Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3787229 A
Publication typeGrant
Publication dateJan 22, 1974
Filing dateFeb 17, 1971
Priority dateFeb 17, 1971
Also published asCA983792A1, DE2206698A1, DE2206698B2, DE2206698C3
Publication numberUS 3787229 A, US 3787229A, US-A-3787229, US3787229 A, US3787229A
InventorsR Rudness
Original AssigneeUnion Carbide Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Low-friction, wear-resistant material
US 3787229 A
Abstract
A material, and the process therefor, having at least a surface layer of highly densified, uniformly disposed spheres or spheroids partially embedded in a matrix with the exposed segments thereof forming a uniformly wavy finish with low-friction and wear-resistant characteristics.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Rudness [4511 Jan. 22, 1974 LOW-FRICTION, WEAR-RESISTANT MATERIAL [75] Inventor: Robert G. Rudness, Indianapolis,

Ind.

[73] Assignee: Union Carbide Corporation, New

York, NY.

[22] Filed: Feb. 17, 1971 [21] Appl. No.: 116,180

[52] US. Cl 117/132 BE, 29/195, 117/9,

[51] Int. Cl..... B6511 57/241, B23p 3/00, B32b 27/20 [58] Field ofSearch....'. l61/l62,l6l/l68, 242/157 C, 157 R,

[5 6] References Cited UNITED STATES PATENTS 2,555,319 6/1951 Cross 117/29 UX 3,388,027 6/1968 Altman 161/162 X 2,895,389 7/1959 Nagin.... 117/29 X 3,036,975 5/1962 Taub 117/132 BE X OTHER PUBLICATIONS Lee et a1., Handbook of Epoxy Resins, McGraw Hill Book Company, New York, NY. 1967, pages 4-2, 14-21 and 21-24. TP1180E6L4.C4.

Primary Examiner-Douglas J. Drummond Assistant Examiner-Thomas E. Bokan Attorney, Agent, or Firm-Harrie M. Humphreys; sl t Q2m@. ns ;,JmQ.-. Aruomes 5 7] ABSTRACT A material, and the process therefor, having at least a surface layer of highly densified, uniformly disposed spheres or spheroids partially embedded in a matrix with the exposed segments thereof forming a uniformly wavy finish with low-friction and wear-resistant characteristics.

10 Claims, 9 Drawing Figures Pmmmmz 3,787,229

SHEET 1 0F 3 WEAR SCAR 5 Minufe Wear Scar in Matte Chrome Plate WEAR SCAR 600 Minuie Wear Scor in Brush Finished,F|c|me Sprayed Coating F/GZ.

WEAR SCAR 90o Mi ute Wear Scorin Spherical Aluminum oxide Cod'ring INVENTOR ROBERT s. RUDNESS ATTORNEY PATENTEDJANZZIQM SHEET 2 BF 3 SEM 300x 5 Minute Weor Scar in Mattie Chrome Mn'rte Chrome Plufe Plate SEM 300x Brush Finished, Flume Sprayed 600 Minute Wear Scar in Brush Finished Coating SEM 300x Flume Sprayed Ooofing SEM 300x INVENTOR BY ROBERT G. RLDNESS ATTORNEY PATENTED M4221974 3, 787, 229

SHEET 3 BF 3 Spherical Aluminum Oxide Cooling Opfical240x 900 Minule Weor Scar in Spherical Aluminum OxIde Coating. Optical 240x INVEZNTOR ATTORNEY 1 LOW-FRICTION, WEAR-RESISTANT MATERIAL FIELD OF THE INVENTION DESCRIPTION OF THE PRIOR ART The textile industry is one example ofa prime user of low-friction, wear-resistant materials. These materials are used mainly as the component parts of the textile apparatus, such as rolls, pins, guides and the like, that.

commonly come in surface contact with running fibers. The surface of these parts is frequently required to have a low-friction value so that when the fiber moves over the surface, the coefficient of friction between the two surfaces will be at a minimum. The fiber is usually under tension coming off these component parts and any unnecessary increase or change in the coefficient of friction between the surfaces will not only result in non-uniform and erratic performance of the apparatus but could also cause actual breakage of the fiber.

Ceramic materials have wear-resistant characteristics and therefore have been extensively used as component parts in apparatuses designed for textile applications. However, ceramic parts are susceptible to breakage and in addition, ceramic material is unsuitable for transferring the heat buildup associated with the contact friction between the moving fibers and the surface of the ceramic parts. Moreover, it is very difficult to produce a low-friction surface on ceramic parts. To compensate for the mechanical strength deficiencies and poor heat transfer capabilities of ceramic parts, the textile industry has resorted to the use of component parts composed of metallic substrates coated with an outer layer of ceramic material. Although these coated metallic parts are sufficiently strong to withstand breakage and are capable of dissipating the heat buildup during a production run, they are not as desirable as the pure ceramic parts because the as-sprayed or other wise deposited ceramic outer layer is usually too rough and jagged for textile applications. Attempts for abrasively smoothing the as-deposited outer ceramic layer has succeeded in producing a low-friction surface part but upon subjecting it to a textile production run environment, the surface layer wears thus increasing the coefficient of friction between it and the moving fibers. It is suggested that the as-deposited ceramic layer be contacted with an abrasive material for a time period only sufficient to smooth the sharp peaks resulting from the protruding particles of the coating material on the surface. Although an improved ascoated part would be produced, there is no commercial means avaiable for insuring that only the protruding peaks would be abrasively removed and that such removal would result in a rounded surface for the protruding particles rather than a flat surface at their up- ,permost extremities.

A further advancement in the textile industry was achieved with the production of chromium plated metallic parts having a matte type: finish on the surface resembling the surface of the common orange. These chromium plated surfaces are admirably suited for use in providing low-friction surfaces which are gentle to textile materials. Chromium plated materials, however, are expensive to produce and do not exhibit a high degree of wear resistance.

Articles having a wear-resistant coating applied by various high temperature flame spraying techniques, such as detonation gun plating and plasma arc spraying, are also in wide use throughout the textile industry. While flame sprayed coatings are generally well suited for many textile applications, a uniform deposition of a coating to a complex surface configuration is difficult to apply since most spraying processes are limited to the line of sight travelled by the coating particles. Also flame spraying requires complex processing steps in their application thus rendering them even more expensive to apply than chromium platings.

