Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3788921 A
Publication typeGrant
Publication dateJan 29, 1974
Filing dateDec 6, 1971
Priority dateDec 6, 1971
Also published asCA997503A1, DE2256259A1, DE2256259B2, DE2256259C3
Publication numberUS 3788921 A, US 3788921A, US-A-3788921, US3788921 A, US3788921A
InventorsN Polit, D Snowden, D Watson
Original AssigneeXerox Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus and method for binding a stack of sheets
US 3788921 A
Abstract  available in
Images(6)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Jan. 29, 1%? N POLIT ET AL APPARATUS AND METHOD FOR BINDING A STACK OF SHEETS Filed Dec.

6 Sheets-Sheet 1 5 0 5/ FIG. 2A

Jan.29,1974 NAPOUT ETAL 3,788,921

APPARATUS AND METHOD FOR BINDING A STACK OF SHEETS Filed Dec. 6, 1971 6 Sheets-Sheet 2 Jan. 29, 1974 POLIT ETAL 3,788,921

APPARATUS AND METHOD FOR BINDING A STACK OF SHEETS Filed Dec. 6, 1971 6 Sheets-Sheet 5 N. A. POLIT ETAL 3,788,921

APPARATUS AND METHOD FOR BINDING A STACK OF SHEETS Jan. 29, 1974 6 Sheets-Sheet 4 Filed Dec. 6, 1971 jlaa Jan. 29, 1974 POLIT ET AL 3,788,921

APPARATUS AND METHOD FOR BINDING A STACK OF SHEETS Filed Dec. 1971 6 Sheets-Sheet 5 FIG. 11

Jan. 29, 1974 N. POLIT ET AL APPARATUS AND METHOD FOR BINDING A STACK OF SHEETS 6 Sheets-Sheet 6 Filed Dec. 197].

FIG. 12

United States Patent M US. Cl. 156-216 21 Claims ABSTRACT OF THE DISCLOSURE Method and apparatus for binding a stack of sheets whereby a binding member including a substrate material having at least one strip of heat activated'adhesive is employed to form the desired book-like assembly. The binding member includes a low tack adhesive material extending longitudinally along the central portion of the substrate materal and a high tack material extending longitudinally adjacent the low tack material and on either side thereof on the substrate material. The stack of sheets is transported into engagement with the binding member, the member being thus deformed so the low tack adhesive material is in contact with one edge of the sheets of the stack and the high tack adhesive material is in contact with the other sheets of the stack. Heat is applied to the adhesive to cause the high tack material and low tack material to adhere to the portions of the stack in contact therewith. Pressure is applied to the side portions of the deformed substrate material so the high tack material is firmly pressed into contact with the outer sheets of the stack. Pressure is also applied to the portion of the substrate material in contact with the one edge of the sheets. A bond is thus formed between the substrate material and the stack of sheets to provide a book-like assembly.

BACKGROUND OF THE INVENTION This invention relates generally to sheet binding, and more particularly to a method and apparatus for binding a plurality of sheets together in a stack to form a booklike assembly. Still more particularly, this invention relates to a method and apparatus employing an adhesive binding member to obtain the bound assembly in a typical business oflice.

It is often desirable to secure a plurality of sheets of a report, book, or the like together in a bound assembly. While numerous arrangements for binding or assembling sheets together are available, each with certain inherent advantages of its own, many of these known arrangements at the same time suffer certain disadvantages such as high cost, low production rate, or the need for relatively complex applicator machinery, or the inability to edit or otherwise effect changes in a bonded assembly once the bonding operation has been completed.

Perhaps the most common method for assembling pages together is stapling. A staple generally comprises a metallic U-shaped member which is generally formed from drawn wire. The staples are driven under pressure through a stack of sheets and then bent or clinched on the bottom side of the stack to form the permanent assembly. Various mechanical arrangements have heretofore been devised for forming staples into the characteristic U-shape as well as specific arrangements for inserting and removing the wire staples from the stack. Although the stapling process is employed quite extensively, there are certain disadvantages which are encountered when the aforementioned assembling method is utilized.

For example, the total number of pages that may be stapled together is limited; moreover the resulting product may not have the desired permanency or integrity since the staple or staples may become unhinged, or with 3,788,921 Patented Jan. 29, 1974 sustained use of the book or pamphlet, the pages may tear out or otherwise work loose. Furthermore, the wire staples often times have a tendency to buckle or bend during the process of being driven into the stack of sheets; additionally, sometimes the wire staples are improperly bent or clinched on the underside of the stack. When either of these occur, the improperly inserted staple must therefore be removed and the process repeated until a properly driven and clinched staple is obtained. This results in unnecessary mutilation of the sheets in the stack as well as the consumption of unnecessary operator time in the binding operation.

Where the number of pages are too great for stapling, stitching may be resorted to. However, stitching requires relatively complex and expensive machinery which is normally found only in a book-binding facility, and not in the typical ofice. Additionally the editing of a bonded assembly produced by stitching is quite impractical due to the mutilation of the sheets that is likely to occur- In this latter case, metal clip or clamp assemblies may be resorted to. However, these require some type of punching or drilling mechanism to provide holes in the paper for the clip prongs, and if not performed accurately insofar as the hole formation is concerned, may result in mutilation of the sheets.

It has been proposed to use a binding member comprising a substrate material having an adhesive strip contained thereon to obtain a book-like assembly. However, the members heretofore available have suffered many shortcomings, which have limited their utility. -For example, essentially all of the binding members heretofore commercially available have had a single thickness of adhesive of either a low tack material or a high tack material applied onto a substrate material. For instance, it has been the practice to provide a uniformly thick low tack adhesive coating on a substrate material. If the adhesive coating is applied relatively thin, generally an insufiicient amount of adhesive material is provided between the edges of the sheets to be bound. Within relatively short periods of time, individual sheets would work loose from the remaining sheets of the assembly.

Alternatively, if a relatively thick low tack adhesive coating is applied to the substrate material, very often the material flows beyond the limits defined by the substrate material, particularly when the substrate material and low tack adhesive are brought into contact with the outer sheets of the stack. Furthermore, it has proven necessary to permit a heating element used to melt the low tack adhesive and apply pressure thereto so as to unite the substrate material to the outer sheets of a stack to cool to ambient temperature prior to disengagement from the binding member. If this were not permitted, an unsatisfactory bond is obtained since the low tack adhesive must be permitted to solidify before a satisfactory bond is provided. Naturally, the cooling of the heating element prior to disengagement limits the production rate of bonded assemblies.

