Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3787038 A
Publication typeGrant
Publication dateJan 22, 1974
Filing dateNov 7, 1972
Priority dateJan 4, 1970
Also published asCA968555A, CA968555A1, DE2064407A1
Publication numberUS 3787038 A, US 3787038A, US-A-3787038, US3787038 A, US3787038A
InventorsA Ivanoy, E Kondratiev, K Makarov, G Moiseevich, I Osmaga, A Pischulin, A Pochtman, L Pokrass, M Robin, F Sheinfain, I Slavkin, P Tesner, G Zhitnik
Original AssigneeA Ivanoy, E Kondratiev, K Makarov, G Moiseevich, I Osmaga, A Pischulin, A Pochtman, L Pokrass, M Robin, F Sheinfain, I Slavkin, P Tesner, G Zhitnik
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Reformer for firing reverberatory furnace and method of operating said reformer
US 3787038 A
Abstract
A reformer for firing a reverberatory furnace comprising a reaction chamber with a device for incomplete combustion of the gaseous and liquid hydrocarbon fuel accompanied by the formation of soot which is supplied into the working space of the furnace for ensuring a high luminosity of the flame.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Tesner et al.

[ 51 Jan. 22, 1974 REFORMER FOR FIRING REVERBERATORY' FURNACE AND METHOD OF OPERATING SAID REFORMER [76] Inventors: Pavel Alexandrovich Tesner, ulitsa Chaplygina, 2, kv. 3; Konstantin Ivanovich Makarov, Khlebozavodskoi proezd, 5, korpus 2, kv. 370; Alexandr Kornilovich lvanov, ulitsa Raskovoi, 33, kv. 4 9;

Mark Anisimovich Robin, 2, kvertsl,

11, kv. 19; Igor Sergeevich Slavkin, ulitsa, Mira, 9, kv. 10; Alexandr Petrovich Pischulin, Proletarsky prospekt, korpus-1, kv. 30, all of Moscow; Leonid Mikhailovich Pokrass, ulitsa Pionerskaya, 98, Donetsk; Alexandr Markovich Pochtman, ulitsa Prardy, 5, kv. 41v, Kharkov; Felix Isaakovich Sheinfain, ulitsa Postysheva, 120, kv. 18, Donetsk; Evgeny Mikhailovich Kondratiev, prospekt Metallurgov, 107, Donetsk; Grigory lsaevich Moiseevich, ulitsa Postysheva', 122, kv. 54, Donetsk; Igor Ivanovich Osmaga, bulvar Shevchenko, l7, kv. 53, Donetsk; Georgy Gavrilovich Zhitnik, bulvar Pushkina, 25, kv. 21, Donetsk, all of U.S.S.R.

22 Filed: Nov. 7, 1912 21 App1.No.:304,307

Related US. Application Data [62] Division of Ser. No. 103,127, Dec. 31, 1970,

abandoned.

[3 Foreign Application Priority Data .lan.4. 1970 UIS.S.R 1391905 [52] US. Cl. 266/24, 431/351 [51] Int. Cl. C21c 5/04 [58] Field of Search 266/24, 33, l R; 431/351;

[56] References Cited UNITED STATES PATENTS 3,554,507 l/l97l Andonley et al. 431/351 Primary Examiner-Gerald A. Dost Attorney, Agent, or Firm-John C. Holman et a1.

[57] ABSTRACT A reformer for firing a reverberatory furnace comprising a reaction chamber with a device for incomplete combustion of the gaseous and liquid hydrocarbon fuel accompanied by the formation of soot which is supplied into the working space of the furnace for ensuring a high luminosity of the flame.

4 Claims, 1 Drawing Figure PATENTED JAN 2 21974 This is a divisional, of application Ser. No. 103,127, filed Dec. 31, 1970 and now abandoned.

The present invention relates to the devices for firing reverberatory furnaces and more particularly it relates to the reformers for firing open-hearth furnaces and to the method of their operation involving preliminary preparation of the fuel in order to ensure a high luminosity of the flame in the furnace.