Although the high temperature flame spraying techniques provide an advancement in the art of producing textile component parts, the need for producing complex configured parts having a low-friction, wearresistant surface is still desired. The present invention is directed to fulfilling this desired need.

SUMMARY OF THE INVENTlON This invention relates to materials having a low friction, wear-resistant surface and. to a process for producing it. Specifically, the invention relates to a variably shaped material having at least one outer layer of highly densified, uniformly disposed spheroidal to spherical shaped wear-resistant particles, such as metallic-oxide particles, protruding outward from a matrix secured to a metallic or non-metallic substrate thus providing a matte type surface finish resembling a sinusoidal polar waveform. When the substrate is also composed of the same uniformly disposed particles, the only requirement is that the outer surface have a matte type finish.

The criteria of the spheroidal particles are that they have wear-resistant characteristics, a melting point above the temperature of the heat buildup in its intended use which is usually above 200C, and be amenable to the particular material intended to contact them in their designed application. In addition, the wear-resistant particles have to be capable of being formed into spheroidal to spherical shapes so that once they are uniformly disposed and partly embedded in a matrix of plastic or the like, their protruding segments will produce a matte" type finish. Thus when tensionsubjected, long, thin, film or fibrous materials are pulled over a surface so formed, the materials will tangentiallycontact the rounded protruded wear-resistant particles only, thereby greatly minimizing the actual contact between the materials and the finished surface. This minimum contact area between the fibrous material and the finished surface is highly desirable in achieving low-friction characteristics.

Suitable wear-resistant particles for use in this invention include metal oxides, metal carbides, metal borides, metal nitrides and metal silicides in any combination or mixture thereof. Examples of some metal oxides include such compounds as alumina (Al O silica (SiO chromium sesquioxide (Cr O hafnium oxide nium boride (TiB zirconium boride (ZrB columbium boride (CbB molybdenum boride (M08 tungsten boride (W8 tantalum boride (TaB and chromium boride (CrB). Suitable metal nitrides include aluminum nitride (AlN), silicon-nitride (Si N titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), vanadium nitride (VN), niobium nitride (NbN), tantalum nitride (TaN) and chromium nitride (CrN). Suitable silicides include molybdenum silicide (MgSi tantalum silicide (TaSi tungsten silicide (WSi,), titanium silicide '(TiSi zirconium silicide (ZrSi vanadium silicide (VSi niobium silicide (NbSi chromium silicide (CrSi and boron silicide (B,Si For clarity and illustrative purposes only, the invention will be mainly directed to the use of alumina particles as the wear-resistant particles although any of the particles listed above can be used successfully according to this invention.

The'matrix or binderlayer can'consist of any material which is capable of adhering to a metal or non-metal substrate and which is capable of securely retaining -partially embedded rounded wear-resistant particles therein. Such materialsas thermoplastic or thermosetting resins, rubber, ceramic, glass and metal, in any and all mixtures thereof, are suitable for this purpose. The thickness of this binder layer should be at least about one-half the diameter of the largest particle size, or the average particle size, so as to insure proper securement of the particles therein. This outer layer thickness requirement is not necessary when the wear-resistant material is molded or cast from a homogeneous composite of particles intermixed with a binder. The only requirement necessary for this latter wear-resistant material is that it contain at least 35 percent by volume of wearresistant particles and preferably above about 50 percent by volume. I

The substrate, when employed, can either be a pure metal, a metal base alloy or a plastic. Where heat transfer characteristics are desirable, as in the textile industry, a metallic substrate would be preferable. Metals such as steel, aluminum, copper, brass, titanium and Monel (Trademark for alloy containing normally Ni 67%, Cu 28%, Mn l2%, Fe l.92.5%.) would be well suited for this purpose.

Aside from the casting and molding of wear-resistant parts, a binder, such as a layer of a thermoplastic or thermosetting resin, between about 0.0001 and 0.001 inch thick, preferably about 0.00025 inch thick, is initially deposited on a substrate by any conventional means such as by spraying, painting, dipping or the like.

When necessary, the coated substrate is then heated sufficiently to cause the binder to become tacky so that when the wear-resistant particles are deposited on the surface they will partially imbed themselves into the binder and be sufficiently secured therein to withstand the force of gravity. The particles are required to be fabricated into spheroidal to spherical shaped configurations, preferably spherical. One method for producing spherical shaped particles is by fusing boule powder in a Verneuil crystal-growing burner. The particles so produced will be substantially spherical and possibly have minor shrinkage cavities in the center. The exact size of the particles can be regulated by conventional means, such as by regulating the initial powder size or they can be suitably screened once they assume the desired spheroidal to spherical shaped configuration. Preferably the largest particle size should be no more than about 10 times larger than the smallest particle size in monolayer and multilayer materials. For homogeneous materials prepared by casting or molding techniques, this particle size ratio can be increased to 50. Thus by controlling the size of the particles for the outer layer, the density of the particles embedded in the matrix can be regulated thereby producing a uniform distribution of selected size particles on the surface of the part. This will produce a surface with a sinusoidal type polar wave finish admirably suitable for the textile industry.

The selected sized wear-resistant particles can be deposited on and embedded into the tacky binder in a number of ways such as by sprinkling the particles onto the binder-coated surface, or by immersing the bindercoated part into a confined zone containing the particles. Once the deposited particles are uniformly embedded in the matrix, the part can be lightly shaken to remove any unsecured particles thereon. The particleembedded tacky coated part can then be appropriately cured so as to firmly secure the particles in their embedded positions and to also firmly adhere the binder to the substrate. This will produce a matte type surface having low-friction, wear-resistant characteristics ideally suited for textile applications.

To further secure the wear-resistant particles in the matrix, a second binder application may be deposited on the surface of the material to substantially fill the voids or recesses existing between adjacent particles. This second binder application is preferably applied using a diluted resin or the like that has a low viscosity to enable the voids to be substantially filled by capillary action while simultaneously not depositing an excess adhesive layer on the surface of the projecting particles. The initial binder layer and/or the second binder application should preferably fill the voids between adjacent particles to a height at least above a plane defined as being parallel to the surface of the substrate and containing'all the cneter points of adjacent particles so as to insure a firmly embedded securement of the particles within the binder.

