and 10,000 yen are compared with the content of the count circuit CT by means of the comparison circuit CR. A count circuit having the same construction is further connected, in a cascade, to the count memory circuit CT of FIG. 5, and both count circuits are arranged so as to operate only when the MSD digit and the MSD-l digit are compared therewith.

As illusfi' zfedabovefwhen the whole note-issuing operation is achieved and all the digits lower than the MSD-1 digit of the shaft register SR become'O, is detected by a proper detection circuit (not shown) thereby to issue a note issue completion signal. As a result, operation of the drum-driving circuit DD is stopped and a succeeding tape reading operation of the tape reader TR is started.

The method of issuing currency with a minimum number of bills thereof using the tape-reading operation is as described above However, in the case when predetermined denominations of of notes are to be issued up to 9 sheets of them, if the memory check circuit MC is separated from a drum-setting circuit DS and the order setting the note-issuing sections is set as P, P, P P by means of the drum-setting circuit, predetermined denominations of notes can be issued with a predetermined number of sheets through an operation similar to that described above.

Described hereinafter is an operation in which predetermined denominations of currency notes are automatically issued with a predetermined number of sheets thereof through utilization of a manual signal.

Refering to FIG. 1 again, reference symbol TK represents a decimal keyboard adapted to register an amount of money to be issued and provided with push buttons 1 to 9, and Em is an encoder adapted to convert information furnished from the keyboard TK into the code shown in the Table mentioned previously. A tape input and a manual switching circuit C are switched over to the manual side. There-fore, in the case where notes are to be issued with a minimum number thereof, if necessary, push buttons of the keyboard TK are depressed, the information from the keyboard is converted by the encoder Em into a code corresponding to the depressed push buttons. The code is in turn registered in the shift register SR through buffer register BR. The code previously registered in the register SR is shifted one digit leftwardlyevery time next push buttons are depressed. Thus, 109500, for instance, is registered in the register SR by succeedingly depressing necessary push buttons. The operation after completion of this register operation, is just the same as that in the case of the tape reader. In order to issue predetermined denominations of notes up to 9 sheets instead of a minimum number of sheets, the memory check circuit MC is separated from the drum-setting circuit DS and then the order setting the note-issuing sections is set as, for instance, P, I P, P by means of the drum-setting circuit, in the same manner as described above.

While the present invention has been described in connection with a case where particular currency bills are issued, it is to be clearly understood that the present invention can be applied to dispense currency bills and coins of any country and the number of digits in each of the display units for an amount of money, memory circuit and shift register can be increased or decreased as required, and furthermore the note drum and the count memory circuit can be optionally constructed. In other words, it is intended that all the matter contained in the foregoing description and in the drawings shall be interpreted as illustrative and exemplary only and not as Iimitative of the present invention.