The present invention can be used most successfully in reverberatory furnaces and fire-chambers whose efficient operation requires an intensively radiating and highly luminous flame.

Known in the art are devices for firing reverberatory furnaces with gaseous fuel, for example, natural gas, wherein the gas is preliminarily reformed, i.e., incompletely burned which is accompanied by the formation of soot. Such a device disclosed in US. Pat. No. 3,345,054, and called reformer, has a fire-proof reaction chamber with a cylindrical internal surface in which natural gas is reformed under the conditions conductive to a maximum .transformation of carbon contained in gas into soot. The hot soot-gas mixture obtained in the reformer is mixed with the non-reformed gas thus producing a fuel mixture. On being introduced into the furnace, this mixture, containing a required amount of soot, gives a cone of flame which is characterized by high luminosity and, in consequence, has a high degree of heat transfer by radiation to the product being heated. This flame possesses the requisite rigidity owing to a high velocity of the fuel stream delivered into the furnace.

For a maximum efficiency of the reforming process, the gaseous fuel is burned incompletely in the reformer in a rotary turbulent diffusion flame. For this purpose the gaseous fuel is fed into the reaction chamber in the form of an axial stream through a correspondingly set branch pipe of the burner device whereas the air is delivered through a branch pipe set tangentially to the cylindrical internal surface of the reaction chamber and installed in the front part of the reformer, on its side wall. This produces a rotary diffusion flame in the reformer reaction chamber, this flame allowing more than 20% of the carbon contained in the gaseous fuel to be tr ansformed into soot. This is considerably more than can be obtained with other arrangements for incomplete combustion. The air consumption in this case is 0.35-0.45 of the stoichiometric consumption.

However, in such an arrangement said reformer cannot reform liquid hydrocarbons such as the fuel oil used habitually as a stand-by fuel or, in absence of natural gas, as the main fuel.

The fuel oil can also be used as an addition to the gaseous fuel for imparting the required luminosity to the flame, and is fed directly into the working space of the furnace.

Under these conditions the fuel oil is delivered through spray nozzles or injectors. In contrast to the gaseous fuel this leads to the necessity of increasing the coefficient of surplus air and to unproductive utiliyation of a part of the furnace working space to prepare the fuel oil for burning. Besides, the soot yield in this case is not higher than 1'0 percent of the carbon con tained in the fuel oil. This results in a higher consumptionof fuel per ton of the product.

An object of the present invention resides in eliminating the aforesaid disadvantages.

The main object of the invention consists in providing a reformer with such a reaction chamber which would make it possible to use efficiently both the gaseous and liquid fuel and to produce a highly luminous flame.

According to the invention, this object is accomplished by providing the reformer chamber with a device for incomplete combustion of liquid hydrocarbon fuel, said device being installed near the device for incomplete combustion of the gaseous fuel and provided with a spray nozzle for supplying liquid fuel into the chamber. Such a universal burner device allows reforming both types of fuel and producing soot in the amount sufficient for the high luminosity of the flame.

As compared with the known methods of compound firing of furnaces with gas and fuel oil, preliminary reforming of fuel oil makes it possible to transform into soot up to 30 percent of the carbon contained in fuel oil and to produce a highly luminous flame which requires a smaller amount of surplus air owing to preliminary preparation of the fuel for combustion, thus reducing the consumption of fuel.

It is practicable that the liquid fuel should be supplied through an air atomizer spray nozzle which would be mounted coaxially inside the branch pipe supplying gaseous fuel in the burner device for firing gaseous fuel and,'simultaneously, coaxially with relation to the reaction chamber. As it has already been stated above, the air required for incomplete combustion is delivered tangentially to the cylindrical internal surface of the reaction chamber through a specially set branch pipe. This ensures the optimum conditions for the maximum transformation of the carbon contained in the fuel into soot, avoiding at the same time the settling of carbon on the walls of the reaction chamber which interferes with its normal functioning. Besides, this arrangement of the burner device for liquid fuel ensures its easy installation, removal and replacement, when necessary.

