Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3785354 A
Publication typeGrant
Publication dateJan 15, 1974
Filing dateFeb 18, 1972
Priority dateFeb 18, 1972
Publication numberUS 3785354 A, US 3785354A, US-A-3785354, US3785354 A, US3785354A
InventorsJ Moulds
Original AssigneeGen Motors Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Fuel injection system
US 3785354 A
Abstract
In an electronically controlled fuel injection system, the electronic package is mounted on a finned heat dissipating pad extending horizontally from the air inlet body whereby heat generated during operation of the electronic package may be dissipated through the fins to the atmosphere and to the air flow through the air inlet body.
Images(4)
Previous page
Next page
Description  (OCR text may contain errors)

Moulds Jan. 115, 11974 FUEL INJECTION SYSTEM OTHER PUBLICATIONS [75 1 Inventor: John Moulds Penfield Report On Transistor Ignition Systems, Reprinted by [73] Assignee: General Motors Corporation, Permission of Science and Mechanics, Feb. 15, 1963 Detroit, Mich.

Prima Examiner-Laurence M. Goodrid e 2 b. 18 1 72 W g 2] Filed Fe 9 Attorney-C. K. Veenstra [21] App]. No.: 227,461

[57] ABSTRACT [52] 123/32 123/139 123/52 MV in an electronically controlled fuel injection system, [51] Int. Cl. F02m 51/00 the electronic package is mounted on a finned heat [58] Field of s 'i'gii i'"Aw i g i dissipating pad extending horizontally from the air inlet body whereby heat generated during operation of the electronic package may be dissipated through the [56] References Clted fins to the atmosphere and to the air flow through the UNITED STATES PATENTS air inlet body 3,500,803 3 1970 Long 123 32 EA 3,421,825 1/1969 Maycock 123/148 E 2 Claims, 9 Drawing Flgures PATENTED JAN 1 5 H374 sum 1 or 4 FUEL INJECTION SYSTEM This invention relates to a fuel injection system having numerous advantages of construction and operation over those available heretofore.

Particular advantages may be noted in the mounting of the electronic package on a heat conducting pad extending from the induction air inlet body: one surface of the pad has a plurality of recesses defining fins which dissipate heat to the atmosphere ambient the pad, and in addition, the pad conducts heat to the air inlet body for dissipation to the air flow therethrough.

The details as well as other objects and advantages of this invention are set forth in the remainder of the specification and are shown in the drawings in which:

FIG. 1 is a side elevational view of a fuel injection system, also showing an air cleaner mounted'on the air inlet body but omitting any showing of the inlet manifold and other engine components for clarity of detail; FIG. 2 is a front elevational view of the fuel injection system, showing its relationship to the inlet manifold and cylinder heads;

FIG. 3 is a top plan view of the fuel injection system, showing the bracket securing the air inlet body and the fuel rails into a single package for testing and shipping;

FIG. 4 is a sectional view, as it would appear along line 44 of FIG. 3, showing one of the injectors mounted in the fuel rails and also showing the relationship of the components to the induction passage in the inlet manifold and cylinder heads;

FIG. 5 is a sectional view, as it would appear along line 55 of FIG. 3, showing one of the air inlet fittings for the atmospheric air galleries in the fuel rails;

FIG. 6 is a sectional view along line 6-6 of FIG. 4 showing the constructional details of one of the fuel injectors;

FIG. 7 is a sectional view along line 77 of FIG. 2 showing the mounting of a fuel temperature thermistor;

FIG. 8 is a bottom plan view of the air inlet body and the heat conducting pad; and

FIG. 9 is a sectional view along line 9-9 of FIG. 8 showing further details of the heat conducting pad.

Throughout the drawings, some portions of the electrical wiring and the air and vacuum hoses are illustrated but most portions of such have been omitted for a clearer illustration of other components of the fuel injection system.

Referring to the drawings, the fuel injection system includes an air inlet body 110 and a pair of extruded fuel rails 12 and 14. Mounted on an inlet manifold 16 which in turn is mounted on cylinder heads 18 and 20, air inlet body has a pair of air inlet passages 22 and 24 which register with the induction passage 26 extending through inlet manifold 16 and heads 18 and to the combustion chamber inlet ports. Throttles 28 and 30 are disposed in inlet passages 22 and 24 on a rotatable shaft 32 for controlling air flow through induction passage 26.

Air inlet body 110 also is provided with a transducer 34, such as that described in US. Ser. No. 202,760, filed Nov. 29, 1971, which measures the absolute pressure in air inlet passages 22 and 24 and induction passage 26 downstream of throttles 28 and 30 and provides an electrical signal proportional thereto.

Air inlet body 10 also has provision for a curb idle ad justment 36 and a fast idle control valve 38 such as those shown in US. Ser. No. 41,141, filed May 25, 1970.

If desired, air inlet body 18 also may include provision for a transducer 48 which provides an electrical signal indicative of a sudden increase in pressure in air inlet passages 22 and 24 and induction passage 26 downstream of throttles 28 and 38 and thus indicative of engine acceleration.

