Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3795240 A
Publication typeGrant
Publication dateMar 5, 1974
Filing dateMar 29, 1972
Priority dateMar 29, 1972
Also published asDE2408179A1
Publication numberUS 3795240 A, US 3795240A, US-A-3795240, US3795240 A, US3795240A
InventorsU Frank
Original AssigneeHoffmann La Roche
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Respiratory distress stimulator system
US 3795240 A
A patient care system for monitoring respiratory distress problems and providing therapeutic treatment comprising, a sensor for generating patient derived respiratory activity signals, detecting an apnea episode from the signals, and providing in response to a detected apnea episode, stimulation of the patient by a momentary inflation of a pneumatic means adapted for placement under the patient to raise the patient and induce loss of equilibrium for startling the patient into a natural respiration pattern.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Frank 1 1 Mar. 5, 1974 [54] RESPIRATORY DISTRESS STIMULATOR 3,085,568 4/1963 Whitescll 128/33 SYSTEM 3,631,438 12/1971 Lcwin 3,566,387 2/1971 Schoencr et al. 1 lnventorI Ulrich Anton Frank, d y. 2,776,658 1/1957 Gibbon 128/28 [731 Assignee: Hoffmann-La Roche Inc., Nutley,

NJ Primary ExaminerKy1e L. Howell Attorney, Agent, or Firm-Samuel L. Welt; Bernard S. [22] Filed: Mar. 29, 1972 Leon [21] Appl No.: 239,264

[57] ABSTRACT 52 us. Cl 128/2 R, l28/2.08, 128/28, A 1 Care System for mmitoring respiratory 340/279 tress problems and providing therapeutic treatment [5 1 Int. Cl; A6lb 5/08 comprising a Sensor for generating patient derived [58] Field of searchum 128/2 S, 2 R, 208, 2 A spiratory activity signals, detecting an apnea episode 28/33, 1 340/279 from the signals, and providing in response to a detected apnea episode, stimulation of the patient by a [56] Referen'ces Cited momentary inflation of a pneumatic means adapted UNITED STATES PATENTS for placement under the patient to raise the patient and induce loss of equilibrium for startling the patient 3,2322 131373 37:18:11 into a natural respiration pattem 3,392,723 7/1968 Calvin.... 128/24 R I 7 Claims, 4 Drawing Figures 247 I4 PN SEUUPMPAEIC APNEA F MONITOR TIMER (I sec) PATENTED SREU 10F2 PNSEUUPN'LA'QC I APNEA UNI'II: MONITOR FIG o.s.


TO ALARM [5 PATENTEUIIAR 51914 3,795,240




RESPIRATORY DISTRESS STIMULATOR SYSTEM BACKGROUND OF THE INVENTION The present invention relates to an apnea monitoring and therapeutic system and more specifically a system directed at stimulation of a patient in respiratory distress.

The cessation of respiration or the inability to get ones breath often referred to as apnea, is a serious problem which becomes dangerous especially in premature infants where such occurrences are frequent. It is understood that repeated attacks as well as prolonged attacks of apnea are factors which carry a poor prognosis both for life and for subsequent mental development resulting from irreversible cerebral damage sustained during these apneic episodes. The best prospect of reducing harmful effects of late-occurring apnea is through constant surveillance preferably using some automated device to alert attendants so that stimulationthrough resuscitation can-begin promptly. As a consequence, apnea monitoring of premature infants has become an accepted practice in most institutions.

Management of apnea monitoring in the newborn, particularly in prematures, for the most part includes sensitive devices for detecting apnea events. Upon detection of an apnea episode a visual or audible alarm is generated, to call the attending nurse for prompt manual stimulation of the infant in an attempt to terminate the episode by restoring normal breathing. Alertness and responsiveness of the nursing staff is important as present embodiment.

The apnea monitor 14 could take the configuration of a number of conventional apnea monitors now commercially available irrespective of whether the basis of their operation is based on the impedance pneumography, capacitance respirometry, or any other technique for detecting the apnea episode. A typical one of such apnea monitors is shown in FIG. 2 including, an input amplifier 17 which is driving a Schmitt trigger 18 it becomes more difficult to obtain a positive response to stimulation the longer the apnea persists. Naturally then, most apnea monitors are designed to provide an early alarm. Unfortunately, however, most of these apnea episodes are of a short duration and occur almost randomly during any day of neonatal life. Thus, they place an unnecessary burdenon the nurse to the extent that in some cases it is conceivable that the alarms may even be neglected. v

The purpose of the present invention is to avoid some i of the problems incurred in apnea monitoring by closing the loop of the automated monitoring system, to

BRIEF DESCRIPTION OF THE DRAWINGS I FIG. 1 is a schematic diagram in block form, of the invention.

FIG. 2 is a schematic diagram in block form of a typical apnea monitor 14 illustrated in FIG. 1.

FIG. 3 is a top plan view of one embodiment of'a pneumatic stimulator 25 shown in FIG. 1.