It is practicable that the branch pipe supplying gaseous fuel in the device for burning this fuel should have a diameter equalling to 0.1 0.4 of the diameter of the reformer reaction chamber. This ensures a rational relation between the velocities of the streams of air and gaseous fuel and a maximum soot yield. Besides, this makes it possible to install the liquid fuel spray nozzle coaxially as it has been described above, without interfering with the conditions required for independent operation of the reformer on gaseous fuel.

In the preferable embodiment of the reformer reaction chamber, according to the invention, it is practicable that the reformer should incorporate some known devices for independent control of the flow rate of air, gaseous fuel, liquid fuel and of the agent which atomizes liquid fuel. This agent may be gas, e.g., natural gas, or air supplied under the required pressure. The independent supply of the above-mentioned substances allows the operator at the control desk to shift the reformer to operation on gaseous or liquid fuel or on their mixture with the required consumption ratio of these fuels.

According to the invention, if the furnace is tired with liquid fuel, the latter is gasified before burning in the reaction chamber by incomplete combustion accompanied by the formation of soot.

lf gaseous fuel is not available, air is used for atomizing liquid fuel; besides, air can be used for complete combustion of a part of the liquid fuel outside the reaction chamber in the tunnel burners, from which the products of complete combustion are delivered tangentially to the internal surface of the reaction chamber. For better aerodynamics of the streams in the reaction chamber it is practicable to install an even number of tunnel burners, for example two burners opposed diametrically to each other.

A substantial advantage of the present invention lies in reaching a 10 percent economy of fuel as compared with the known methods of compound firing of furnaces with natural gas and fuel oil.

Described below is a preferable embodiment of the reformer according to the invention with reference to the accompanying drawing (which is a schematic longitudinal section through a part of an open-hearth furnace, including its firing throat, and one of the reform ers communicating with said throat and furnace.

Installed in the firing throat I of the furnace 2 is a fire-proof nozzle 3 of a known design, communicating through a refractory channel 4 with the reaction chamber 5 of the reformer 6. The nozzle 3 is inclined to the horizontal to suit the required conditions of product heating in the furnace. The area through the channel in the nozzle 3 is selected so as to ensure the required velocity of the fuel mixture flow and to produce a rigid flame. The nozzle 3 is fitted with a branch pipe 7 for introducing the non-reformed part of gaseous fuel into the reformed products flowing through the nozzle.

The reaction chamber 5 of the reformer 6 accommodates devices for incomplete combustion of gaseous and liquid fuel. The burner device for gaseous fuel, e.g., natural gas, consists of a gas supply branch pipe 8 and an air supply branch pipe 9. The branch pipe 8 is installed coaxially with the reaction chamber 5 while the branch pipe 9 is set tangentially to the internal cylindrical surface of the chamber 5. The burner device for liquid fuel, e.g., fuel oil, comprises an air atomizer spray nozzle 10 ofa known design provided with a pipe 11 for the delivery of the atomizing agent, as well as the above-mentioned branch pipe 9, a by-pass line 12 with a shutoff means 13 and a tunnel burner 14 of a known design, adapted for complete combustion of fuel. The fuel may be fuel oil, natural gas, coke gas or some other cheap fuel.

The spray nozzle 10 and the pipe 11 are set coaxially inside the branch pipe 8.

Part of the non-reformed gaseous fuel is supplied to the branch pipe 7 through the pipeline 15. The air is supplied to the branch pipe 9 through the pipeline 16 and the by-pass line 12. During operation of the tunnel burners 14 they are fed with fuel through the pipeline 17 whereas air is delivered through the pipeline 16. Part of the gaseous fuel being reformed is delivered to the branch pipe 8 through the pipeline 18. The reformed liquid fuel is delivered to the spray nozzle 10 through the pipeline 19. 1f the fuel is atomized by natural gas, the latter is supplied to the branch pipe 11 through the pipeline 20; if the fuel is atomized by air, the latter is supplied through the pipeline 21.