In addition, air inlet body 18 includes provision for mounting a thermistor 42 which senses the temperature of the air entering air inlet passages 22 and 24 and induction passage 26. Further, air inlet body 10 may include provision for an electrical switch 44 which is opened and closed by a throttle lever 46 secured on throttle shaft 32 and which thus indicates the position of throttles 28 and 38. An adjusting screw 48 may be provided to limit throttle closing movement of throttle lever 46.

A heat conducting pad 50 extends horizontally from air inlet body 10 toward the rear of the engine. As shown in FIG. 8, a drilled passage 52 provides a manifold vacuum tap to which the manifold vacuum connection 54 shown in FIG. 3 may be mounted. Other fittings 56 also shown in FIG. 3 may be provided for various vacuum signals created as throttle 30 traverses various ports (not shown) provided in air inlet passage 24.

Other vacuum taps, such as that shown at 58 in FIG. 2, also may be provided.

As shown in FIGS. 1 and 3, an electronic package 60 is mounted on heat conducting pad 50. Electronic package 60 receives electrical signals from the components, such as transducers 34 and 40, throttle switch 44, and thermistor 42, which meter air flow to the engine and controls energization of the injectors which meter fuel flow to the engine as described below. Referring to FIGS. 8 and 9, electronic package 60 is designed to mate with the heat transfer surface 62 of pad 50 whereby heat generated during operation of electronic package 60 may be conducted into heat conducting pad 50. The lower surface pf pad 50 has a plurality of elongated recesses 64 which define a plurality of fins 66 therebetween. Fins 66 radiate heat from pad 50 into the atmosphere ambient pad 58, space being provided between the lower portion of pad 50 and inlet manifold 16 to permit air circulation. Recesses 64 and fins 66 are generally parallel and their major axes extend longitudinally toward air inlet body 10, thus facilitating heat conduction to air inlet passages 22 and 24. Heat generated during operation of electronic package 60 also is dissipated, therefore, into the air flowing through inlet passages 22 and 24 to induction passage Still referring to FIGS. 8 and 9, it may be noted that several ports 68 and 70 provided openings from air inlet passages 22 and 24, below throttles 28 and 30, to manifold pressure chambers 72 and 74. Manifold vacuum passage 52 extends from chamber 74, while manifold pressure transducer 34, idle air controls 36 and 38, and acceleration transducer 40, as well as other desired components, are associated with chamber 72.

Fuel rail 12 extends longitudinally along the righthand bank of combustion chambers while fuel rail 14 extends longitudinally along the left-hand bank of combustion chambers. Rails 12 and 14 are shown in FIG. 2 as being mounted on inlet manifold 16, but provision could be made for mounting the rails on cylinder heads 18 and 20, if desired.

As shown in FIGS. 4 and 5, rails 12 and 14 have fuel passages 76 and air passages or galleries 78 which are formed during the process of extruding rails 12 and 14. Air galleries 78 have fittings 80 provided with hoses 82 to receive air from an air cleaner 84. As shown in FIG. 1, air cleaner 84 is supported by an adapter ring 85, received on a ledge 86 formed about air inlet body 10, and is secured by a stud 87.

Each rail 12 and 14 has a plurality of injectors 88 retained, by clamps 90 as shown in FIG. 3, in sockets 92 formed as shown in FIG. 4. Sockets 92 intersect fuel passages 76, and rings 94 surrounding injectors 88 above and below passages 76 prevent leakage of fuel from sockets 92.

As shown in FIG. 6, each injector 88 has a screen 96 through which fuel is received from passage 76. Fuel passes from screen 96 through an opening 98 in the injector body 100 and then through a central bore 102 in the nozzle 103. A valve plunger 104 controls flow of fuel from bore 102 through nozzle opening 106. When energized by electronic package 60, a solenoid coil 108 lifts a magnetically responsive member 110 secured on the end of valve plunger 104, thus metering and delivering fuel from fuel passage 76 through injector socket 92, screen 96, opening 98, bore 102, and opening 106 into the base region 112 of socket 92. Nozzle opening 106 sprays the fuel through a critical flow orifice member 114 which is disposed in the outlet 115 opening from base region 112 of socket 92. Orifice members 114 are aimed through induction passage 26 toward the inlet ports for the combustion chambers located at the ends of induction passage 26.

Branch passages 116 extend from air galleries 78 to base regions 112 of sockets 92 to provide atmospheric pressure regions at the outlets of injectors 88 and to supply a constant flow of air through orifice members 114. Branch passages 116 receive plugs 118 at the outer ends.

As best shown in FIG. 3, the rearward end of rail 14 is provided with a filter housing 120 which receives fuel through a fitting 122 from a fuel pump such as that set forth in U.S.Ser. No. 211,934, filed Dec. 27, 1971. Filter housing 120 supplies fuel to fuel passage 76 in rail 14 and, through a crossover pipe 124, to a similar fuel passage in rail 12. A fitting 126 may be provided on the rearward end of rail 12 to receive fuel from crossover pipe 124. At the forward end of rail 14, a fitting 128 houses a fuel temperature responsive thermistor 129 and provides a connection between fuel passage 76 in rail 14 and a crossover pipe 130 which extends to a fitting 132 at the forward end of rail 12. Fitting 132 includes means for bleeding fuel vapor from fuel passages 76 in rails 12 and 14 as set forth in U.S. Ser. No. 22l,640, filed Jan. 28, 1972.