The materials produced according to this invention can have any desired shape from relatively straight segments to complex curvature segments as is usually associated with pigtails and other textile component parts. The coefficient of friction (Coefficient of friction as defined in H. G. Howell et al. Friction in Textiles, Textile Book Publishers, Inc., N. Y. 1959, page 42.) for such composite materials when used in textile applications for the production of fibers will be between about 0.17 and about 0.35, preferably about 0.2l. The uniform particle distribution within the binder layer provides a sinusoidal type polarized waveform on the surface of the substrate which greatly minimizes the contact area between a filament or the like that is made to pass over the surface. This uniform distribution of the particles on the surface of a substrate is best illustrated by referring to the drawings which show:

BRIEF DESCRIPTION OF THE DRAWINGS v The preferfed method ofdepositing a low-friction,

wear-resistant surface on a metal or non-metal substrate having a straight or complex shaped contour is to cover the substrate with a thin layer of a binder by any conventional technique, such as by dipping, painting or spraying. A most desirable class of binders, although not the only class suitable for this invention, are the thermosetting and thermoplastic resins which should be applied between about 0.000] and about 0.00! inch thick and preferably about 0.00025 inch thick. Binders such as polyamides, polybenzimidazoles, polycarbonates, polyesters, polyethers, polyolefins, polyacrylates, polyacetals, polysulfones, polyurethanes, epoxy and glass frit are but a few of the binders. that can successfully be used as the initial layer on the substrate. Depending upon-the particular resin-layer employed, the resin-coated substrate is heated or held for a time period only sufficient to cause the resin to become tacky thus producing a surface somewhat similar to the adhesive surface of common fly paper. This surface layer should be of sufficient thickness and adhesiveness to secure particles deposited thereon from the force of gravity when such surface is freely held in the open atmosphere face down.

A layer of spheroidal shaped wear-resistant particles is then deposited on the adhesive surface of the substrate by any conventional means such as by immersing the resincoated substrate into a confined zone containing the particles. The resin-coated substrate is then removed from the particle-containing zone and slightly tapped to remove any excess and/or loosely secured particles thus leaving a monolayer of densified and uniformly disposed particles protruding from the resin-,

layer. The composite is then heated at a temperature and for a time period sufficient to fully cure and/or treat the resin thereby securing the particles in the resin matrix. The exact temperature and time period required for curing and/or treating the resin depends on the particular resin selected from the large group of resins available. If the particles completely imbed themselves in the resinous layer then a final finishing step, such as grit blasting, vibrating or brush finishing, will be required to remove the excess resin off the surfaces of the particles thereby providing an exposed particle-imbedded surface having low-friction and wearresistant characteristics.

The exact size of the wear-resistant particles required to produce a low-friction surface for textile application is variable with a size about Tyler mesh and finer suitable, a size between about 270 Tyler mesh and 325 Tylermesh desirable, and a size about 325 Tyler mesh and finer preferable.

It is also within the purview of the invention to have more than one layer of wear-resistant particles depos ited on a substrate to produce a low-friction surface. This can be accomplished by adding a second resinous layer on top of the particle-embedded surface and then depositing additional particles thereon, such particles being the same size or a different size than the particles in the initial layer. This process can be repeated to produce a multilayer surface of any desired thickness with the final layer preferably having the smaller size particles.

It is also within the purview of this invention to provide a homogeneous material composed of wearresistant particles uniformly dispersed in a binder or the like. This material can be prepared by uniformly intermixing wear-resistant particles of a preselected size in a binder and then subjecting the composite to conventional molding or casting techniques to obtain predesired shapes. The finished part can then be grit blasted or the like to remove any excess binder so that the rounded surfaces of the wear-resistant particles can be exposed thereby providing a matte" finish.

In the monolayer or multilayer material, it may be desirable to add a final resinous layer to substantially fill any voids existing between adjacent particles up to at least a level defined by a plane containing the center points of each of the adjacent particles and being parallel to the substrate. This final resinous layer should be employed only when it is desired to increase the adhesive bond between the particles and the resinous layer so as to provide a strong textured surface. This additional resinous application should be applied in the diluted state in which the viscosity of the resin will be such that it will fill the void spaces between adjacent particles through capillary action while at the same time limiting the buildup of excessive resinous adhesive on the other surface of the particles. A diluted resin having a viscosity below about centipoises is desirable for this application.

The final resinous layer, if applied, is then cured by appropriately heating the material at a temperature and for a time period depending on the particular resin used. If an excess of this final resinous layer adheres to the surface of the particles then any of the finishing techniques, such as a slight brushing operation or a chemical dissolving application, can be employed to remove such resin thus exposing the rounded protruding particles. In certain applications the contact with the product of its intended use may be used to remove any of-the excess resin that may adhere to the particles.

The finished material so obtained according to this invention will have at least one outer layer of highly densified, uniformly disposed, wear-resistant, spheroidal to spherical shaped particles partly embedded in a matrix with the smooth surfaces of the particles exposed thereby forming a uniformly wavy surface. The spheroidal to spherical shaped particles in this wearresistant surface will have a microhardness of at least 500 Diamond Pyramid Hardness and when used as a component part in a textile apparatus, the surface will have a coefficient of friction of 0.35 or lower between it and the fibers being produced.

EXAKTLET Talia mamas 6556i SE81 brgm wzmm' to remove grease and the like by washing them in chloroform. They were then dipped into ,a resin mixture consisting of 3.3 percent by weight suspension of onecomponent epoxy powder (commercially available from the Hysol Division of Dexter Corporation as Hysol A7-43l4) prepared in chloroform. The coated pigtails were then removed and allowed to dry in ambient air for 5 minutes. This produced a thin tack-free epoxy layer on the pigtails. The coated pigtails were spheres. The receptacle was tapped several times to insure an adequate supply of the spheres came in contact with the pigtails. The assembly, consisting of the pigtails and the alumina spheres in the receptacle, was

heated in an oven to 195C. and held thereat for minutes. This softened the epoxy layer enough to pick up a single layer of the alumina spheres. The assembly was then removed from the oven and cooled down tothen immersed in a receptacle containing the alumina 20 All of the various samples of coated pigtails were then given a final epoxy treatment by impregnating them with a diluted resin mixture prepared from mixing 10 parts by weight of epoxy resin (commercially available as Hysol AS-43l8) with 3 parts of an amine type hardener (commercially available as Hysol H9-3486) and then diluting the mixture to 10 percent solid by weight with a glyocol ether thinner (commercially available as Hysol 5-4069). The impregnating was accomplished by dipping the top of each pigtail in a closed vessel and allowing the diluted resin mixture to flow up the pigtail by capillary action. The impregnated pigtails were then cured by heating them to 195C. and holding thereat for l hour after which they were cooled to ambient. Some pigtail samples were given a final resin coating using a different resin concentration in the thinning agent and a different per cent solid in the final diluted resin mixture. In addition, some samples were coated by being dipped into the resin mixture rather than by the capillary action technique.