The pipelines 12, 15, 16, 17, l8, 19, 20 and 21 are fitted with shut-off means (gate valves), 13, 22, 23, 24, 25, 28, 26 and 27, respectively.

These means are provided with remote control included into the atuomatic system (not shown) of controlling the furnace firing and shifting this firing from one side of the furnace to the other.

If the open-hearth furnace is fired with gaseous fuel, e.g. natural gas, the shut-off means 23, 24, 26, 27 and 28 must be closed while the shut-off means 22, 13 and 25 must be open for admitting the required quantities of gas and air. It is recommended to reform and supply through the pipeline 18 about 40% of the entire amount of natural gas used for firing the furnace and to use about 4 m of air per l m of natural gas for incomplete combustion in the reaction chamber. At this air-gas consumption ratio, when gas is supplied in an axial stream through the branch pipe 8 while air is supplied in a tangential stream through the branch pipe 9 the soot yield reaches a maximum. It is practicable that the diameter of the branch pipe 8 should be 0.1-0.4 of the inside diameter of the chamber 5.

The hot soot-gas mixture produced in the chamber 5 flows through the channel 4 into the nozzle 3 where it is mixed with the non-reformed part of cold gas supplied through the branch pipe 7. As the non-reformed gas is thus heated, the fuel mixture delivered into the furnace 2 form the nozzle 3 is better prepared for complete combustion; as a result, said combustion is accelerated and proceeds at higher temperatures. All this increases the radiation heat transfer of the flame.

When the furnace is fired simultaneously with gaseous and liquid fuels there may be different combinations of the flow rates of these fuels. In one of the methods it is recommended to reform such a quantity of fuel oil which corresponds to 20 percent of the total heat spent for firing the furnace. In this case it is necessary to open correspondingly the shutoff means 13, 22, 27 and 28 to supply air for reforming the fuel oil through the by-pass line 12; the natural gas is fed through pipeline 15 and branch pipe 7 into the reformed products flowing through the nozzle 3; the natural gas is also supplied through the pipeline 21 for atomizing the fuel oil delivered through the pipeline 19.

It is also possible to use other combinations of the consumption ratio of the gaseous and liquid fuels delivered into the reaction chamber 5 for the preparation of the hot sootgas mixture and into the nozzle 3 for mixing cold gas with said mixture.

Though natural gas can be delivered for reforming into the reaction chamber 5 simultaneously with fuel oil, it is preferable to employ such a layout where the fuel oil used for furnace firing is preliminarily reformed and gasified so that the furnace is supplied through the nozzle 3 with the products of reforming mixed with natural gas. Thus, the furnace receives a spray of a fuel mixture consisting wholly of heated gases containing soot. Subsequent flame firing of this gaseous fuel mixture proceeds with low surplus air coefficients characteristic only of the gaseous fuel and, correspondingly, at high temperatures. This ensures a high luminosity of the flame and a high heat transfer by radiation.

When natural gas is not available and the furnace is fired with fuel oil, it is necessary to close the shut-off means 22, 25, 27 and open the shut-off means 26 and 28 for delivering, respectively, air as an atomizing agent, and liquid fuel for reforming. The process of reforming can in this case proceed owing to the-heat produced by the combustion of the part of fuel oil delivered into the chamber 5 through the spray nozzle 10.

The air is then delivered for reforming through the bypass line 12 and the shut-off means 13.

The reforming process can also proceed owing to the heat produced by the combustion of a part of fuel oil in the tunnel burners 14. It is preferable to have an even number of tunnel burners l4 and arrange them diametrically opposite to each other for better aerodynamics of the streams in the chamber 5. In this case said burners are supplied with the corresponding amounts of fuel oil and with the quantity of air sufficient for complete combustion of fuel oil. For this purpose the shut-off means 23 and 24 are opened through a required angle and the shut-off menas 13 are closed. The total recommended ratio of the consumption of air and fuel oil delivered into the reaction chamber is 3 m /kg. This amount includes the air spent for the atomization of fuel oil. These conditions ensure the reforming time necessary for obtaining the sufficient yield of soot as well as the preliminary gasification of liquid fuel before burning it in the furnace. As a result, the fuel mixture delivered for flame burning contains combustible hot gases and a sufficient proportion of soot. Owing to this the flame combustion proceeds with low coefficients of surplus air which are characteristic only of gaseous fuel, and at high temperatures. This also ensures a maximum radiation of the soot contained in the flame.