If a high tack adhesive coating were applied to the substrate material, insufficient flow of the adhesive between the sheets would occur due to the high viscosity of the high tack adhesive. Thus, individual sheets would readily separate from the assembly.

A further limitation in the utility of the binding mem bers heretofore available has resulted from the apparatus presently on the commercial market. Binding members employed in such machines must be cut to an appropriate size depending upon the thickness of the stack of sheets being bound. The separate cutting operation required for each binding strip, particularly when the thickness of the stack might vary only a relatively small amount from one stack to the next, has limited the production rate of bound assemblies. Additionally, the separate cutting station required has increased either the cost of the binding apparatus or the labor cost involved in obtaining the bound assembly.

A binding member that has been found to be particularly satisfactory in achieving the desired objectives is disclosed in copending application, Ser. No. 196,446, filed Nov. 1, 1971 in the name of Donald W. Watson. In order to obtain widespread utilization of the binding member disclosed in the aforecited copending application, a satisfactory method and apparatus wherein such binding member may be employed is required.

However, it should be understood, the method and apparatus disclosed hereinafter are not intended to be limited to use with the binding member disclosed in the aforecited copending application, but may be otherwise employed with binding members heretofore available.

SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an improved method of binding a quantity of sheets together in a stack.

It is another object of the present invention to provide an economical and effective method of securing a quantity of sheets together to form a bound book-like assembly.

It is still another object of the present invention to provide a novel method of binding a quantity of sheets together in a stack which exhibits excellent holding capabilities.

It is still a further object of the invention to provide a novel method of binding a quantity of sheets together that permits editing and rebinding of the assembly to be accomplished.

It is yet a further object of the present invention to provide a novel method of binding a quantity of sheets together that permits a single width binding member to be employed regardless of variations in the thickness of a stack of sheets from one stack to the next.

It is a further object of the present invention to provide an improved apparatus for securing a quantity of sheets together to form a bound book-like assembly.

It is yet a further object of the present invention to provide a novel binding apparatus particularly suitable for obtaining a bound book-like assembly wherein the binding member disclosed in the aforecited copending patent application may be satisfactorily employed.

It is still another object of the present invention to provide a novel binding apparatus economically suitable for use in the typical ofiice.

It is yet a further object of the present invention to provide a novel apparatus that permits a single width binding strip to be employed regardless of variations in the thickness of a stack of sheets from one stack to the next.

It is yet a further object of the present invention to provide a novel apparatus wherein the operator thereof requires only a minimal amount of expertise.

It is still a further object of the present invention to provide apparatus to avoid the flow of adhesives which are part of the binding member onto the outer surfaces of the outer sheets of a stack or out the ends of a bound assembly.

These and other objects of the present invention are attained by initially supporting an adhesive binding member in contact with one edge of a stack of sheets to be bound. It should be understood, as used herein, the term binding member or binding strip may include any width member, including the use of the member as the outer sheets of the assembly being bound. The binding member preferably includes a quantity of heat activatable low tack adhesive which extends longitudinally along the central portion of a formable substrate material, and a quantity of heat act at ble g tack adh s which extends longitudinally on the substrate and substantially adjacent to, and on either side of the low tack adhesive. Such an arrangement, it will be appreciated, can be constructed by first applying a uniform thickness of high tack adhesive to the substrate with the subsequent application of the low tack adhesive along the central portion of the substrate.

The strip of material is heated along the central portion to cause at least a portion of the low tack material to adhere to the edge of the sheets. Additionally, pressure is applied between the stack and the substrate to produce a partial flow of the adhesive that has adhered to the formable material and the sheets of the stack. The substrate material additionally contacts the outermost sheets of the stack and is heated to cause at least a portion of the high tack adhesive to adhere to the outermost sheets. Pressure is applied between the stacks and the formable substrate material to immediately bond the high tack adhesive that has adhered to the formable material and the outer sheets of the stack.

The heating means provided to heat the high tack adhesive may be removed to a position whereby the heating means no longer has any eifect on the high tack adhesive without causing any deleterious effect upon the bond.

Other objects of the invention and further features thereof shall become apparent to those skilled in the art in view of the following detailed disclosure and description of a preferred embodiment of the invention, particularly when read in conjunction with the accompanying drawmgs.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional schematic representation of a binding apparatus in accordance with the present invention;

FIG. 2 is an end elevation view of a binding member that is particularly suitable for use with the present invention;

FIG. 2A is a modified form of the binding member illustrated in FIG. 2;

FIGS. 3-11 show corresponding sectional schematics of a binding machine as contemplated by the present invention showing various phases of operation;

FIG. 12 is a sectional schematic representation illustrating the binding apparatus having a stack of sheets of a difgerent thickness than the stack illustrated in FIG. 1; an

FIG. 13 illustrates a perspective view of a detail of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings and in particular to FIGS. 1 and 3-11 thereof, there are illustrated various steps in the method of binding as contemplated by the present invention. In referring to the drawings, like numerals shall refer to like parts.

As illustrated therein one edge of a stack of sheet 20 to be bound is supported in contact with a strip of formable material 50 (see FIG. 5). The strip of material includes a quantity of heat activatable low tack adhesive 52 (FIGS. 2 and 2A) extending longitudinally along the central portion thereof, and a quantity of exposed heat activatable high tack adhesive 53, extending longitudinally thereof substantially adjacent to, and on either side of the low tack adhesive an unexposed high tack adhesive disposed sub-adjacent the low tack adhesive. As will be apparent from the aforementioned application, Ser. No. 196,446, the high tack adhesive 53 may be a suitable pressure sensitive material.

The strip of material 50 is heated along the central portion thereof (see FIGS. 5 and 6) to cause at least a portion of the low tack adhesive to adhere to the edge of sheets 20. In the preferred method in accordance with the present invention, binding member 50 is inserted into the machine, and the substrate material and thus the adhesive strips, thereon are heated, prior to the stack of sheets being brought into contact therewith. (see FIG. 1) Thus, the adhesive on the substrate material is pre-heated. This has proven particularly beneficial in forming the bond between the low tack adhesive and the edge of the sheets. Additionally, pressure is applied between the stack and the formable material to produce a partial flow of the low tack adhesive that has adhered to the formable material and the sheets of the stack.

The formable material additionally contacts the outermost sheets of the stack (see FIGS. 5 and 6) and is heated to cause at least a portion of the high tack adhesive to adhere to the outermost sheets. Pressure is applied between the stack and formable material (see FIG. 6) to immediately bond the high tack adhesive that has adhered to the formable material and the outer sheets of the stack. In the instance where the adhesive 53 is pressure sensitive, pressure alone will elfect the bond. Accordingly, deenergization of the means for heating the formable material adjacent the outer sheets of the stack may be required.