The surface friction value of the processed pigtails were measured on a Shirley frictometer using duPont -34-/2Z-280-SD nylon multifilament. The results are summarized in Tables 1 and 2 below.

EXAMPLE 2 I A Table I Frictional Values of Pigtails With Spherical Alumina Oxide Layer or Layers Sample Particle Size Resin Con. Resin No. of Friction Value Range (Tyler Wt. in in dilu- Layers mesh) Chloroform ted .form

A l 15 to +150 3.3% 10% 1 Fiber broke while threading through pigtail B l70 to +200 3.3% 10% 1 0.25 (fiber shreads) C 270 to +325 3.3% 10% I 1 0.215 to 0.23 D 400 3.3% 10% 1 0.20 E 270 to +325 3.3% 10% 3 0.29 F 400 3.3% 10% 3 0.25

first layer G 1l5to +150 3.3% 10% 2 0.30 1 second layer 400 H 400 6.0% 10% l 0.23 l 400 10.0% l0% 1 0.26 J -400 20.07r 10% 1 Too rough to test Table 2 W Frictional Values of Pigtails Having An Initial Resin Concentration of 3.3% by weight in Chloroform (Single Layer) Particle Size 7c Resin in k Solids in Friction Values (Tyler mesh) Thinner I diluted form dipped capillary fill the receptacle and each was tapped several times to remove loosely adhering alumina spheres. The pigtails were than given final cure at lC. for 1 hour. The above procedure'was repeated for various sizes of the alumina particles and for various concentrations of the powdered resin and chloroform mixture. ln addition some samples were subjected to the above procedure more than once so as to produce a multilayer surface.

an1bie nt. fie catfii mns werekhefiihdvfitam' 60 givenan initial resin coating of a resin mixture consisting of 3.3 percent powder (commercially available from the Hysol Division of Dexter Corporation as Hysol A7-43l4) prepared in chloroform. The sample was air-dried for 5 minutes at room temperature and while in a track-free state, it was placed in a container whereupon 400 Tyler mesh and finer alumina spheres were added to'cover it. The assembly was heated in an oven to C. and held thereat for 1 hour to soften the resin sufficiently to produce a tacky surface which picked up essentially a single layer of the spheres. The sample was then cooled toambient in about 30 minutes whereupon the sample was removed and given a slight tapping to dislodge any loosely adhering spheres. The sphere coated sample was then cured by heating to 200C. and being held thereat for 1 hour after which it was cooled to ambient.

A final resin coating was applied by dipping the sphere coated section in an epoxy resin (commercially available as Ciba Products Co. Araldite No. 502) mixed with an amine hardener (Ciba No. 951) in a weight ratio of parts resin to 1 part hardener. This resin mixture was diluted to 35 cc per 100 cc of solution with methyl ethyl ketone before the dipping process. The coated sample was cured for l hour at 100C. after dipping.

The coated sample was then subjected to an accelerated wear test wherein a 30 inch length of No. 24 cotton twine (commercially available from Shuford Mills, Inc., Hickory, N. C.) was knotted to form a loop, saturated with an aqueous slurry of pigment grade titanium dioxide, and traversed over the surface of the coated sample at a linear rate of l50 feet per minute, i 5 percent. The specimen was affixed to a lever system and counterbalanced to provide a normal force of 210 grams, i 5 percent, against the twine, which contacted the coated surface over an included angle (wrap angle) of 160 degrees. The twine loop was driven by a pulley affixed to the shaft of a variable speed motor and passed through the titanium dioxide slurry on each revolution. The slurry was continuously recirculated with als Systems Division, Union Carbide Corporation). The surface of the detonation gun coating was finished to a surface roughness of 132 A.A. (Arithmetic Average) microinches using a power driven brush and an aqueous slurry of 220 grit size silicon carbide to provide a low friction, brush finished" surface. Wear tests were run for time periods of l to 30 minutes for the chrome plated sample and 120 to 600 minutes for the brush finished, flame-sprayed sample. The coefficients of friction were determined as described previously.

The results of the friction and wear tests are shown in Table 3. The average wear rate for the matte chrome plate was 3.0 X 10 mils per minute, and the friction value was increased appreciably after 5 minutes. The average wear rate for the brush finished, flame sprayed coating was 1.0 X 10 mils per minute, and the friction value was increased appreciably after 120 minutes. The average wear rate for the spherical aluminum oxide was 3.9 X 10", and the friction value remained low after 900 minutes.

FlGTisa Talysu rf tr ac acrossThe? we wear scar in matte chrome plate. The vertical magnification is l,000 and the horizontal magnification is 100. The scar is distinctly smoother than the unworn surfaces on either side, which accounts for the increased friction value. g h m FIG. 2 shows a similar trace across the 600 minute scar in the brush finished, flame sprayed coating. Again, the scar is quite smooth compared to the unworn surfaces.

FIG. 3 shows a similar trace across the 900 minute scar in the spherical aluminum oxide coating. The wear Table 3 Friction and Wear Data for Coated l-inch Bars. Coating Test Duration Friction Value Wear Rate (min) Unworn Wear Scar Matte Chrome 1 0.20-0.2l 0.22 N.M.*

Plate 2.5 0.24 NM.

5 0.32 3.0 X l0 l0 040 3.5 X [0 l0 0.40 3.0 X l 20 040 3.5 X 10 2O 040 2.5 X 10 30 040 3.0 X 10- 30 O.4O 2.7 X 10' Brush Finished. I20 0.21-0.22 0.38 N.M.* Flame-Sprayed 300 0.40 10X 10 600 0.40 1.0 X IO' Spherical Aluminum 300 0.2 l-0.23 0.23 N.M.* Oxide 600 0.24 3.3 X 10" 900 0.24 4.5 X 10" Not Measurable a Titanium dioxidewas chosen as the abrasive since it is used as a delustrant in synthetic fibers.

Wear tests were run for time periods of 300, 600, and 900 minutes. The coefficient of friction in the wear scar and on the unworn surface was determined with a Shirley Frictometer, as described previously.