While using liquid hydrocarbons as fuel, the invention makes it possible to subject them to preliminary gasification and transform them simultaneously into soot in the quantities required for high luminosity of the flame. The high temperatures produced by the burning of'such prepared fuel increase the radiation of the soot in the flame and of the flame as a whole which intensifies the heat transfer and gives at least a percent saving in fuel.

What we claim is:

1. A reformer for firing a reverberatory furnace comprising: a reaction chamber with a cylindrical internal surface communicating with the working space of said furnace and intended for incomplete combustion in it of the hydrocarbon fuel, said combustion being accompanied by the formation of soot to be delivered into the furnace; a device for incomplete combustion of gaseous hydrocarbon fuel located in said reaction chamber; said device provided with a branch pipe supplying gaseous fuel into said chamber and installed coaxially with the latter, and a branch pipe supplying air into the same chamber, located tangentially to the internal surface of said chamber; and a device for incomplete combustion of liquid hydrocarbon fuel, installed in said chamber near said device for incomplete combustion of gaseous fuel and provided with a spray nozzle for the supply of liquid fuel into said reaction chamber.

2. A reformer according to claim 1 wherein there is an air atomizer spray nozzle for the supply of liquid fuel, located coaxially inside said branch pipe for the supply of gaseous fuel.

3. A reformer according to claim 1 wherein the diameter of said branch pipe for the supply of gaseous fuel into said reaction chamber is 0.1-0.4 of the inside diameter of this chamber.