The low tack adhesive strip 52 is cooled to form a bond between the formable material and one edge of the sheets in the stack.

The foregoing method of binding a stack of sheets may be practiced by any suitable apparatus. One such apparatus that has proven highly satisfactory in accomplishing the foregoing method is schematically shown in FIGS. 1 and 3-11 of the accompanying drawings.

Binding apparatus 10 includes a pair of sheet guides 11 which are spaced apart and provide opposed parallel surfaces. Book gauge 11' is suitably affixed to one end of guides 11. A plurality of individual sheets 20 may be inserted between the opposed surfaces of the gauge, the gauge being then moved to firmly clasp the sheets. This sets guides 11 for the particular thickness of the sheets so the sheets may then be moved out of contact with gauge 11' and are then loosely maintained between the opposed surfaces of guides 11. Movable plate member 13 provides a surface upon which the lower edge of each of the sheets 20 may be supported. A pair of sheet engaging members 12 are movable in a direction generally perpendicular to the longitudinal axes of sheets 20. Members 11 can be provided with suitable openings 19 in the opposed surfaces thereof through which sheet engaging members 12 may be conveyed to firmly clamp the individual sheets therebetween to provide a relatively compact stack. Spaced apart from movable support member 13 is a first platen member 16. Opposed platen members 14 and 15 are spaced between first platen member 16 and plate member 13, and are adapted for movement in a path generally parallel to the path of movement of members 12.

Platen members 14, 15 and 16 may be operatively associated with suitable heating elements so each of the platen members may be heated to a desired temperature level for a reason that shall be more fully explained hereinafter. Although the heating elements are not shown, they may comprise suitable resistance elements connected through a switch to a source of electric power. Appropriate temperature regulating devices, for example, positive temperature coefficient resistance elements or negative temperature coefficient resistance elements may be operatively connected to the heating elements or integrally form a part thereof to obtain a desired predetermined temperature for each one of the platen members.

Strip guides 17 and 18 are preferably provided above platen members 14 and 15. Guides 17 and 18 properly position the binding member with respect to the various components of the apparatus. It should be noted, guides 17 and 18 are stationary, whereas, as noted before opposed platen members 14 and 15 are movable.

Referring now to FIGS. 2 and 2A there are disclosed end elevation views of a preferred binding member which may be employed in the apparatus and method of the present invention. Binding member 50 comprises a length or strip of formable backing or substrate material 51, normally comprised of relatively heavy paper stock adhesive coatings. It should be understood that other substrate materials, for example fabrics, may be employed in lieu of paper. As illustrated, FIG. 2A depicts the binding member having preformed side flanges; it is this embodiment of the member which is shown in the remaining figures of the drawing.

The binding member substrate 51 carries a plurality of stripe-like formations comprising two heat activated adhesive types or a combination of heat activated and pressure sensitive adhesives. Heat activated adhesives may be either low or high tack types. A low tack adhesive comprises an adhesive material which when heated becomes fairly molten or fluid thereby providing a high degree of surface wet-out with minimum application of pressure or heat. A high tack adhesive comprises an adhesive material which when heated remains highly viscous and somewhat immobile so a definite amount of application of pressure and/or heat is necessary to wet-out the surface being adhered. High tack adhesives, in the heat activated case, have the advantage that on application of heat and pressure, the bond immediately possesses a high degree of strength.

Binding member 50 preferably includes a relatively thick elongated stripe 52 comprised of a low tack heat activated adhesive which is disposed on the substrate material 51 along the center line thereof. Typically, the width of the thick adhesive stripe 52 is approximately equal to or slightly greater than the overall thickness of the book being formed. Adhesive stripe 52 is suitably attached to the substrate material, for example, by heating the adhesive continuously therealong. The portions of the substrate material remaining on either side of adhesive stripe 52 are covered with a relatively thin coating of high tack heat activated adhesive 53, thus forming in cooperation with center stripe 52 three parallel stripes of adhesive. The thin stripes 53 of adhesive are substantially adjacent the thick stripe thereof.

As noted, adhesive stripe 52 is relatively thick, a thickness of from 0.015 to 0.020 inch, for example, having been found to be suitable. The second adhesive 53 on substrate material 51 is relatively thin, a thickness of 0.001 to 0.005 inch, for example, having been found suitable.

With one adhesive formulation, the adhesive which comprises thick stripe 52, has an activation temperature in the range of 350450 F., while the adhesive which comprises thin stripes 53, has an activation temperature in the range of 250350' F. It is understood that other suitable adhesive formulations may have different reactive temperature ranges. For a more detailed description of binding member 50, reference may be made to the aforecited copending patent application, filed in the name of Donald W. Watson.

Referring now to FIGS. 1 and 3-11, the manner in which the apparatus described herein operates to provide abound assembly shall be explained.

FIG. 1 illustrates the apparatus with the sheets 20 held loosely between the opposed surfaces of guides 11. Binding member 50 may be inserted so it is supported by opposed platen members 14 and 15 and guided by strip guides 17 and 18. It should be understood that opposed platen members 14 and 15 may be initially positioned, either manually or automatically, in accordance with the thickness of, or the number of, sheets to be bound. Thus, for example, platen members 14 and 15 are spaced apart a relatively short distance when a relatively thin stack of sheets is to be bound; conversely, opposed platen members 14 and 15 are spaced apart a relatively large distance when a relatively thick stack of sheets is to be bound. It should also be understood, the heating elements associated with platen members 14, 15 and 16 may be energized so as to raise the temperature of the several platens to a predetermined level to thereby provide a pre-heat function. Thus, as shown in FIGS. 1 and 3, the relatively thin stripes 53 and relatively thick stripe 52 of binding member 50 are heated before the binding member is placed into contact with the sheets to be bound.