Friction and wear tests were similarly made with one inch diameter low carbon steel bars containing a 0.002 inch thick coating of matte finished chrome plate (commercially available as Brame Finish No. 3, Brame Textile Machine Co., Greensboro, N. C.) and a 0.002 inch thick coating of flame-sprayed Ti0 40% M 0 applied by a detonation gun (commercially available as Type LA-7, Coating Service Dept, Materi- Edit, which is in the center of the Figure, is not so easily distinguished since the roughness in the scar is comparable to that of the adjacent unworn surfaces. The absence of a smooth trace in the scar explains the low friction value which persists after prolonged wear.

" Fl 6.10s ascmfiia'g' Electron Microscope (SEA/l) photograph of unworn matte chrome plate taken at a magnification of 300x, showing the rounded nodules which account for the low friction value of the surface. Flattening of some nodules could be detected microscopically in the 1 minute wear scar. More extensive flattening was observed after 2 /2 minutes of wear and after 5 minutes, relatively large flat areas were observed in the scar as shown in H6. 5 (SEM, 300x).

After 20 m in utes of wear, essentially no vestigeof the original surface remained visible in the scar area.

FIG. 6 similarly shows the surface features of the un- 'worn, brush finish, flame-sprayed coating (SEM, 300x), and FIG. 7 shows the flattened wear scar after 600 minutes (SEM, 300x).

FIG. 8 is an optical photomicrograph of the unworn spherical aluminum oxide coating taken at a magnificawear.

tion of 240x and showing the close packed spheres. FIG. 9 is a similar photomicrograph of the 900 minute wear scar, and illustrates the appreciable degree of roughness remaining on the surface after prolonged Example 3 i A steel rod I 1% inches long and inch diameter, de-

. greased, acid etched, rinsed and dried, was given an initial resin coating of a resin mixture consisting of 3.3 percent powder (commercially available as Hysol A7- 43l4) prepared in chloroform. The sample was air dried for minutes at room temperature and while in a tack-free state was placed in a container whereupon fine titanium carbide spheres between 30 and 40 mitested tinder the same conditions and found to have a linear wear rate of 5 X 10' mils per minute for test periods of IO, 20 and minutes. The wear scars for each time period were smooth.

EXAMHE Z a horizontal magnification of 100 and also across the surfaces of sections from steel pigtails previously described in Example I and which contained single layer coatings of either 270, +325 or -400 Tyler mesh size aluminum oxide spheres. The number of distinct Table 4 w m, Particle Size Range Measured Calculated (Tyler Mesh) No. of Inches Peaks Peaks Peaks Traversed Per Inch Per Inch -270, +325 l2l 0.23 526 480-578 325, +400 97 0.15 645 578-685 400 2l'5 0.30 717 685 66h; diameter were added to cover it. The asfiifly was heated in an oven to I00C. and held there for l hour. This softened the resin sufficiently to produce a I tacky surface which picked up essentially a single layer 1 of the spheres. The assembly was then cooled to ambient whereupon the sample was removed and given a slight tapping to dislodge the loosely adhering spheres.

. The sphere coated sample was then cured by heating to 195C. for V. hour after which it was cooled to ambient.

A final resin coating was applied by dipping the ball coated section in a resin (commercially available at 'Ciba Products Co. Araldite No. 502) mixed with an.

'amine hardener (Ciba No. 951) in a weight ratio of 10 to 1. This resin mixture was diluted to cc per 100 cc of solution with acetonebefore the dipping process.

The coated sample was cured for an hour at 100C.

:roundeTpeaks was cauhtd'bv'er ari appreciable length of the traces and converted to a linear density, peaks speed hrnits as-descnbed in Example 2. The friction value for the unworn surface was 0.21-0.22. A Talysurfv trace across the 240 minute wear scar was similar in appearance to those previously described for the spherical aluminum oxide coating. The scar depth had an average wear rate of 8.3 X 10 mils per minute and the friction value in the scar did not increase over that for the unworn surface. I

After 480 minutes, the friction had increased to 0.26, still a relatively low value, and the Talysurf trace across the scar still showed a high degree of roughnesswith smoothly rounded peaks. Optical photomicrographs of the wear scar showed flattened (worn) areas on the TiC spheres. The wear rate was found to be 9.4 X 10'' mils per minute. The average wear rate for both tests was; 8.8 X 10 mils/min.

A hard chrome plated steel bar, as inch diameter, was

per inch. These values were compared with the linear density calculated from the minimum and maximum sphere diameter expected for the mesh size used and assuming that the spheres were in a close packed linear array. The results are summarized in Table 4, and show that the measured linear density is in good agreement with that expected.

EXAMPLE 5 Two low carbon steel pigtail samples were cleaned as described in Example 1 and given an initial resin coating of a resin mixture consisting of 3.3 percent powder (commercially available as Hysol A7-43I4) prepared in chloroform. The samples were air-dried for 5 minutes at room temperature and while in a tack-free state they were placed in a container whereupon 400 Tyler mesh and finer alumina spheres were added to cover them. The assembly was heated in an oven to lC. and held thereat for 20 minutes to soften the resin sufficiently to produce a tacky surface which picked up essentially a single layer of the spheres. The assembly was then cooled to ambient in about 30 minutes whereupon the pigtail samples were removed and given a slight tap-, ping to dislodge the loosely adhering spheres. The sphere coated samples were then cured by heating to C. and being held thereat for one hour after which they were cooled to ambient.

A final resin coating was applied by way of capillary action as described in Example 1 using a resin mixture held thereat for 1.5 hours after which they were cooled to ambient.

The cured samples were given an additional resin coating following the same procedure as above. After being fully cured each sample was tested on a frictometer and found to have a surface friction value of 0.20.

EXAMPLE 6 Two low-carbon steel pigtail samples were processed as outlined in Example except that only one final resin coating was applied and that coating consisted of one-part epoxy resin diluted to 50 percent solid (commercially available as Hysol A7-43l5) which was mixed with a liquid blue dye (AC-6240). This final coating was applied by the capillary-fill technique and then the coated samples were cured at 195C. for 1.5 hours. The surface friction value of each of the two pigtail samples measured 0.215 and 0.225, respectively.

EXAMPLE 7 Two low-carbon steel pigtail samples were processed as outlined in Example 6 except the final resin coating consisted of resin liquid (commercially available from Ciba Products Co. as Araldite No. 502) mixed with an amine type hardener (Ciba No. 951) in a weight ratio of to 1. This resin mixture was diluted to 60 cc per 100 cc of solution with acetone and then given a blue dye coloring using Hysol dye AC-6240. The overall resin mixture was 60 percent solid. This final resin coating was applied by the capillary-fill technique and then the coated samples were cured at 100C. for one hour. The surface friction value of each of the two pigtail samples measured 0.195 and 0.21, respectively.