FIG. 6 shows another embodiment of the present invention, which comprises a decimal keyboard TK operated by an operator and an encoder TKE encoding an input signal fed from the keyboard into a proper signal. Furthermore, the embodiment comprises function keys CK; a key FK used for designating any particular coin or bill, a number key register NKR which receives information given by the keyboard TK, an accumulator ACC which is a register adapted to temporarily store processing information, a full-adder FA which serves for addition of the content (nkr) of the number key register NKR and the content (ace) of the accumulator ACC, both the number key register NKR and the accumulator ACC having six digits respectively. The embodiment of FIG. 6 further comprises: a one-digit register X and a register X, for display; a display unit and its driving circuit DSP,; a half-adder HA which is a circuit performing correction in an operational process; a register 10TR adapted to store an amount of money to be paid with the money of a 10,000 yen unit; registers STR, lTR and SHR which are similarly adapted to store amounts of money to be paid with the money of a 5,000 yen, a 1,000 yen and a 500 yen unit, respectively; a register DSR which is adapted to temporarily store an amount of money to be issued and which succeedingly stores the information stored in the registers TR, STR, lTR and SHR upon receiving of an instruction for starting the money-issuing operation; a counter DSC serving to count money issued out; a coincidence detector EOTG which furnishes a coincidence signal when the content (dsr) of the register DSR and the content (dsc) of the register DSC are coincide with each other; a device EOCG which issues an EOC signal when all denominations of money have been compared and issued out upon receiving as its input the signal from the coincidence detector EOTG; a print decoder PRD which is a processing circuit adapted to print the information of the money-issuing operation after completion thereof, a printer control circuit PC; a detection section 10S which, when a money-issuing section has had ten idling operations in issuing the money, judges it as an abnormal operation; a counter 100C which, when a number of pieces indicated in issuing the money is more than 100, detects the fact the number of pieces of currency issued out has become 100, while all the money of the indicated number of pieces is not issued continously at a time but is unitarily issued out every 100 pieces thereof; a circuit 2D which, when the money-issuing section is going to issue two pieces of currency at a time, detects it thereby furnishing an alarm signal; and a turret-setting memory TM which stores kinds of money instructed to be issued out and which designates kinds of money to be issued next in accordance with a predetermined order with respect to a turret-setting memory distributor TMD which receives a signal from the turret-setting memory TM thereby to set the turret through the instruction for starting the money-issuing operation and which outputs a turret-switching instruction and an instruction renewing the content of the register DSR according to the sig nal issued from the coincidence detector EOTG.

The above-described circuits are provided for all the functions of the automatic money issuing device ac cording to the invention.

Now, described hereinafter is a sequential control circuit adapted to control the abovementioned function-circuits.

A program-addressing circuit PAD stores, as its input information, key-out signals from the keys FK designating kinds of money as well as the function keys CK, and detection signals from the detection sections 108 and 100C, and further designates the program steps with respect to a device ROM described later. Reference symbol ROM represents an operation instruction group and succeeding program-designating instruction group in combination, and produces a macro-instruction in order to routine the program ofa process designated by the output signal of the program-addressing circuit PAD thereby to operate the process function circuit in order to be on standby for the next program. A circuit JDG issues a judge-instruction and judges an interruption when a process program not designated initially by the program addressing circuit PAD is produced thereby to issue ajump-transfer instruction and a stopinstruction to the device ROM.

The embodiment, according to the present invention, shown in FIG. 6 operates as follows:

During a standby period, the contents of the number key register NKR and of the accumulator ACC and the contents of other memory sections are cleared out whereby Os are registered therein.

When a key 10000 of the keys FK designating kinds of money is designated and then an amount of money, e.g., 150,000 yen is registered by the decimal keyboard TK, the data 150,000 is converted into a proper signal which is fed to the number key register NKR. The data thus fed to the number key register NKR circulate in a closed loop of NKR FA Xc HA NKR, and is fed to the register 10TR. The one-digit register Xc included in the closed loop reads out each digit of circulating data one after one and the circulating data thus read out are fed to the display register Xc.

Therefore, the display unit DSP, repeats the display of I each digit one after one. In other words, the display unit DSP displays the digits in a divisional manner. The divisional display thus made is repeated at a sufficiently high speed, and is therefore seen as a complete display by human eyes due to an afterimage phenomenon, as a result of which the eyes will not get tired.

Now, if a key of the function keys CK is operated, the content of the number key register NKR and the content of the accumulator ACC are added by the adder FA, and the resultant value of the addition circulates in the loop ofNKR FA Xc HA NKR. In this case, the content of the accumulator ACC is zero (ace 0), and therefore the content of the number key register NKR is 150000.

Next, in the case when a key 5000 of the keys FK is designated, the data circulating in the closed loop of NKR FA Xc HA NKR is fed to the accumulator ACC whereby the content of the closed loop is cleared out, as a result of which the display unit DSP displays zero. Then, if an amount of money, for instance, 45000 is registered by means of the decimal keyboard TK, the registered value is read in the number key register NKR in the same manner as mentioned above. The data 45000 circulates the closed loop of NKR FA Xc HA NKR and the DSP, displays the data 45000 in a divisional manner as stated above. Furthermore, the circulating data 45000 is stored in the register STR. In addition, the registers 10TR, STR, lTR, SHR and TLR are adapted to circulate respective inputs therethrough, thereby to be stored therein, respectively.