Sheet engaging members 12 are moved into engagement with sheets 20, which have previously been inserted between guides 11, to provide a substantially compact assembly. As noted before, suitable openings 19 are formed in guides 11 to accommodate the sheet engaging movement of members 12. As illustrated, sheet engaging members 12 are suitably affixed to links 24 and 25 through springs or similar devices. A cam 26 mounted about shaft 26', which is connected to a source of power not shown, is rotated in the direction of the arrow shown in FIG. 3. As the cam rotates in conjunction with the movement of the shaft, the lobe on cam 26 engages threaded member 27 and moves member 27 to the right. Member 27 is guided by guides 27 and 27", and is threadably engaged with a barrel nut 65. End 65 of nut 65 extends through slot 32 so movement of member 27 is transmitted to link 24. Member 27 is threadably positioned relative to cam 26 in accordance with the thickness of sheets 20. A knob or dial 66 enables the operator to move link 24, via nut 65, relative to cam 26, by the rotation of member 27. Thus when the stack is relatively thick, link 24 is moved closer to cam 26, and when the stack is relatively thin, link 24 is moved away from the cam. For example, as link 24 pivots about point 28 so as to move its member 12 toward its sheet engaging position, link 29 simultaneously moved in a diagonal path downwards towards the left as viewed in FIG. 3. Link 25, which is attached to link 29, is thus pivoted about point 28' through link 31', so as to transport sheet engaging member 12, connected to link 25, into the illustrated position. Springs 30 attached to sheet engaging members 12 and frame member 55 are provided to return members 12 to their initial or disengaged positions once cam 26 rotates to a position wherein the lobe is no longer in contact with member 27. Other suitable means may be employed in lieu of springs 30 for returning members 12 to their initial position. Links 31 and 31 connected to links 24 and 25 at pivot points 28 and 28 respectively, also connect the link assembly to frame member 55.

After sheets 20 have been engaged by members 12, cam 56 also mounted about shaft 26' is rotated to the position illustrated in FIG. 3, where the lowest surface thereof is in contact with cam follower 74 so as to permit springs 57, attached to frame member 55 and a stationary support member 58 to move the frame member and linkage assembly connected thereto, members 12 and thus sheets 20 upward so the sheets are spaced apart from plate member 13. This is illustrated in FIG. 3. It should be apparent that shaft 26, cams 26 and 56 and member 27 are maintained stationary with reference to the vertical movement of frame member 55. Slot 32 provided in link 24 accommodates the movement of the various members noted above.

Referring now to FIG. 4, the next step in the operation of the apparatus of the present invention is illustrated. Subsequent to sheets 20 being raised above plate member 13, a third cam 34 mounted about shaft 26 is rotated in the direction of the arrow so the lowest surface of the cam contacts cam follower 35' which is suitably joined to link 35. The movement of the cam thus described causes link 35 to pivot about stationary shaft 37. Link 35 is connected to plate member 13 at point 36 in such a manner that the movement of link 35 through an arcuate path, causes member 13 to move through a linear path. A spring 36 is connected to shaft 37 and lever 35. When cam 34 is in a position such that the highest surface thereof is in contact with lever 35, member 13 is positioned as illustrated in FIGS. 1 and 3. Spring 36 is wrapped taut about shaft 37. When the cam rotates as shown in FIG. 4, spring 36 provides a force to move the lever and member 13 to the position illustrated in the figure.

Referring now to FIG. 5, it is observed that the stack of sheets engaged by members 12 is lowered into contact with binding member 50. Referring to FIG. 3, the manner in which the aforementioned action may be obtained is illustrated. Cam 56 rotating about shaft 26' moves so lobe 60 engages frame member 55, to thereby supply a force in opposition to the force supplied by springs 57, to move the frame member and attached linkage assembly downward. As noted before, slot 32 is provided in link 24 to accommodate this movement. Again referring to FIG. 5, it is observed that movement of sheets 20 into engagement with binding member 50 causes the binding member to be deformed into a generally cup like or U-shaped configuration, and in addition thereto the central portion thereof, which is in contact with an edge of each of the sheets is firmly pressed into contact with first platen 16. As shown, stops 21 and 22 engage so as to limit the downward movement of the sheets. As noted before, the movement of members 12 into engagement with sheets 20 varies in accordance with the thickness of the stack. As indicated the varied movement is regulated by the relative position of threaded member 27 to cam 20 and the operation of springs 71. The relative position of stop 21 with reference to stop 22 will vary in accordance with the stack thickness; and similarly the engagement of stops 21 and 22 will also vary in accordance with stack thickness. Thus as the thickness of the stack is increased, the stops will engage at an earlier time during the downward travel of sheets 20 so as to decrease the movement of sheets 20 into contact with member 50. Conversely, as the thickness of the stack is decreased, the stops will engage at a later time during the downward travel of sheets 20 so as to increase the movement of sheets 20 into contact with member 50.

Comparing FIG. 12 to FIG. 5, it is observed that the thickness of stack 20 is smaller in FIG. 12 than the stack illustrated in FIG. 5. However, the overall width of the binding member used in each example is identical in both figures.

It is observed in comparing the two figures that stops 21 and 22 are engaged along a greater surface when the thickness of the stack is decreased. Thus, sheets 20 have a greater downward travel when the thickness of the stack is decreased. This is desirable to maintain the position of low tack adhesive 52 below the surfaces of members 14 and 15.

As noted before, the movement of sheets 20 into contact with member 50, forces the center or planar portion of member 50 into contact with platen 16. Since the sheets have a varied movement in accordance with variations in the thickness of the stack, it is necessary for platen member 16 to be movable in a vertical direction to accommodate such varied sheet movement. As illustrated in FIG. 1, connected to platen member 10 is a link 61 which is pivotable about a shaft 62 and is connected to a fixed or stationary support 63. A spring 64 is provided to return link 61 and thus member 16 to their initial positions. Additionally, spring 64 supplies a force to push binding member 50 into intimate contact with the one edge of the sheets. The movement of the sheets and binding member 50 into contact with the platen member forces the member to move downward. Comparing FIG. 5 to FIG. 12, it is observed that member 16 moves a greater distance as the thickness of the stack is decreased. This is obviously necessarly, in view of the increased distance a thin stack travels when compared to the distance a thick stack travels.

Again comparing FIGS. 5 and 12, it is also observable that, as a result of the increased travel occasioned by the decrease in stack thickness, the width of the planar portion of the binding member decreases and the height of the upstanding portions increase as the thickness of the stack is decreased. Furthermore, it is noted that the top surfaces of members 14 and 15 are in substantial alignment with the top surfaces of the upstanding portions of the deformed binding member regardless of variations in the length of movement of the sheets.

Again referring to FIG. 1, movable member 67 which is suitably affixed to stationary supports 68 maintains platen member 16 in a substantially horizontal plane, irrespective of its changed vertical position.

The center portion of binding member 50, having the thick low tack adhesive stripe 52 contained thereon, is heated by platen 16 so the adhesive adheres to the edge of the sheets. A heating period for the low tack material of from 12-15 seconds, for example, has been found to be suitable. As may be observed, the side portions of the substrate material 51 having the thin high tack adhesive stripes 53 contained thereon are forced upwardly so as to loosely engage the outermost sheets of the stack.