4. A reformer according to claim 1 wherein said devices for incomplete combustion of gaseous and liquid fuels are provided with known means of independent control of the flow rate of the air, gaseous and liquid fuels, and of the agent used for atomizing the liquid fuel.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3554507 *Aug 9, 1968Jan 12, 1971Alexandr Markovich PochtmanRegenerative reverberatory predominantly open hearth, gas-fired furnace
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5927216 *Jul 25, 1997Jul 27, 1999Yamaichi Metal Co., Ltd.Burner apparatus
US6083425 *Nov 2, 1998Jul 4, 2000Arthur D. Little, Inc.Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
US6123913 *Nov 3, 1998Sep 26, 2000Arthur D. Little, Inc.Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
US6126908 *Aug 26, 1996Oct 3, 2000Arthur D. Little, Inc.Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
US6136279 *Oct 16, 1998Oct 24, 2000Haldor Topsoe A/SReformer furnace with internal recirculation
US6207122Nov 2, 1998Mar 27, 2001Arthur D. Little, Inc.Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
US6254839Nov 3, 1998Jul 3, 2001Arthur D. Little, Inc.Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
US6375906Aug 10, 2000Apr 23, 2002Idatech, LlcSteam reforming method and apparatus incorporating a hydrocarbon feedstock
US6376113Nov 12, 1998Apr 23, 2002Idatech, LlcIntegrated fuel cell system
US6468480Nov 2, 1998Oct 22, 2002Lawrence G. ClawsonApparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
US6494937Sep 27, 2001Dec 17, 2002Idatech, LlcHydrogen purification devices, components and fuel processing systems containing the same
US6537352Dec 19, 2001Mar 25, 2003Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US6569227Feb 28, 2002May 27, 2003Idatech, LlcHydrogen purification devices, components and fuel processing systems containing the same
US6632270Feb 20, 2003Oct 14, 2003Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US6641625May 2, 2000Nov 4, 2003Nuvera Fuel Cells, Inc.Integrated hydrocarbon reforming system and controls
US6719831May 5, 2003Apr 13, 2004Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US6719832May 15, 2003Apr 13, 2004Idatech, LlcHydrogen purification devices, components and fuel processing systems containing the same
US6723156May 5, 2003Apr 20, 2004Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US6783741Apr 20, 2001Aug 31, 2004Idatech, LlcFuel processing system
US6824593Dec 5, 2003Nov 30, 2004Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US6869707Apr 19, 2002Mar 22, 2005Idatech, LlcIntegrated fuel cell system
US6953497Mar 16, 2004Oct 11, 2005Idatech, LlcHydrogen purification devices, components and fuel processing systems containing the same
US6986797May 2, 2000Jan 17, 2006Nuvera Fuel Cells Inc.Auxiliary reactor for a hydrocarbon reforming system
US6994927Mar 18, 2005Feb 7, 2006Idatech, LlcIntegrated fuel cell system
US7005113Apr 19, 2002Feb 28, 2006Idatech, LlcSteam reforming method and apparatus incorporating a hydrocarbon feedstock
US7052530Nov 15, 2004May 30, 2006Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US7066973May 2, 2000Jun 27, 2006Nuvera Fuel CellsIntegrated reformer and shift reactor
US7135048Aug 10, 2000Nov 14, 2006Idatech, LlcVolatile feedstock delivery system and fuel processing system incorporating the same
US7195663May 25, 2006Mar 27, 2007Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US7410531Mar 20, 2007Aug 12, 2008Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US7470293Mar 31, 2005Dec 30, 2008Idatech, LlcFeedstock delivery systems, fuel processing systems, and hydrogen generation assemblies including the same
US7507384Jun 13, 2003Mar 24, 2009Nuvera Fuel Cells, Inc.Preferential oxidation reactor temperature regulation
US7601302Sep 16, 2005Oct 13, 2009Idatech, LlcSelf-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
US7629067May 18, 2007Dec 8, 2009Idatech, LlcHydrogen-producing fuel processing systems and fuel cell systems with a liquid leak detection system
US7632322Sep 13, 2005Dec 15, 2009Idatech, LlcHydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
US7682718May 5, 2008Mar 23, 2010Idatech, LlcFuel processor feedstock delivery system
US7736596Oct 6, 2009Jun 15, 2010Idatech, LlcSelf-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
US7789941Apr 20, 2009Sep 7, 2010Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US7819955Aug 11, 2008Oct 26, 2010Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US7828864Mar 7, 2008Nov 9, 2010Idatech, LlcSteam reforming fuel processor, burner assembly, and methods of operating the same
US7939051May 21, 2007May 10, 2011Idatech, LlcHydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
US7972420May 18, 2007Jul 5, 2011Idatech, LlcHydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same
US7981172Apr 23, 2009Jul 19, 2011Idatech, LlcSteam reforming fuel processor, burner assembly, and methods of operating the same
US8021446Sep 13, 2006Sep 20, 2011Idatech, LlcSelf-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