Then, similar to the above operation, if the key of the function keys CK is operated, the above-mentioned data, i.e., the content (nkr 45000) of the number key register NKR and the content (acc 150000) of the accumulator ACC are added by the adder FA thereby to become new circulating data. At this time, the content (ace) of the accumulator is cleared out into zero, and the display unit DSP displays circulating data (nkr acc nkr) l95000 in a divisional manner mentioned previously.

Similarly, if 33000 and 4500 are registered by operation of keys 1000 and 500, respectively, and then the key of the function keys FK is operated, data (nkr) circulating in the closed loop of NKR FA Xc HA NKR becomes 232500 and the data 232500 are stored in the register TLR. The DSP displays this data 232500 in a divisional manner as described previously.

The information fed by the decimal keyboard as described above, is added and processed successively through the number key register NKR, the accumulator ACC and the adder FA, and is stored in the registers IOTR, STR, lTR, SHR and TLR. After receiving an instruction for starting the money-issuing operation the embodiment according to the illustration in FIG. 6 operates as follows:

A turret is selected through the money issue start instruction whereby a frame containing the money of 10,000 yen is set at a predetermined position. At the same time, the content (150000) of the register 10TR is temporarily transferred to the register DSR. When the turret is set at a predetermined position, a money issuing instruction is fed to a mechanism adapted to issue money whereby money of 10,000 yen is issued. The money thus issued is detected by a count detection section and its count value converted into an amount of money is furnished from the counter DSC. Then, both the contents of the register DSR and of the counter DSC are compared with each other by means of the comporter EOTG which issues a coincidence signal eat, when both contents mentioned above coincide with each other. By the coincidence signal e01 the money-issuing operation is stopped and the turret is switched for the money of 5,000 yen. On the other hand, the content of the register DSR is cleared out and the content 45000 of the register STR is transferred out. When a frame containing the money of 5,000 yen is set at a predetermined position, the money-issuing mechanism is operated again, whereby the money of I process information is started by the money-issue com pletion signal furnished from the device EOCG.

Now, the content (150000) of the register 10TR is transferred to the register DSR again, and is converted into a printing signal by means of the print decoder PRD. The thus obtained printing signal is applied to the printer control whereby the content of the register 10TR is printed. 1n the same way, the contents of the registers STR, lTR, SHR and TLR are printed, respectively. Thus, the money-issuing process is completed.

We claim: 7

1. An automatic money-dispensing apparatus comprising: indicating means for indicating in a signal an amount of money to be dispensed which is chosen by an operator and providing a first indication signal representative thereof; memory means for storing said first indication signal; a plurality of money storing sections in which money separated according to monetary denominations is stored and held respectively; money issuing means which operates to issue money piece by piece from at least one of said plurality of money storing sections thereby to issue money comprising one monetary denomination or a plurality of monetary denominations; selector means for selecting the monetary denomination to be issued from the memorized content of said memory means and providing a second indication signal representative thereof; comparator circuit means for comparing an amount of money indicated to said memory means by said first indication signal with means issued in accordance with said second indication signal representative of a monetary denomination selected with said selector means; and means for stopping operation of said money issuing means with the aid of a coincidence signal produced by said comparator circuit means when the amount of money indicated to said memory means coincides with the amount of money issued by said money issuing means, thereby to prevent further dispensing of money.

2. An automatic money-issuing apparatus as claimed in claim 1 which includes means for choosing said amount of money to be paid in terms of monetary denominations to be dispensed and the number of pieces thereof.