EXAMPLE 8 Two low-carbon steel pigtail samples were processed as outlined in Example 7 except that spherical alumina particles between 270 and 325 Tyler mesh size were used and a green coloring dye (Hysol AC6241) was added in the final resin coating. The surface friction value of each of the two cured samples measured 0.225 and 0.215, respectively.

EXAMPLE 9 An extruded Nylon rod, %-inch diameter by 6 inches long was passed in front of a gas flame to smooth the surface. The cooled rod was given an initial resin coating of a resin mixture consisting of 3.3 percent powder (commercially available as l-lysol A7-43l4) prepared in chloroform. The sample was air dried for 5 minutes at room temperature and while in a tack-free state was placed in a container whereupon 400 Tyler mesh and finer alumina spheres were added to cover it. The assembly was heated in an oven to 100C. and held thereat for minutes to soften the resin sufficiently to produce a tacky surface which picked up essentially a single layer of the spheres. The assembly was then cooled to ambient in about 30 minutes whereupon the sample was removed and given a slight tapping to dislodge the loosely adhering spheres. The sphere coated sample as then cured by heating to 160C. for four hours after which it was cooled to ambient.

A final resin coating was applied by dipping the sphere coated section in a resin (commercially available as Ciba Products Co. Araldite No. 502) mixed with an amine hardener (Ciba No. 951) in a weight ratio of 10 to 1. This resin mixture was diluted to 35 cc per cc of solution with acetone before the dipping process. The coated sample was cured for an hour at 100C. The surface friction value: of the coated piece was 0.21.

EXAMPLE 10 A cleaned, 1 inch O.D., by 3 inches long steel tube was painted on the outer surface with a mixture of 10 parts by weight epoxy resin (Union Carbide Corp. ERL 2,400) and 3 parts of an amine hardener (Union Carbide Corp. ZZL0822). The piece was then heated in an oven at 100C. for 13 minutes and cooled. The resin was now in a tacky stage. Minus 250 plus 270 Tyler mesh alumina spheres were immediately sprinkled on the tacky surface and the piece was given a final cure at 100C. for 2 hours. No second coat of epoxy was applied. After cooling the surface had a friction value of 0.205.

EXAMPLE 1 1 A low melting ceramic powder (Owens-Illinois substrate glaze, Article No. 01 158) was mixed with a liquid fugitive binder (Wall-Colmonoy brazing binder No. 500 standard) in a 1 to 1 weight ratio and painted on a Va in. diameter copper rod. The ceramic was melted by heating the rod to approximately 470C. After cooling to room temperature, the rod, now having a coating about 0.0005 in. thick, was buried in a pack of minus 400 mesh alumina spheres and heated to the softening point (about 450C.). The pack was allowed to cool and the sphere covered rod was tested on the frictometer. The friction value was 0.205.

EXAMPLE 12 A mixture of 10 parts by weight epoxy resin (Union Carbide Corporation ERL 2,400) and 3 parts by weight of an amine hardener (Union Carbide Corporation ZZL 0822) was diluted with an equal weight of acetone. Spherical aluminum oxide, 270, +325 Tyler mesh size, was stirred into the above mixture until it had the consistency of a thick pancake batter. A %-inch-diameter steel rod was dipped into the mix to a depth of about 1 inch, removed from the mix with the adhering material, dried in air for 10 minutes, and cured in an oven for 2 hours at 100C. The so-coated surface had a coefficient of friction of 0.20.

EXAMPLE 13 A mixture of 25 percent by weight of spherical A1 0 particles, sized 325 Tyler mesh, and a particulated fine thermosetting phenolic resin (Bakelite), 75 percent by weight, were blended by hand in a glass jar. The blended mixture was placed in a l-Mi inch diameter steel mold and a pressure of 4,200 psi. applied with a steel ram. The temperature of the mixture was raised to C. in 10 minutes, held thereat for 10 minutes and then cooled to room temperature. The pressure was released and the body pushed from the mold cavity. The cylindrical surface of the molded body was then grit blasted with an S. S. White air abrasive unit for approximately 20 minutes. The abrasive used was fine calcium carbonate and was carried by 60 psi. air through a nozzle about 0.020 inch in diameter. Care was taken to grit blast the surface uniformly. This operation removed the Bakelite near the surface thereby exposing the rounded spheres thus providing a matte finish. The co-efficient of friction of this surface measured 0.20.

EXAMPLE 14 Ten parts by weight of epoxy resin (Union Carbide Corporation ERL-2,400) and 3 parts by weight of an amine hardener (Union Carbide Corporation ZZL 0822) were mixed carefully to produce a homogeneous composite. To this mixture was added 71 percent by weight of spherical A1 particles, sized 270 to +325 Tyler mesh. The overall mixture was then stirred slowly until the particles were uniformly distributed throughout the composite whereupon the mixture was poured into a steel die with a cavity measuring 3 inches long, 25/32 inches outside diameter, and /2 inch inside diameter. The filled die was then placed in an oven and heated to 100C. for 1 hour. The die was then separated andthe' epoxy-A1 0 tube removed. The outside surfaceof the tube was grit blasted as in example 13; however, a 325 mesh rutile (TiO was used as the abrasive. This removed the excess epoxy layer thus exposing the Al O spheres which were slightly roughened. The surface was further finished by polishing with a long nap (felt) metallographic wheel, charged with a 1 micron diamond, for about 5 minutes. The coefficient of friction of this surface measured 0.21.

EXAMPLE [5 A quantity of spherical A1 0 particles, sized 270 to +325 Tyler mesh, were added to Nicrobraze 500 in a glass beaker until the mixture had the consistency of a thick pancake batter. Nicrobraze 500 is a liquid fugitive binder made by the Wall Colmonoy Co. and is used for fastening powdered brazing compounds to metal surfaces. A inch diameter steel rod, grit blasted with 60 mesh A1 0 was dipped into the A1 0,, Nicrobraze mixture to a 1 inch depth and immediately removed. The as-coated rod was then heated for 1 hour at 100C. to drive off all the solvent and thereafter cooled to room temperature. The rod was further painted with a mixture of parts by weight of epoxy resin (Union Carbide Corporation ERL-2,400) and 3 parts by weight of an amine hardener (Union Carbide Corporation ZZL 0822) and then placed in an oven at 100C. for 1 hour. The rod, upon removal from the oven, was cooled to ambient and'a measurement of its surface revealed a coefficient of friction of 0.195.