As shown in FIG. 3, a bracket 134 is bolted at its outboard ends 136 and 138 to rails 12 and 14 and has a central portion 140 which is received on air cleaner adapter ring ledge 86 formed about air inlet body 10. A central arm 144 carries a bolt 146 which is received in a hole tapped in body to receive air cleaner stud 87, thereby securing bracket 134 to air inlet body 10. By this means, air inlet body 10 and rails 12 and 14 are secured in a single package whereby both air and fuel metering components of the fuel injection system may be tested and shipped as a single unit. If desired, the bracket may be removed during installation of the air inlet body 10 and rails 12 and 14 on the engine.

I claim:

1. An air inlet assembly for an internal combustion engine having an induction passage for air flow to the engine, a nozzle for supplying fuel to the engine, electrically energizable means controlling fuel flow through said nozzle, and electronic means operable to energize said electrically energizable means, said electronic means operating at a temperature higher than the temperature ambient said air inlet assembly, said air inlet assembly comprising a unit having an air inlet body and having a heat conducting pad extending from said body, said body having an air inlet passage adapted for registration with said induction passage and including a throttle disposed in said air inlet passage for controlling air flow to the engine, said pad having one surface adapted for receiving said electronic means in heat exchange relationship and having another surface containing a plurality of elongated recesses which define a plurality of outwardly extending fins, whereby heat generated during operation of said electronic means may be conducted through said pad to said fins for dissipation to the atmosphere ambient said fins and to said air inlet body for dissipation to air flow through said air inlet passage when the temperature of said electronic means is higher than the temperature ambient said air inlet assembly.

2. An air inlet assembly for an internal combustion engine having an induction passage for air flow to the engine, a nozzle for supplying fuel to the engine, electrically energizable means controlling fuel flow through said nozzle, and electronic means operable to energize said electrically energizable means, said electronic means operating at a temperature higher than the temperature ambient said air inlet assembly, said air inlet assembly comprising a unit having an air inlet body and having a heat conducting pad extending from said body, said body having an air inlet passage adapted for registration with said induction passage and including a throttle disposed in said air inlet passage for controlling air flow to the engine, said pad having one surface adapted for receiving said electronic means in heat exchange relationship and having another surface containing a plurality of elongated recesses which define a plurality of outwardly extending fins wherein the major axis of said elongated recesses and fins extends toward said air inlet body to maximize the cross-sectional area of said pad available for heat flow to said air inlet body, whereby heat generated during operation of said electronic means may be conducted through said pad to said fins for dissipation to the atmosphere ambient said fins and to said air inlet body for dissipation to air flow through said air inlet passage when the temperature of said electronic means is higher than the temperature ambient said air inlet assembly.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3421825 *May 31, 1966Jan 14, 1969Ass Elect IndElectric spark ignition units
US3500803 *Feb 19, 1969Mar 17, 1970Gillett Tool CoElectronic modulator circuit for precision fuel metering systems
Non-Patent Citations
Reference
1 *Report On Transistor Ignition Systems, Reprinted by Permission of Science and Mechanics, Feb. 15, 1963
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4416241 *Jul 27, 1981Nov 22, 1983Robert Bosch GmbhMixture formation system for mixture-compressing internal combustion engines with externally supplied ignition
US4475486 *Feb 18, 1982Oct 9, 1984General Motors CorporationEngine induction system
US4503826 *Apr 22, 1981Mar 12, 1985General Motors CorporationFuel injection apparatus
US4510909 *Apr 5, 1984Apr 16, 1985General Motors CorporationFor an engine
US4512314 *Dec 10, 1982Apr 23, 1985Mitsubishi Denki Kabushiki KaishaFuel control apparatus for an internal combustion engine
US4543914 *Sep 26, 1984Oct 1, 1985Lucas Industries Public Limited CompanyFor supplying fuel to an internal combustion engine
US4601275 *Aug 23, 1982Jul 22, 1986General Motors CorporationFor an engine
US4763611 *Oct 28, 1986Aug 16, 1988Diesel Kiki Co., Ltd.Electronically controlled fuel injection pump
US4766869 *Apr 22, 1987Aug 30, 1988Weber S.R.L.Housing system for a central electronic processing unit of a heat engine
EP0141883A1 *Jul 6, 1983May 22, 1985General Motors CorporationFuel injection apparatus
Classifications
U.S. Classification123/478, 261/DIG.820, 123/184.31
International ClassificationF02M69/46, F02M51/06, F02M61/14, F02M51/00, F02M69/04, F02M53/08
Cooperative ClassificationF02M69/047, F02M69/465, F02M51/0675, F02M61/145, Y10S261/82, F02M51/005, F02M69/044, F02D2200/0606, F02M53/08
European ClassificationF02M51/00C, F02M51/06B2E2A, F02M69/04D, F02M61/14B, F02M53/08, F02M69/04C2, F02M69/46B2