Referring now to FIG. 6, it is observed the opposed platen members 14 and 15 are moved inwardly so as to firmly press the relatively thin tack adhesives stripes 53 into firm contact with the outermost sheets of the stack. As previously noted, platen members 14 and 15 have heating elements associated therewith. Therefore, the high tack adhesive has a combination of heat and pressure applied thereto. A heating period for the high tack adhesive of from 8-12 seconds has been found to be suitable. It should be understood the two aforenoted heating periods may be concurrent if desirable.

The manner in which the movement of the opposed platen members into firm engagement with the side portions of binding member 50 is obtained shall now be explained. A fourth cam 38 is rotatably positioned about shaft 26'. Threaded member 42 is operatively connected to cam 38. Member 42 is threaded into engagement with barrel nut 69. The movement of cam 38 so the high point on the surface thereof engages member 42 causes the member to move toward the right as viewed in FIG. 6. Barrel nut 69 is suitably affixed to link 39; the movement of member 42 causes link 39 to pivot about point 43, through link 43 connected thereto. The position of member 42 with respect to cam 38 is varied in accordance with the thickness of the stack of sheets 20. A knob or dial 75 is adjusted by the operator to move link 39, via nut 69, relative to the cam, via rotation of member 42. Thus when the stack is relatively thick, link 39 is moved closer to the cam, and when the stack is relatively thin, link 39 is moved away from cam 38. Thus as link 42 is moved to the right, opposed platen member 14 is moved to the left (as viewed in FIG. 6) to firmly press one of the side portions of member 50 into engagement with its associated outermost sheet through the action of spring 73. A cross-link 41 is connected to link 39 so the movement thereof is transmitted to link 40. Thus, as link 39 pivots about point 43' so as to move member 14 in the manner described above, link 41 moves in a diagonal path downward towards the left, causing link 40 to pivot above point 45' through link 45 connerted thereto, to cause platen member 15 to firmly press the side portion of binding member 50 into engagement with its associated outermost sheet through the action of spring 72. Springs 44 and links 43 and 45 are connected to a stationary frame member 46. Springs 44 provide the necessary force to return members 14 and 15 to their initial position as viewed in FIG. 1, when cam 38 rotates so the high point on the surface thereon no longer contacts member 42.

FIG. 7 illustrates the opposed platen members 14 and 15 after they have been withdrawn from contact with the side portions of binding member 50 by operation of cam 38, its associated linkage, and springs 44. As shown in FIG. 7, binding member 50 has been attached to the edge and outermost sheets of the stack.

FIG. 8 discloses the manner in which the bonded stack is thence moved. The stack is raised upward so it is spaced apart from both the first platen 16 and the opposed platen members 14 and 15. The desired movement is obtained via the movement of cam 56 shown in FIG. 3, in conjunction with return springs 57. Cam 56 rotates so surface 76 thereof is in contact with cam follower 74 attached to frame member 55.

FIG. 9 shows the return of plate surface 13 to its initial position by the operation of the cam and associated linkage disclosed in FIG. 4. As noted hereinbefore, the rotation of cam 34 so the highest surface thereof contacts link 35 provides the restoring force to enable member 13 to return to its initial position.

FIG. 10 illustrates the stack of sheets positioned so the bonded edge is supported upon member 13. The lowering of the stack is accomplished by operation of cam 56 and its associated mechanisms, shown in FIG. 3, whereby the surface of the cam in contact with member 55 is at an intermediate height.

FIG. 11 illustrates sheet engaging members 12 in their retracted position wherein they have been disengaged from the bonded assembly. This is accomplished via the movement of cam 26 with reference to member 27. When the relatively low surface of the cam is rotated into contact with member 27, springs 30 cause links 24 and 25 to be pivoted in a reverse manner from the direction heretofore described. The book-like assembly is thence supported loosely between the opposed surfaces of guides 11 in the same manner as when the sheets were initially placed into the apparatus prior to their being bonded together.

The book-like assembly may thence be removed from the apparatus. A uniting of the sheets of the assembly is thus readily achieved in a relatively simple and economic manner. The apparatus and method disclosed herein provides bound book-like assemblies in a manner that overcomes the prior art defects described hereinbefore.

FIG. 13 illustrates a perspective view of platen mem ber 16. It has proven desirable to form the surface thereof which contacts the binding member and edge of the sheets with a plurality of grooves or channels 70. The grooves are formed in the surface of member 16 at predetermined distances, the distances being determined by the various length books it is desired for the apparatus to accommodate.

A stack of sheets is shown in phantom positioned on the platens surface. It is observed that one end of the stack overhangs an end of the surface. The other end of the stack is aligned with one of the channels 70. Channels 70 function to relieve the pressure provided by the platen member on the edge surface of the sheets so as to prevent any adhesive from being pressed outward beyond the limits of the substrate material and edge of the sheets.

As noted before, one of the further features of the present invention relates to the further steps involving editing of a bonded assembly. After a bonded assembly has been obtained, it may be desirable to remove selected ones of the sheets, or add sheets to the assembly.

To accomplish the foregoing, the bound assembly is placed directly on heated platen 16 so the edge of the sheets and the substrate material connected thereto are heated. It should be understood that when an editing mode of operation is desired, platen members 14 and 15, guides 11 and members 12 are positioned so they permit the unrestrained movement of the assembly into contact with platen 16.

Support member 13 is removed from the path of travel of the assembly so it is in the position in FIG. 4.

Bonded stack 20 is maintained in contact with platen 16 for a predetermined period of time so that the low tack material is again rendered into a semi-liquid state. This permits the operator to effect the desired additions or deletions of selected ones of the sheets. The high tack adhesive maintains the book in its united form even though the low tack adhesive is heated.

The new stack is then reconveyed so it is spaced apart from platen 16. The low tack adhesive is thus permitted to resolidify to again provide a bound book-like assembly.

In the alternative, if it is desirable to remove only the outer sheets of the stack and the binding member, this may be accomplished after the low tack adhesive has been heated. The outer sheets may then be removed together with the binding member and the remaining sheets placed between new outer sheets and bound to a new binding member by repetition of the binding cycle.

It should be specifically noted that the various mechanisms disclosed herein may be replaced by equivalents without departing from the spirit of the present invention.

While the present invention is carried out in a specific embodiment, it is not intended to be limited thereby but it is intended to be covered broadly within the scope of the appended claims.