What is claimed is:

1. A low friction, wear-resistant material for guiding moving lengths of textile films and fibers, said material having at least a surface composed of uniformly disposed spheroidal to spherical shaped wear-resistant particles having a rnicrohardness of at least about 500 Diamond Pyramid Hardness and a size between about 270 Tyler mesh and about 325 Tyler mesh, said particles partially embedded in a matrix such that the surfaces of the particles are exposed to provide a uniformly wavy low friction surface having a surface friction value of between about 0.17 and about 0.35.

2. The material of claim 1 wherein said wear-resistant particles are uniformly dispersed throughout the material to provide a homogeneous material.

3. The material of claim 1 wherein said material consists of a substrate having at least one outer layer of the wear-resistant particles embedded in a matrix.

4. The material of claim 3 wherein said substrate is selected from a group consisting of metals, metal alloys and plastics; said wear-resistant particles are selected from at least one of the groups consisting of metal oxides, metal carbides, rnetal borides, metal nitrides and metal silicides; and said matrix is selected from at least one of the groups consisting of rubber, resins, ceramics, glasses and metals.

5. The material of claim 2 wherein said wear-resistant particles are selected from at least one of the groups consisting of metal oxides, metal carbides, metal borides, metal nitrides and metal silicides, and said matrix is selected from at least one of the groups consisting of rubber, resins, ceramics, glasses and metals.

6. The material of claim 4 wherein said metal oxide is selected from at least one of the groups consisting of alumina, silica, chromium sequioxide, beryllium oxide, zirconium oxide, stannic oxide, titanium dioxide and the rare earth oxides.

7. The material of claim 5 wherein said metal oxide is selected from at least one of the groups consisting of alumina, silica, chromium sequioxide, beryllium oxide, zirconium oxide, stannic oxide, and titanium dioxide.

8. The material of claim 4 wherein said resin matrix is selected from a group consisting of thermosetting and thermoplastic binders.

9. The material of claim 5 wherein said resin matrix is selected from a group consisting of thermosetting and thermoplastic binders.

10. The material of claim 4 wherein said substrate is low carbon steel; said matrix is epoxy resin; and said wear-resistant particles are substantially spherical alumina particles.

STATES PA OFFICE Issue Date January 22, 1974 Patent No. 3, 787 229 Inventor(s) It is certified that error appears in the above-identified patent and that said Lettete Patent are hereby corrected as shown below:

Robert G. Rudness Column 16, lines 4-5; between about 270 Tyler mesh and about 325 Tyler mesh" should read --finer than about 270 Tyler mesh-- Signed and sealed this 25th day of June 197 (SEAL) Attest:

EDWARD M.FLETCHER,JR, C MARSHALL DANN Commissioner of Patents Attesting Officer UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION I; No. 7 7,229 Issue Date January 22, 1974 Natal-(8) Robert G. Rudness It is certified that error appears in the above-identified patent mad that said Letters Patent are hereby corrected as shown below:

Column 16, lines 4-5; "between about 270 Tyler mesh and about 325 Tyler mesh" should read --finer than about 270 Tyler mesh-- Signed and sealed this 25th day of June 197k.

(SEAL) Attest:

