Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3795805 A
Publication typeGrant
Publication dateMar 5, 1974
Filing dateMay 18, 1973
Priority dateMay 18, 1973
Publication numberUS 3795805 A, US 3795805A, US-A-3795805, US3795805 A, US3795805A
InventorsM Swanberg, J Wilson
Original AssigneeXerox Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for testing a credit card
US 3795805 A
Abstract
Apparatus for testing a credit card having a coating of a substance which when treated sufficiently permanently and irreversably changes from a first state having one characteristic of reflectivity for visible light components incident thereon to a second state having a second characteristic of reflectivity for the light components. Preferably, in the first state the substance is highly light reflective and reflects light of different wavelengths unequally, and in the second state the substance is light transparent. Treating of the substance is accomplished by heating the substance, preferably with a high intensity light beam. Authenticity of the credit card is achieved by first measuring the amplitude of visible light components (colors) reflected by the substance when the substance is treated initially, and by a later spectral reflectance test after additional treating which, by sensing the change in amplitude of a previously highly reflected visible light component, indicates that the substance has changed to the second state in response to the additional treating.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Swanberg et al.

1451 Mar. 5, 1974 APPARATUS FORTESTING A CREDIT CARD [75] Inventors: Melvin E. Swanberg, Upland; James M. Wilson, San Dimas, both of Calif.

[73] Assignee: Xerox Corporation, Stamford,

Conn.

22 Filed: May 18, 1973 21 Appl. No.: 361,742

[52] US. Cl 250/209, 250/219 D, 250/219 DQ, 250/226, 194/4 R, 235/61.8 R, 356/71 [51] Int. Cl. G0ln 21/30, 606k 9/08, G07f H06 [58] Field of Search356/7l; 250/219 DO, 209, 226,

250/219 D; 194/4 R; 340/149 A; 235/618 R,

Primary Examiner.lan1es W. Lawrence Assistant Examiner-T. N. Grigsby [5 7 ABSTRACT Apparatus for testing a credit card having a coating of a substance which when treated sufficiently permanently and irreversably changes from a first state having one characteristic of reflectivity for visible light components incident thereon to a second state havinga second characteristic of reflectivityfor the light components. Preferably, in the first state the substance is highly light reflective and reflects light of different wavelengths unequally, and in the second state thesubstance is light transparent. Treating of the substance is accomplished by heating the substance, preferably with a high intensity light beam. Authenticity of the credit card is achieved by first measuring the amplitude of visible light components (colors) reflected by the substance when the substance is treated initially, and by a later spectral reflectance test after additional treating which, by sensing the change in amplitude of a previously highly reflected visible light component, indicates that the substance has changed to the second state in response to the additional treating.

The authentification apparatus includes a light source for treating a selected area of the coating and a plurality of photoresponsive elements each responsive to light of a selected wave length and connected in electrical integration networks. The integration networks transforms the amplitude representative signals supplied thereto to time amplitude varying signals which are supplied to flip-flop circuits of a logic circuit which also includes at least one nor gate and a latch circuit. If the credit card is authentic, the amplitudes of the output signals of the integration networks increase and decrease in the proper sequence to control the logic circuit such that it produces an acceptance or authentic signal. The latch circuit holds the authentic signal until circuitry responsive to the authentic signal performs a desired function, after which the credit card is indexed to a new position such that a different selected area of the coating of the credit card is processed to determine its authenticity.

10 Claims, 7 Drawing Figures PATENTEDIIAR 5 I974 SIIEEI 2 (IF 3 TO STEPPING MOTOR 55 CONTROL CIRCUIT (BLUE) (GREEN) 'CL (RED) 0 FIG. 5

PATENTEBHAR 5 I974 SHEEI 3 [IF 3 SHUTTER CLOSES BURN SHUTTER OPENS I I I I RED FIG. 7

I APPARATUS FOR TESTING A CREDIT CARD BACKGROUND OF THE INVENTION Consumable credit cards have long been used as a means for purchasing services in advance and at a reduced rate. For example, in the commuter transportation industry, multi-ride cards have been used extensively to provide a reduced rate per ride, the cards being physically manipulated, notched or punched by an attendant each time they are used. Similar cards have been used in other multi-use service areas, such as cafeteria services, or vending machine services. These cards are generally made of a soft material which allows them to become bent and defrayed.

A recent development in commuter transportation systems involves the use of automated ticket processing machines for entrance and exit gates at the various stops along the transportation system. A commuting passenger using the system will initially purchase, such as from a vending machine, a multi-ride ticket which on one side has various instructions for the use of the ticket and on the underside has a printed value grid. The ticket also has a magnetic, iron-oxide, recording strip on its underside, on which is magnetically recorded, by the vending machine, information such as the value of the ticket and the date.