FIG. 4 is a schematic diagram in block form of a preferred embodiment of the pneumatic supply unit 24 depicted in FIG. 1.

PREFERRED EMBODIMENT OF THE INVENTION With reference to the drawings there is shown in FIG.

adapted to be responsive during the period its input signal penetrates above a predetermined threshold level for which the Schmitt trigger is set. The Schmitt trigger output is connected to a timer 19 having a timing capacitance which will react in response to a predetermined interval for denoting an apnea interval to in turn produce an output for exciting an alarm latch 21, the output of which is connected to the one shot unit 16, illustrated in FIG. 1. The Schmitt-trigger 18 output is also used for energizing a one shot unit 22 which in turn drives an indicator 23 representative of the respiration activity of the patient. 1 v

With reference back to FIG. 1, the duration of the one shot timer 16 will determine the period during which stimulation is to be applied to the patient. The one shot timer 16 is connected for driving a pneumatic supply unit which in turn is pneumatically coupled through suitable tubing to an inflatable pneumatic stimulator 25placed under the patient. In a patient having an apnea episode, the pneumatic stimulator is momentarily inflated to induce a sudden loss of equilibrium which, in effect, startles the patient back into a normal respiration pattern.

An embodiment of the pneumatic stimulator is illustrated in FIG. 3, wherein there is a rectangular shaped flexible casing constructed of, for example, an elastomeric material which might be rubber; neoprene, polyethelene etc. The pneumatic stimulator has an air mattress configuration provided by four partially separated areas 27 each of which is supplied with air through a relatively rigid tube 28 via apertures 29. The rigid tube is advantageous in that because of its rigid nature the air mattress cannot be folded or bent over at an area where one depends on the passage of air through the several segments for proper air flow. Otherwise, as is experienced with conventional air mattresses, when folded over the continuity of air flow is obstructed between adjacent segments to prevent the air mattress from being completely inflated. By use of the tubular mattress construction, the height of the mattress when fully inflated can be better regulated over the entire areaof the mattress, and thus prevent the pneumatic stimulator from billowing up when'inflated to otherwise possibly cause the patient to be moved to one side. A normal size of the air mattress for an infant might be about 5 by 8 inches to allow for considerable movement of the neonate without having the head and neck slide off when used under the head and neck.

An embodiment of the pneumatic supply unit 24, is shown in FIG. 4, wherein the input signal from one shot 16 is connected to a relay unit 31 which controls a relay arm 32 to be either connected to a first terminal (a) denoted as a non-apnea terminal or a second terminal (b) denoted as an apnea terminal. In its normally assumed position the relay arm 32 is connected to terminal (a) which, in turn, is connected to a pressure switch 38, that is connected via pneumatic tubing from a gas reservoir 33, preferably air, which is electrically connected to a pump 34. Air reservoir 33 and pump 34 are also pneumatically connected via a flapper valve 35. With relay arm 31 in its normal condition (a) the pressure switch 38 senses the pressure in air reservoir 33 which, if below a predetermined pressure valve, will be supplied with pressurized air from pump 34 through one-way flapper valve 35.

The terminal point (b) of relay 31 is connected via an apnea lead to a counter 36 and to a three-way solenoid valve 37, which is pneumatically coupled from air reservoir 33 to the pneumatic stimulator 25 and through an exhaust opening. Reservoir 33assures the availability of a large quantity of pressurized air to momentarily inflate the pneumatic stimulator, and also avoids delay during the inflation cycle of the pneumatic stimulator. In the present embodiment the time to inflate the pneumatic stimulator takes less than one-half second assuming a psi reservoir pressure source and 54 inch diameter connecting tube with a final 4 psi system pressure, including the stimulator.

In operation, since relay arm 31 is normally connected to the (a) terminal, pump 34 will be charging air reservoir 33 through the flapper valve 35 during periods when the pressure switch 38 senses approximately 10 percent below a predetermined pressure for the air reservoir. Respiratory movements which are detected by senspr 1 l are fed to the apnea monitor 14. Upon detection of an apnea episode the one shot timer 16 is activated.

Relay 31 is activated from the one shot unit 16 for a period of one second during which time relay arm 32 enables power to be supplied to the three-way solenoid valve and an apnea episode count is made on counter 36. The three-way solenoid valve is open allowing the air from reservoir 33 to momentarily inflate pneumatic stimulator 25 to stimulate the patient by suddenly raising the patient up in the air to introduce his sudden loss of equilibrium and, in effect, startle the patient into normal respiration. At the end of the one second period relay arm 32 goes back to terminal (12) to, in effect, close off the three-way solenoid valve from air reservoir 33 to pneumatic stimulator 25 and open the exhaust opening of the three-way valve to the pneumatic stimulator 25 for deflating the pneumatic stimulator. Because air has been used from the air reservoir 33, this will be sensed by the pressure switch 38 which will activate the pump 34 to in turn provide pressurized air in the air reservoir 33 via the flapper valve 35, to, in effect, set the system up ready for the next apnea episode when it is detected.