What is claimed is:

1. A method of binding a stack of sheets comprising the steps of supporting a binding member, including a substrate material having at least one strip of heat activatable adhesive, at a predetermined position, clamping a stack of individual sheets tightly to form a book-like assembly, the clamped sheets being held in spaced apart relation from the binding member,

establishing intimate contact between the stack of sheets and the binding member, the member being thus deformed into a configuration having a substantially planar portion which is in contact with an edge surface of each of the sheets and two upstanding portions which are respectively in contact with an outermost sheet of the stack, thereafter varying the width of the planar portion and the height of the side portions of the deformed binding member in accordance with the thickness of the stack of sheets, as the thickness of the stack is increased the width of the planar portion of the binding member increases, and the height of the upstanding portions of the binding member is decreased, and as the thickness of the stack is decreased, the width of the planar portion of the member is decreased, and the height of the upstanding portions of the member is increased, heating the upstanding portions of the member simulportion of the member and edges of the sheets of the stack to a temperature to cause the heat activatable adhesive to adhere to an edge surface of each of the sheets, heating the upstanding portions of the member stimultaneously with the application of pressure thereto to thereby press the upstanding portions of the member into engagement with the outer sheets of stack, the temperature of the heat activatable adhesive being maintained at a sufficient level to cause said adhesive to adhere to the outer sheets of the stack,

transporting the bonded stack so it is spaced apart from the sources of heat, and

disengaging the clamps from contact with the stack of sheets.

2. A method of binding a stack of sheets comprising the steps of:

holding a plurality of individual sheets loosely in a sheet guide, inserting a binding strip, including a substrate material having at least one strip of heat activatable adhesive, into heat transfer relation with a first source of heat, the strip being supportably maintained in spaced apart relationship from the loosely held sheets, clamping the individual sheets tightly to form a compact book-like assembly, the clamped sheets being held in spaced apart relation from the strip,

establishing intimate contact between the stack of sheets and the binding strip, the strip being thus deformed into a configuration having a substantially planar portion which is in contact with an edge surface of each of the sheets and two upstanding portions which are respectively in contact with the outermost sheet of the stack,

variably moving the stack of sheets and strip in contact therewith into heat transfer relation with a second source of heat, the length of movement varying in accordance with the thickness of the stack, as the thickness of the stack is increased the length of movement of the stack of sheets and strip in contact therewith into heat transfer relation with the second source of heat is decreased; and as the thickness of the stack is decreased the length of movement of the stack of sheets and strip is increased, the planar portion of the strip being heated thereby to a temperature to cause the heat activatable adhesive to adhere to the edge surface of each of the sheets, moving the first source of heat into firm contact with the upstanding portions of the strip to thereby press the upstanding portions of the strip into engagement with the outer sheets of the stack, the temperature of the heat activatable adhesive being maintained at a level to cause the adhesive to adhere to the outer sheets, removing the first source of heat from contact with the upstanding portions of the strip after a predetermined period of time has elapsed, transporting the bonded stacks so they are apart from the second source of heat, and disengaging the clamps from contact with the stack. 3. The method in accordance with claim 2 further including the steps of:

raising the firmly clasped sheets a predetermined distance immediate subsequent to the clamping of the sheets, withdrawing a support surface for the stack from a path of movement thereof prior to the stack being moved into engagement with the binding strip, reintroducing a support surface into the path of movement of the stack, subsequent to the stack being transported so it is spaced apart from the second source of heat, and lowering the stack into engagement with the support surface. 4 4. The method in accordance with claim 3 further including the steps of:

reintroducing the bonded assembly into contact with a source of heat to render at least a portion of the adhesive adhering to the edge of each of the sheets liquid, editing the stack of sheets to effect desired changes in selected ones of the sheets, and retransporting the edited stack so it is spaced apart from the source of heat. 5. The method in accordance with claim 2 further including the steps of:

reintroducing the bonded assembly into contact with a source of heat to render at least a portion of the adhesive adhering to the edge of each of the sheets liquid, editing the stack of sheets to effect desired changes in selected ones of the sheets, and retransporting the edited stack so it is spaced apart from the source of heat. 6. A method of binding a stack of sheets comprising: supporting one edge of a stack of sheets to be bound in contact with a strip of formable material, said strip having a quantity of heat activatable low tack adhe sive thereon extending longitudinally along the central portion thereof and a quantity of heat activatable high tack adhesive thereon extending longitudinally thereof on either side of said low tack adhesive, heating the strip of formable material along the central portion thereof to tackify at least a portion of said low tack adhesive, applying a pressure between said stack and said formable material to produce at least a partial flow of the tackified low tack adhesive between said formable material and the edges of sheets in the stack.

forming said formable material about the edge of said stack to extend over portions of the uppermost and lowermost sheets in the stack,

heating the portions of said formable material extending over the uppermost and lowermost sheets in the stack to tackify at least a portion of the high tack adhesive thereon,

applying a pressure between said stack and said formable material to form a bond between the high tack adhesive and the uppermost and lowermost sheets in said stack, and

cooling the low tack adhesive to form a bond between said formable material and the edge portions of the sheets in the stack.

7. A method of binding a stack of sheets comprising the steps of supporting a binding member, including a substrate material having at least one strip of heat activatable adhesive, at a predetermined position, clamping a plurality of individual sheets tightly to form a book-like assembly, the clamped sheets being held in spaced apart relation from the binding member, establishing intimate contact between the stack of sheets and the binding member, the member being thus deformed into a configuration having a substantially planar portion which is in contact with an edge surface of each of the sheets and two upstanding portions which are respectively in contact with an outermost sheet of the stack, thereafter varying the width of the planar portion and the height of the side portions of the deformed binding member in accordance with the thickness of the stack of sheets, as the thickness of the stack is increased the width of the planar portion of the binding member increases, and the height of the upstanding portions of the binding member is decreased, and as the thickness of the stack is decreased, the Width of the planar portion of the member is decreased, and the height of the upstanding portions of the member is increased, bonding the planar portion of the binding member to an edge surface of each of the sheets, bonding the upstandingportions of the binding memher to the outer sheets of the stack, and disengaging the clamps from contact with the stack of sheets. 8. Apparatus for binding a stack of sheets into a booklike assembly comprising:

guide means having opposed parallel surfaces, a plurality of individual sheets being loosely held therebetween, means for supporting a binding strip, including a substrate member having at least one heat activatable adhesive positioned thereon, in spaced apart relationship from said loosely held sheets, said support means including first heating means, second heating means spaced apart from said support means and said first heating means, means for clamping the loosely held sheets to provide a substantially compact book-like assembly, means for establishing intimate contact between said binding strip and said clamped book-like assembly, the strip being deformed into a substantially cup-like configuration, having a planar portion and an upstanding portion at either end of the planar portion, the planar portion of the strip contacting one edge of each of the sheets, and the upstanding portions of the binding strip contacting the outermost sheets of the stack, said last mentioned means including:

means for varying the width of the planar portion of the binding strip and the height of the upstanding portions of the binding strip in accordance with the thickness of the stack, as the thickness of the stack increases the width of the planar 14 portion is increased and the height of the upstanding portions is decreased, and as the thickness of the stack decreased the width of the planar portion is decreased and the height of the upstanding portions is increased, said contact establishing means being further operable to place the planar portion of the binding strip and the edge of the sheets in contact therewith into heat transfer relation with said second heating means, the planar portion of the strip and the edge of the sheets being heated to a temperature to cause the heat activatable adhesive to adhere to the edge surface of the sheets, and

means for moving said first heating means into contact with the upstanding portions of the deformed strip to firmly press the upstanding portions into engagement with the outermost sheets of the stack, the temperature of the heat activatable adhesive being maintained at a sufficient level to cause the adhesive to adhere to the outer sheets of the stack, said last mentioned means being thereafter operable, to disengage said first heating means from contact with said upstanding portions of said strip, said clamping means thereafter being actuated to convey said bonded assembly to a predetermined position spaced apart from said second source of heat.

9. Apparatus in accordance with claim 8 wherein said means for establishing intimate contact between said binding strip and said clamped book-like assembly includes:

a first stop, and

a second stop movable relative to first stop, the relative position of the stops being determined by the thickness of the stack, the movement of the second stop into contact with the first stop establishing the width of the planar portion and the height of the upstanding portions in accordance with the thickness of the stack.

10. Apparatus in accordance with claim 9 wherein the top surface of said first heating means is substantially aligned with the highest surface of the upstanding portions of the binding surface regardless of variations in the height of the upstanding portions due to variations in the thickness of the stack.

11. Apparatus in accordance with claim 9 wherein the surface of said second heating means in contact with said planar portion of said binding member includes at least one pressure relief means associated therewith, one end of the stack of sheets being alignable with said relief means, when the planar portion of the binding member and the edge of the sheets in contact therewith are placed in heat transfer relation with said second heating means.

12. Apparatus in accordance with claim 8 wherein the surface of said second heating means in contact with said planar portion of said binding member includes at least one pressure relief means associated therewith, one end of the stack of sheets being alignable with said relief means, when the planar portion of the binding member and the edge of the sheets in contact therewith are placed in heat transfer relation with said second heating means.

13. Apparatus in accordance with claim 8 wherein the top surface of said first heating means is substantially aligned with the highest surface of the upstanding portions of the binding strip regardless of variations in the height of the upstanding portions due to variations in the thickness of the stack.

14. Apparatus for binding a stack of sheets into a book-like assembly comprising:

' a pair of sheet guide members supported for movement in generally opposed parallel relationship to each other and adapted to receive a stack of sheets therebetween,

a plate member having a surface thereon adapted to support a stack of sheets disposed between said guide members,

a pair of stack engaging members operably associated member in accordance with the thickness of the stack with said sheet guide members and adapted for moveto be bound; as the thickness of the stack increases the ment in a direction generally perpendicular to the length of movement is decreased, and as the thickness of stack of sheets to compress the stack of sheets therethe stack decreases, the length of movement is increased. between, 16. Apparatus in accordance with claim wherein the a first platen member spaced from said plate member top surface of said pair of opposed platen members is suband said guide members, stantially aligned with the highest surface of the side wall a pair of opposed platen members disposed between portions of the binding member regardless of variations said plate member and said first platen member and in the length of movement of the sheets into contact with adapted for movement in a direction generally paral- 0 the binding member due to variations in the thickness of lel to the path of movement of said stack engaging the stack. members, 17. Apparatus in accordance with claim 14 wherein the heating means operably connected to said first platen top surface of said opposed platen members is substantialmember and pp pl members, f i r i g 1y aligned with the highest surface of the side wall porthe temperature of said members to a predetermined 15 tions of the binding member regardless of variations in level, the length of movement of the sheets into contact with the means associated with said pair of opposed platen membinding member due to variations in the thickness of the facts for supporting a binding member, said binding stack. member comprising, 18. Apparatus in accordance with claim 14 wherein a strip of formable substrate material, the surface of said first platen member in contact with a relatively thick strip of heat activatable adhesive said center portion of said binding member includes at on said substrate material extending longitudinalleast one pressure relief means associated therewith, one 1y thereof substantially about the center portion end of the-stack of sheets alignable with said relief means of said substrate material, said thick strip being when the center portion of the binding member and the comprised of a relatively low tack adhesive, and edge of the sheets in contact therewith are placed in heat a relatively thin strip of heat activatable adhesive on said substrate material extending on each side of said relatively low tack adhesive and substantially adjacent thereto, said thin strips being comprised of a relatively high tack adhesive,

transfer relation with said first platen member.

19. Apparatus for binding a stack of sheets into a book-like assembly, said apparatus comprising:

means for effecting intimate contact between the pages of said book-like assembly and a binding member,

means operably associated with said sheet engaging members for establishing intimate contact between said tack of sheets and said binding member, the member being thus deformed into a generally cupsaid binding member comprising a substrate comprising low tack and high tack adhesives;

means including a source of heat for effecting a bonding of said pages and said binding member in the area shape configuration, the relatively thick strip of adf id 1 w t ck adhesive; and

hesive defining the center Portion of Said deformed means for effecting a bond between said pages and said member, and the l'elativfily thin Strips defining the binding member in the area of said high tack adhesive side walls thereof, the bottom surface of each of the l l b th application f pressure.

sheets resting on the center portion of said deformed 40 20 Apparatus according to claim 19 wherein said member, the side wall portions of said deformed member loosely contacting the outer sheets of the stack, the movement of said sheets into contact with said member placing said center portion of said member and the bottom surface of the sheets in heat transfer relation with said heated first platen member to cause said portion of said member to adhere to the bottom surface of each of the sheets, and means operably associated with said heated opposed Y platen members to move said members into heat transfer relation with said side portions of said deformed member, said heated side portions being firmly pressed into engagement with the outer sheets of the stack, the heat activatable adhesive on said side last-mentioned means comprises a source of thermal energy for heating said high tack adhesive to a temperature different from low tack adhesive.