To gain entrance to the transportation system, the passenger inserts the ticket into the automatic entrance ticket machine at an entrance gate which includes a turnstyle. The pertinent functions of the ticket machine are that it magnetically records the station location on the magnetic recording strip, opens the turnstyle to admit the passenger, and returns his ticket. No marks are made on the value grid. When the passenger disembarks at his station, he places his ticket in the automatic exit ticket machine at an exit gate which also includes a turnstyle. This ticket machine, and cooperating computer apparatus, determines the validity of the card and, from the magnetic recording, if the ticket has sufficient value for the ride just completed, places a mark in the grid to show the degraded value of the ticket, opens the turnstyle, and returns the ticket. If the recording upon the ticket shows insufficient value for the ride when the ticket isplaced into the ticket machine at the exit gate, the turnstyle will not open, and the passenger must consult the station agent. The mark in the grid is only for the information of the person owning the ticket; as far as the ticket machines are concerned the value of the ticket is indicated by the magnetic recordings thereon.

Another type of credit card used for commuter transport systems includes dielectric members which are laminated together and externally printed with grid squares which indicate the worth of the ticket. Conductive ink marks or strips underlie the rows of grids from edge to edge of the document. The member carrying the strips is thin, so that a marking too] impressed in a grid will electrically alter the conductivity of the strip. When inserted into an exit control apparatus, the apparatus determines the number of uncut strips to ascertain the value of the card which is rejected when an insufficient value is indicated.

One drawback of the above cards, described in detail in US. Pat. No. 3,470,359, is that the cards are easily altered. Thus, it would be fairly easy for a knowledgable person to copy the magnetic recordings of the firstdescribed card onto a used card, after mechanically erasing its old recordings, or to place a similar recording on a ticket-sized card. Similarly, a knowledgable person could alter the conductivity of the conductive strips of the second-described card. In addition, the previously described cards do not provide the card user with a clear indication of the remaining value of a partially-used card, and they are expensive to manufacture.

Another area in which automated apparatus has been used to distinguish between real and counterfeited documents is in currency changing machines and vending machines. In one common type of such apparatus, described in US. Pat. No. 3,480,785, the document to be inspected is positioned to receive light, and a plurality of sensors are positioned to receive light reflected from preselected discrete areas on one surface of the document and to provide signals in response to the spectral content thereof. Such signals must be within predetermined amplitude limits for the apparatus to accept the document as authentic. Although these systems may provide satisfactory results for currency cashing, they would not be usable with consumable credit cards, because these systems do not provide an indication of the present value of the card after partial use of the card and do not alter the characteristics of the document tested in any way.

SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an improved apparatus for testing the validity of a credit card.

A further object of the present invention is to provide apparatus for testing the validity of selected, discrete areas of a credit card.

A still further object of the present invention is to provide apparatus for testing the validity of a credit card which changes its optical characteristics when treated.

In accordance with the invention, apparatus is disclosed for testing the authenticity of a credit card which is provided with a coating of a substance which, when treated sufficiently, is permanently altered or changed from a first state having one characteristic of optical reflectance for light components incident thereon to a second state having a different characteristic of optical reflectance for the light components. Since treating (as by absorbing heat from an incident light beam) can be applied progressively to selected areas of the coating, and the change in the optical reflectance of the treated areas is permanent, not temporary or reversible, and appears as a darkening of those areas of the coating, optical inspection of the credit card, by man or machine, provides an indication of the remaining credit worth of the credit card. A light absorptive strip is provided on one side of the coating to enhance the optical contrast between the areas of the coating that are in the first state and areas of the coating that are in the second state. A patent application having claims directed to the credit card and method of testing the credit card, entitled Credit Card and assigned to'the same assignee as the present invention, was filed concurrently with this application.

Authentication of any area of the alterable coating of the credit card is achieved by first measuring the amplitude of visible light components (colors) reflected by the areas of the alterable coating when that area is in the first state and, thereafter, by measuring any change in amplitude of a previously reflected visible light component, thereby to indicate that the area has changed to the second state. The authentification apparatus includes a light source for treating a selected area of the coating and a plurality of photoresponsive elements each responsive to light of a selected wave length. The photoresponsive elements form parts of electrical integration networks which transform the amplitude representative signals supplied thereto to time-amplitude varying signals which are supplied to a logic circuit. The logic elements of the logic circuit are gated if the time-amplitude varying signals occur in the proper sequence, thereby producing an authentic signal which is held by a latch circuit forming part of the logic circuit. Thus, if the components of the reflected light have the correct amplitude relationship during both measurements, an output signal is generated which permits the credit card to be accepted and a single use to be made of the credit card. With each valid use of the credit card, and where multiple use of the card is desired, the credit card is indexed to a new position, either manually by the user or automatically, such that an adjacent area is tested. If the result of either measurement is incorrect for all areas of the credit card, the credit card is not accepted.