If desired, if the stimulation is found to be unsuccessful in breaking the apnea episode a continuing alarm might be provided for until the patient is attended to or a second nurses alarm might be initiated within a5- second period or any other prescribed time period that would be suitable for providing such a second alarm.

I claim:

l. A patient care system for monitoring and treating respiratory distress problems comprising:

means for sensing and generating respiratory activity signals; means responsive to said respiratory activity signals, for detecting a respiratory distress problem; and

stimulating means responsive to said detecting means including inflatable fluid means adapted for placement under a patient to cause a loss of patient equilibrium, by a startling momentary raising action of a non-oscillatory type. 2. A patient care system according to claim 1 wherein said stimulating means further includes fluid supply means electrically connected from said detecting means andadapted for momentarily inflating said pneumatic means. 1

3. A patient care system according to claim 2 wherein said fluid supply means includes air reservoir means for maintaining a predetermined air pressure value for inflating the fluid means.

4. A patient care system according to claim 1 including means responsive to said detecting means for counting each respiratory distress problem detected.

5. A patient care system for monitoring and treating respiratory distress problems comprising:

mesans for sensing and generating respiratory activity signals;

monitoring means responsive to said respiratory activity signals for providing an output signal upon detection of a respiratory distress problem;

inflatable pneumatic means including an air mattress adapted for placement under a patient;

pneumatic supply means including air reservoir means for maintaining a predetermined air pressure valve, energizable to inflate said pneumatic means;'and 1 means of a non-oscillatory type, responsive to said monitoring means outputsignal, for momentarily energizing said pneumatic supply means to provide a startling raising action adapted to cause a loss of patient equilibrium.

6. A patient care systemaccording to claim 5 wherein said pneumatic supply means further includes: valve means; an energizable pump connected to said air reservoir through said valve means; and, a pressure switch when activated responsive to less than a predetermined level of air pressure in said air reservoir means for energizing said pump.

7. A patient care system according to claim 6 including switch means connected from the monitoring means for activating said pressure switch in the absence of an output signal from said monitoring means.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2776658 *Jun 2, 1953Jan 8, 1957Air ShieldsRocking bed construction
US3085568 *Aug 2, 1960Apr 16, 1963Whitesell HarryPhysio-therapy apparatus
US3392723 *Aug 9, 1965Jul 16, 1968Richfield Oil CorpElectro-pneumatically operated bed oscillator
US3547106 *Jan 8, 1968Dec 15, 1970American Electronic LabActivity detecting means
US3566387 *Nov 14, 1967Feb 23, 1971Mine Safety Appliances CoMonitoring device for positive pressure breathing apparatus
US3631438 *Sep 30, 1969Dec 28, 1971Nat Res DevApnoea alarms
US3672354 *Sep 4, 1970Jun 27, 1972Scovill Manufacturing CoRest-inducing device
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3870012 *Oct 15, 1973Mar 11, 1975Metivier RobertPressure drop alarm device
US3882847 *Dec 11, 1973May 13, 1975Jacobs Harvey BarryLow-Cost Pneumatic Apnea or Respiration Monitor
US3942513 *Jan 28, 1974Mar 9, 1976Hoffmann-La Roche Inc.Respiratory distress stimulator system
US4163449 *Sep 30, 1977Aug 7, 1979Regal Robert AEnuresis treatment device
US4311146 *May 8, 1980Jan 19, 1982Sorenson Research Co., Inc.Detachable balloon catheter apparatus and method
US4381788 *Feb 27, 1981May 3, 1983Douglas David WMethod and apparatus for detecting apnea
US4657025 *Mar 25, 1985Apr 14, 1987Carl OrlandoHeart and breathing alarm monitor
US4860766 *Jan 14, 1987Aug 29, 1989Respitrace Corp.Noninvasive method for measuring and monitoring intrapleural pressure in newborns
US5081447 *Oct 19, 1990Jan 14, 1992Echols Wilford RKeep off your back alarm
US5277194 *Jun 4, 1991Jan 11, 1994Craig HostermanBreathing monitor and stimulator
US5611349 *May 11, 1995Mar 18, 1997I Am Fine, Inc.Respiration monitor with simplified breath detector
U.S. Classification600/534, 601/41, 340/573.1
International ClassificationA61B5/113, A61H31/00, A61H1/00
Cooperative ClassificationA61H1/003, A61H2230/40, A61H2201/1238, A61H31/006, A61B5/113, A61H31/005, A61H2201/5058, A61H31/008, A61H31/00
European ClassificationA61H31/00H4, A61H31/00S, A61B5/113, A61H1/00C2, A61H31/00, A61H31/00H2
Legal Events
Jun 28, 1982ASAssignment
Effective date: 19820526
Effective date: 19820525