3. An automatic money-dispensing apparatus comprising: means producing a signal for indicating an amount of money to be dispensed which is selected by an operator; memory means for storing said signal; a plurality of money storing sections in which currency separated according to denominations is stored respectively; money issuing means which operates to issue money piece by piece from at least one of said plurality of money storing sections thereby to issue money with one monetary denomination or a plurality of monetary denominations; selector means for selecting the monetary denomination to be issued from the memorized content of said memory means and providing an indication signal representative thereof; circuit means for operating successively to read the amount of money corresponding to said signal stored in said memory means in a predetermined order for every monetary denomination and to compare an amount of money issued with the amount of money to be dispensed in a predetermined order issued in accordance with said indication signal, said circuit means producing a coincidence signal when the amount of money to be paid equals the amount of money issued; and means for stopping the operation of the money issuing means with the aid of said coincidence signal when the amount of money to be dispensed coincides with the amount of money issued, thereby to prevent further dispensing of money.

4i. An automatic currency dispensing apparatus, comprising: a manual keyboard adapted to select an amount of money to be dispensed, by depressing predetermined keys of said keyboard; a tape reader means for reading a code for the amount of money to be paid from a tape; an encoder means for converting a signal representing the amount of money to be paid and being issued from the tape reader or the manual keyboard into a predetermined binary code; means for registering the binary code while succeedingly shifting said binary code by one digit from a least significant digit toward the next higher digit; a display means for displaying an amount of money which displays in a deci' mal system a registered condition of a shift register; means for reading a numerical value of each digit of said display means thereby setting a currency-note issuing order for a note-issuing means of a note drum; a readingdevice means for reading notes issued from said note-issuing means; a count memory circuit means for counting a pulse output from the reading device; a comparison circuit which compares the content of a predetermined higher significant digit of the shift register with the content of the count memory circuit after completion of registering, thereby to issue a coincidence signal upon coincidence of said contents; a drum-driving circuit means which stops the noteissuing operation of a predetermined note-issuing means by said coincidence signal and shifts a following note-issuing means to a note-issuing position; and means responsive to the coincidence signal, for shifting the contents of the shift register one digit.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3099274 *Sep 17, 1959Jul 30, 1963Rayment Fitzsimons AlanControl circuits for money issuing system
US3527238 *Feb 6, 1968Sep 8, 1970Mayne Nickless LtdPay machine
US3588449 *Apr 11, 1967Jun 28, 1971Rca CorpElectronic check-cashing system
US3648020 *Apr 15, 1970Mar 7, 1972Omron Tateisi Electronics CoAutomatic deposit-receiving and cash-dispensing system
US3675816 *Jun 18, 1970Jul 11, 1972Digital Security SystemsCurrency dispensing apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3914579 *Dec 18, 1973Oct 21, 1975Glory Kogyo KkAutomatic money dispenser
US3949200 *Nov 7, 1974Apr 6, 1976Glory Kogyo Kabushiki KaishaSystem for selective operation of money dispensing machine
US3958583 *Dec 18, 1973May 25, 1976Glory Kogyo Kabushiki KaishaMoney dispenser
US4001568 *Dec 16, 1974Jan 4, 1977Glory Kogyo Kabushiki KaishaMonetary receipt and payment managing apparatus
US4025758 *Jul 10, 1975May 24, 1977Glory Kogyo Kabushiki KaishaAutomatic money-issuing apparatus
US4044232 *Jan 23, 1976Aug 23, 1977International Business Machines CorporationElectronic copy selection controls for a document reproduction machine
US4418417 *Apr 6, 1981Nov 29, 1983Laurel Bank Machine Co., Ltd.Reception control system for paper counting machine
US4532641 *Jul 12, 1982Jul 30, 1985Sharp Kabushiki KaishaCash accounting system
US6038553 *Sep 19, 1997Mar 14, 2000Affiliated Computer Services, Inc.Self service method of and system for cashing checks
Classifications
U.S. Classification221/9, 377/39, 902/15, 377/8, 194/211, 902/40, 221/13
International ClassificationG07D11/00, G06K7/00, G07D1/00
Cooperative ClassificationG07D11/0051, G07D11/0054
European ClassificationG07D11/00F, G07D11/00F2