21. Apparatus according to claim 20 wherein said means for establishing intimate contact effect deformation of said binding member into a configuration having a substantially planar portion which is in contact with an edge surface of each of the sheets and two outstanding portions which are respectively in contact with the outermost sheet of the stack; and

further including means for controlling the deformation of said binding member in accordance with the thickness of the stack.

portions adhering to the outer sheets of the stack, References Cited said motivating means for said platen members being UNITED STATES PATENTS further operable to remove said members from sa d 3, 9/1970 Rest et a1 156 216 X heat transfer relation with said side portions of sat 4 member, said clamping means being thereafter actu- 3,715,260 2/1973 Domemann 156 77 ated to convey said bonded assembly to a predetermined position spaced apart from said first platen WILLIAM POWELL Pnmary Exammer member- US. Cl. X.R.

15. Apparatus in accordance with claim 14 further including adjustable means operatively associated with said intimate contact establishing means to vary the length of movement of said sheets into contact with the binding UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,788,921 Dated January 29, 1974 Inventor(s) Neil- A. Polit, Donald R. Snowdon and Donald W. Watson It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

In column 1, line 4, "Snowden" should read Snowdon Signed and sealed this L th day of June 19714..

(SEAL) Attest:

EDWARD M.FLETGEER,JR." Attesting Officer 0. MARSHALLDAEE Commissioner of Patents USCOMM'DC 60376-P69 fi' U.S. GOVERNMENT PRINTING OFFIC E: 199 0-366-32 FORM PO-1050 (10-69)

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3888722 *Nov 9, 1973Jun 10, 1975Brackett Stripping Machine IncBack liner applying apparatus
US3908215 *Dec 26, 1973Sep 30, 1975Xerox CorpCheshire binder cooling rack
US3920501 *May 25, 1973Nov 18, 1975Minnesota Mining & MfgSheet binding machine
US3926712 *Jan 30, 1974Dec 16, 1975Hesselmann Planatolwerk HApparatus for binding piles of sheets or leaves
US3928117 *May 30, 1974Dec 23, 1975Xerox CorpT-bar actuated bookbinder
US3928118 *May 30, 1974Dec 23, 1975Xerox CorpBookbinder having rotatable clamping means
US3928119 *May 30, 1974Dec 23, 1975Xerox CorpBookbinding machine
US3940904 *Mar 27, 1975Mar 2, 1976Xerox CorporationMethod for making a covered book
US3953277 *May 30, 1974Apr 27, 1976Xerox CorporationBookbinder having resettable strip guides
US3954548 *Feb 22, 1973May 4, 1976Xerox CorporationBinding strip applicator
US3987601 *May 19, 1975Oct 26, 1976Xerox CorporationMethod for covering a book with a single sheet
US4075726 *Jan 20, 1976Feb 28, 1978Jens KorsgaardMethod and apparatus for binding a book
US4129471 *May 13, 1976Dec 12, 1978Rome Industries, Inc.Bookbinding technique
US4137121 *Sep 12, 1977Jan 30, 1979Hermann KronsederDevice for attaching specifically tapelike cuts to containers
US4674932 *Apr 11, 1986Jun 23, 1987Peter LazarBinding equipment
US4800110 *Jul 6, 1987Jan 24, 1989Ducorday Gerard MHot melt glue binder
US4818168 *Nov 4, 1987Apr 4, 1989General Binding CorporationDocument support apparatus for thermal binding
US4984949 *May 19, 1989Jan 15, 1991Henkel Kommanditgesellschaft Auf AktienContinuous bookbinding process using a moisture curable polyurethane adhesive
US4986713 *Jun 20, 1989Jan 22, 1991Xerox CorporationApparatus for applying hard and soft covers to bound or unbound documents
US5102277 *Jan 5, 1990Apr 7, 1992Bindomatic AbMethod and machine for the manufacture of booklets
US5152654 *Oct 4, 1990Oct 6, 1992Minnesota Mining And Manufacturing CompanyHot melt adhesive applicator
US5160234 *May 2, 1990Nov 3, 1992Peter LazarBinding apparatus
US5314283 *Dec 16, 1992May 24, 1994Xerox CorporationApparatus for applying hard and soft covers to bound or unbound documents
US5316424 *Apr 30, 1992May 31, 1994Minnesota Mining And Manufacturing CompanyHot melt adhesive binding method
US5330229 *Dec 16, 1992Jul 19, 1994Xerox CorporationCompleted book and a case for making the book
US5346350 *Dec 6, 1993Sep 13, 1994Minnesota Mining And Manufacturing CompanyHot melt adhesive applicator
US5452920 *Feb 16, 1994Sep 26, 1995Parker; Kevin P.Adhesive binding strip and method of making the same
US5454680 *Sep 11, 1990Oct 3, 1995Lazar; PeterBinding apparatus
US5536044 *Jun 13, 1994Jul 16, 1996Minnesota Mining And Manufacturing CompanyHot melt adhesive bound book
US5613711 *Jun 5, 1995Mar 25, 1997Powis Parker Inc.Adhesive binding strip having tapered high tack adhesive bands
US5863372 *May 10, 1994Jan 26, 1999Laser Substrates, Inc.Method for producing booklets printed with variable information and form therefore
US6601840Aug 9, 2001Aug 5, 2003Hewlett-Packard Development Company, L.P.Post print finishing device with imaging material binder
US6726425 *May 16, 2000Apr 27, 2004Bielomatik L.O.S. GmbhMethod and device for adhesive binding a set of sheets of books, book blocks, booklets and the like
US6802501Jun 20, 2003Oct 12, 2004Hewlett-Packard Development Company, L.P.Post print finishing device with imaging material binder
US7326018 *Mar 26, 2004Feb 5, 2008Maping KyMethod in glue-binding and a band for use in glue-binding
US7854581 *Apr 5, 2006Dec 21, 2010Canon Finetech Inc.Bookbinding apparatus, bookbinding system, and bookbinding method
EP0396037A2 *Apr 27, 1990Nov 7, 1990Peter LázárBinder
Classifications
U.S. Classification156/216, 412/8, 412/902, 156/477.1, 281/21.1, 156/227, 156/223, 412/6, 156/305, 412/37, 156/908
International ClassificationB42C9/00, B42C9/02
Cooperative ClassificationY10S156/908, B42C9/0056, Y10S412/902
European ClassificationB42C9/00C
Legal Events
DateCodeEventDescription
Jun 20, 1988AS02Assignment of assignor's interest
Owner name: VIDEOJET SYSTEMS INTERNATIONAL, INC., ELK GROVE VI
Effective date: 19880608
Owner name: XEROX CORPORATION, A CORP. OF N.Y.
Jun 20, 1988ASAssignment
Owner name: VIDEOJET SYSTEMS INTERNATIONAL, INC., ELK GROVE VI
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:XEROX CORPORATION, A CORP. OF N.Y.;REEL/FRAME:004945/0373
Effective date: 19880608