EDWARD MFLETCHER,JR C MARSHALL DANN Commissioner of Patents Attesting Officer

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2555319 *Aug 17, 1944Jun 5, 1951Minnesota Mining & MfgBead coated tympan sheet
US2646227 *May 9, 1949Jul 21, 1953Du PontSelf-traversing drive roll
US2895389 *Sep 16, 1954Jul 21, 1959Reliance Steel Prod CoCoatings for the traffic bearing surfaces of grating
US3036975 *Jan 2, 1959May 29, 1962Allied ChemRapid-curing epoxy resin compositions and method of making
US3080134 *Oct 8, 1959Mar 5, 1963Du PontTextile filament guide
US3080135 *Dec 7, 1960Mar 5, 1963Du PontTextile apparatus
US3086722 *Apr 26, 1962Apr 23, 1963Du PontYarn traverse mechanism
US3130938 *May 13, 1963Apr 28, 1964Fiber Industries IncThread guide
US3388027 *Mar 2, 1966Jun 11, 1968Altman GeraldGraphic materials incorporating microsphere distributions for the presentation of visual information
US3619231 *Jun 16, 1969Nov 9, 1971Anchor Post ProdContinuous metal coating process with fusible pulverulent materials
US3646746 *Mar 12, 1970Mar 7, 1972Impact Plastics IncBalloon control ring
Non-Patent Citations
Reference
1 *Lee et al., Handbook of Epoxy Resins, McGraw Hill Book Company, New York, N.Y. 1967, pages 4 2, 14 21 and 21 24. TP1180E6L4.C4.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3849177 *Jun 26, 1972Nov 19, 1974Du PontProcess employing catalyst coated yarn processing rolls
US3896244 *Jun 8, 1973Jul 22, 1975Chromalloy American CorpMethod of producing plasma sprayed titanium carbide tool steel coatings
US3902234 *Jun 20, 1974Sep 2, 1975Du PontCatalyst coated yarn handling roll
US3928706 *Jun 25, 1973Dec 23, 1975Formica IntWear-resistant decorative laminates and methods for producing same
US3929427 *May 4, 1973Dec 30, 1975Union Carbide CorpWear-resistant surface composite materials and method for producing same
US3947254 *Sep 9, 1974Mar 30, 1976United States Steel CorporationFerroboron
US4043623 *Aug 22, 1975Aug 23, 1977Surface Technology CorporationWear resistant filament wear guides and method of making the same
US4052530 *Aug 9, 1976Oct 4, 1977Materials Technology CorporationCo-deposited coating of aluminum oxide and titanium oxide and method of making same
US4062484 *Aug 13, 1975Dec 13, 1977Surface Technology CorporationChromium nitride
US4112148 *May 26, 1977Sep 5, 1978Materials Technology CorporationMethod of co-deposit coating aluminum oxide and titanium oxide
US4155757 *Dec 8, 1976May 22, 1979Thorn Electrical Industries LimitedElectric lamps and components and materials therefor
US4191345 *Aug 8, 1978Mar 4, 1980Tdk Electronics Company, LimitedTape cassette
US4228940 *Sep 7, 1978Oct 21, 1980Yozaburu UmeharaTape guide means for recording and/or reproducing apparatus and method of manufacturing the same
US4358922 *Apr 10, 1980Nov 16, 1982Surface Technology, Inc.Metallic articles having dual layers of electroless metal coatings incorporating particulate matter
US4358923 *Nov 14, 1980Nov 16, 1982Surface Technology, Inc.Composite coatings for open-end machinery parts
US4362012 *Aug 20, 1980Dec 7, 1982Societe Alsacienne De Constructions Mecaniques De MulhouseAnti-balloon devices of spinning frames
US4533968 *Sep 29, 1982Aug 6, 1985Fuji Photo Film Co., Ltd.Ceramic guides for tape-like materials and process for the production thereof
US4559886 *Nov 9, 1984Dec 24, 1985The Singer CompanyThread guide construction
US4711665 *Jul 26, 1985Dec 8, 1987Pennsylvania Research CorporationOxidation resistant alloy
US4730371 *Feb 17, 1987Mar 15, 1988E. I. Du Pont De Nemours And CompanyCoated crimper rolls
US5160097 *Oct 5, 1989Nov 3, 1992Iro AbYarn storage and feed device
US5633086 *May 31, 1995May 27, 1997The United States Of America As Represented By The Secretary Of CommerceTitanium or titanium alloy substrate with first layer of titanium oxide bonded to surface, second layer of cured epoxy resin bonded to first layer
US5901893 *Nov 21, 1997May 11, 1999Eastman Kodak CompanyApparatus and method for conveying a web
US6161786 *Jul 26, 1999Dec 19, 2000Daiwa Seiko, Inc.Spinning reel for fishing having transparent line roller
US6218001 *Jan 28, 1998Apr 17, 2001Mannington Mills, Inc.Surface coverings containing dispersed wear-resistant particles and methods of making the same
US6228463Jul 29, 1998May 8, 2001Mannington Mills, Inc.Contrasting gloss surface coverings optionally containing dispersed wear-resistant particles and methods of making the same
US6261692 *Dec 31, 1998Jul 17, 2001Korea Research Institute Of Chemical TechnologyCarbon-carbon composites containing ceramic power and method for preparing the same
US6291078Oct 22, 1997Sep 18, 2001Mannington Mills, Inc.Surface coverings containing aluminum oxide
US6555216Dec 29, 2000Apr 29, 2003Mannington Mill, Inc.Contrasting gloss surface coverings optionally containing dispersed wear-resistant particles and methods of making the same
US6873495 *Oct 16, 2002Mar 29, 2005Hewlett-Packard Ltd.Recording and/or reproducing device comprising a coated tape guide
US7384697Jun 29, 2001Jun 10, 2008Mannington Mills, Inc.Surface coverings containing aluminum oxide
US7582343 *Jun 15, 1999Sep 1, 2009Kimberly-Clark Worldwide, Inc.Gloves with silica particles affixed thereto
US8695783 *Feb 22, 2010Apr 15, 2014Xerox CorporationVacuum transport belts
US8708135 *Dec 14, 2009Apr 29, 2014Xerox CorporationVacuum transport belts
US20110139577 *Dec 14, 2009Jun 16, 2011Xerox CorporationSurface roughness for improved vacuum pressure for efficient media hold-down performance
US20110139584 *Feb 22, 2010Jun 16, 2011Xerox CorporationVacuum transport belts
US20110139586 *Dec 14, 2009Jun 16, 2011Xerox CorporationVacuum transport belts
CN100427634CJun 30, 2006Oct 22, 2008北京工业大学Powder cored wire for CrB-containing amorphous coating prepared by electric arc spraying
DE2909739A1 *Mar 13, 1979Sep 18, 1980Stahlecker FritzSpinnrotor fuer eine offenend- spinnvorrichtung
DE3016675A1 *Apr 30, 1980Nov 5, 1981Schlafhorst & Co WOffenend-spinnvorrichtung
DE3431944A1 *Aug 30, 1984Mar 7, 1985Toyoda Automatic Loom WorksRotor for an open-end spinning machine
DE3915558A1 *May 12, 1989Nov 15, 1990Feldmuehle AgBauteil aus gesinterter polykristalliner keramik zum einsatz als fadenleit- oder bearbeitungsorgan und verfahren zu seiner herstellung
DE4238507A1 *Nov 14, 1992May 19, 1994Gf Flamm Metallspritz GmbhSurfaced rollers for paper - has ultra hard particles embedded in layer of resin glue
DE10331503A1 *Jul 10, 2003Feb 10, 2005Maschinenfabrik Rieter AgFadenleitelement zum Führen von Fäden
WO2001046324A2 *Oct 24, 2000Jun 28, 2001Allison Advanced Dev CoErosion-resistant coatings for organic matrix composites
Classifications
U.S. Classification428/148, 75/238, 428/472, 428/639, 428/609, 428/418, 242/157.00R, 242/157.00C, 428/687, 75/236, 428/640, 75/232, 242/615.4
International ClassificationC23C28/00, C04B35/01, C23C4/04, C23C4/18, C04B35/10, C23C24/00, C23C24/08
Cooperative ClassificationC04B35/806, C04B35/58, C23C4/18, C23C4/04, C04B35/56, C23C28/04, C23C24/08, C23C24/00
European ClassificationC23C28/04, C23C4/18, C23C24/08, C23C24/00, C23C4/04, C04B35/80D, C04B35/58, C04B35/56
Legal Events
DateCodeEventDescription
Feb 9, 1990ASAssignment
Owner name: UNION CARBIDE COATINGS SERVICE TECHNOLOGY CORPORAT
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE COATINGS SERVICE CORPORATION;REEL/FRAME:005240/0883
Effective date: 19900102
Oct 8, 1986ASAssignment
Owner name: UNION CARBIDE CORPORATION,
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MORGAN BANK (DELAWARE) AS COLLATERAL AGENT;REEL/FRAME:004665/0131
Effective date: 19860925
Jan 9, 1986ASAssignment
Owner name: MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MOR
Free format text: MORTGAGE;ASSIGNORS:UNION CARBIDE CORPORATION, A CORP.,;STP CORPORATION, A CORP. OF DE.,;UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,;AND OTHERS;REEL/FRAME:004547/0001
Effective date: 19860106