US8038748Dec 11, 2009Oct 18, 2011Idatech, LlcHydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
US8057575Oct 21, 2010Nov 15, 2011Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US8157900Jun 9, 2011Apr 17, 2012Idatech, LlcHydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same
US8257466Nov 14, 2011Sep 4, 2012Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US8262752Oct 21, 2008Sep 11, 2012Idatech, LlcSystems and methods for reliable feedstock delivery at variable delivery rates
US8438907Dec 3, 2009May 14, 2013Idatech, LlcHydrogen-producing fuel processing systems with a liquid leak detection system
US8608814Sep 7, 2012Dec 17, 2013Dcns SaSystems and methods for reliable feedstock delivery at variable delivery rates
US8636828Aug 29, 2012Jan 28, 2014Dcns SaHydrogen purification membranes, components and fuel processing systems containing the same
US8696772Jun 22, 2011Apr 15, 2014Dcns SaSteam reforming fuel processor, burner assembly, and methods of operating the same
US20010009653 *Feb 2, 2001Jul 26, 2001Clawson Lawrence G.Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
US20020116872 *Apr 19, 2002Aug 29, 2002Edlund David J.Steam reforming method and apparatus incorporating a hydrocarbon feedstock
US20020119353 *Apr 19, 2002Aug 29, 2002Edlund David J.Integrated fuel cell system
US20030159354 *Apr 20, 2001Aug 28, 2003Edlund David J.Fuel processing system
US20030205139 *May 15, 2003Nov 6, 2003Edlund David J.Hydrogen purification devices, components and fuel processing systems containing the same
US20030223926 *Apr 10, 2003Dec 4, 2003Edlund David J.Steam reforming fuel processor, burner assembly, and methods of operating the same
US20040037758 *Jun 13, 2003Feb 26, 2004Darryl PollicaPreferential oxidation reactor temperature regulation
US20040083890 *Dec 5, 2003May 6, 2004Edlund David J.Hydrogen purification membranes, components and fuel processing systems containing the same
US20040231516 *Mar 16, 2004Nov 25, 2004Edlund David J.Hydrogen purification devices, components and fuel processing systems containing the same
US20050181248 *Mar 18, 2005Aug 18, 2005Edlund David J.Integrated fuel cell system
US20050188843 *Nov 15, 2004Sep 1, 2005Edlund David J.Hydrogen purification membranes, components and fuel processing systems containing the same
US20060037476 *Oct 10, 2005Feb 23, 2006Edlund David JHydrogen purification devices, components and fuel processing systems containing the same
US20060090396 *Mar 31, 2005May 4, 2006Edlund David JFeedstock delivery systems, fuel processing systems, and hydrogen generation assemblies including the same
US20060090397 *Oct 31, 2005May 4, 2006Edlund David JHydrogen generation and energy production assemblies
US20060213369 *May 25, 2006Sep 28, 2006Edlund David JHydrogen purification membranes, components and fuel processing systems containing the same
US20060216562 *Feb 3, 2006Sep 28, 2006Edlund David JIntegrated fuel cell system
US20060272212 *Sep 13, 2005Dec 7, 2006Edlund David JHydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
US20070251387 *Mar 20, 2007Nov 1, 2007Edlund David JHydrogen purification membranes, components and fuel processing systems containing the same
US20070266631 *May 18, 2007Nov 22, 2007Pledger William AHydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same
US20070274904 *May 21, 2007Nov 29, 2007Vernon Wade PophamHydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
US20080003471 *May 18, 2007Jan 3, 2008Beliveau Clint AHydrogen-producing fuel processing systems with a liquid leak detection system
US20080210088 *Oct 23, 2007Sep 4, 2008Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US20080222954 *Sep 13, 2006Sep 18, 2008Idatech, LlcSelf-Regulating Feedstock Delivery Systems and Hydrogen-Generating Fuel Processing Assemblies and Fuel Cell Systems Incorporating the Same
US20090155642 *Oct 21, 2008Jun 18, 2009Idatech, LlcSystems and methods for reliable feedstock delivery at variable delivery rates
US20090202873 *Apr 20, 2009Aug 13, 2009Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US20090202874 *Aug 11, 2008Aug 13, 2009Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US20090205253 *Apr 23, 2009Aug 20, 2009Idatech, LlcSteam reforming fuel processor, burner assembly, and methods of operating the same
US20100081023 *Dec 3, 2009Apr 1, 2010Idatech, LlcHydrogen-producing fuel processing systems with a liquid leak detection system
US20110116985 *Oct 21, 2010May 19, 2011Idatech, LlcHydrogen purification membranes, components and fuel processing systems containing the same
US20110232491 *Jun 9, 2011Sep 29, 2011Idatech, LlcHydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same
Classifications
U.S. Classification266/266, 431/351, 266/267
International ClassificationC21C5/04, F27B3/20, F27B3/00, C01B3/22, F23D17/00, C01B3/36
Cooperative ClassificationF27B3/00, C21C5/04, C01B3/22, F27B3/205, C01B3/36, F27B3/20, F23D17/00
European ClassificationC01B3/22, F23D17/00, C01B3/36, F27B3/00, F27B3/20B, F27B3/20, C21C5/04