Other objects of the invention will become readily apparent to those skilled in the art in view of the following detailed disclosure and description thereof, especially when read in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded view of the credit card of the present invention.

FIG. 2 is a perspective view of the authentification apparatus used with the credit card of FIG. 1.

FIG. 3 is a schematic view of the optical system of the apparatus of FIG. 2.

FIG. 4 is a schematic diagram of one portion of the electrical components of-the apparatus of FIG. 2.

FIG. 5 is a schematic diagram of the logic circuit of the apparatus of FIG. 2.'

FIG. 6 illustrates waveforms produced during testing of the alterable substance forming part of the credit card of FIG. 1.

FIG. 7 is a schematic diagram ofa motor stepping circuit than can form a part of the apparatus of FIG. 2.

DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention is applicable to all areas where credit cards are used to control unattended apparatus. Specific areas in which the invention is useful is in the field of commuter transportation and vending machines. The invention is particularly useful in the field of copy and duplicating apparatus. In the latter application, the customer would purchase the credit card from a librarian, book store, supermart, etc. at a reduced rate per copy, insert the credit card into a copy machine, dial the number of copies desired (up to the maximum allowed by the card), and press the print button. If the credit card is authentic and has value to cover the number of copies dialed, the customer receives his desired number of copies and his card is returned with a dark area on it for each copy made. The dark areas allow the customer to tell at a glance how many copies worth remain on the card and prevents the unattended apparatus from producing another copy chargeable to a previously used area. When the card has been exhausted, a new card is purchased. Some advantages of this type of credit card purchase are reduced rate per copy, credit card convenience, and eliminated coin box pilferage.

Referring now to FIG. 1 of the drawings, the credit card 2 typically comprises two layers 4 and 6 of clear vinyl plastic or other stiff transparent material. Layers 4 and 6, typically 0.025 inch and 0.005 inch thick, respectively, are laminated together, such as by a transparent, pressure sensitive adhesive. A strip of light abosrptive (black) paper 8, preferably about 0.005 inch thick, is positioned between layers 4 and 6. A thin, preferably 0.001 inch to 0.005 inch thick, coating 10 of a heat-alterable substance is applied to one surface of paper 8. Coating 10 can be applied by masking all but the paper 8 and spraying the heat-alterable substance onto the exposed surface of paper 8. Obviously, the application of coating 10 is achieved prior to laminating together layers 4 and 6.

The substance used as coating 10 is selected from a group which have different optical reflectance characteristics at different temperatures, that is, substances that have a given spectral reflectance characteristic under one condition, that is, within a first range of temperatures, and a different spectral reflectance characteristic under a second condition, that is, within a second range of temperatures higher than the first range of temperatures. The transition temperature from the first range to the second range is referred to as the critical temperature, or burn temperature. A preferred group of substances of this type is sold by Tempil Corporation of South Plainfield, New Jersey, under the trademark Tempilaq. These substances reflect light frequency components (colors) having desired amplitudes when within the first range of temperature and, when heated to within the second range of temperatures, do not reflect in large amplitude at least one of the previously present light frequency components. Specifically, one such substance, that is, Tempilaq" No. E, reflects a large amount of blue light, a smaller amount of green light, and a still smaller amount of red light (the reflected light appearing blue to the human eye) when at a temperature less than 175 F but very little blue light when heated beyond the burn temperature of 175 F. Burn" or change of state takes less than 5 milliseconds. Another acceptable group of materials for coating layer 10 is sold by the William Wahl Corporation of Santa Monica, Cal., under the trademark Temp-Plate.

Since in one of it intended purposes, the credit card I willprovide for multiple credit charges, adjacent areas of the coating 10 can be heated for each credit charge. Heating of the separate areas is achieved preferably by indexing the credit card horizontally or vertically, either manually or by automated apparatus. If desired, boarder strips can be provided between adjacent areas of the coating 10 to isolate them such that only one area at a time is heated, such as by a high intensity light beam.

Due to the change in state and associated change in spectral reflectance (amplitude of colors reflected) of coating 10 when heated beyond the critical temperature, two separate tests can be performed to check the validity of the credit card. The first test analyzes or measures the amplitude of light components (colors) reflected from coating when it is in its first stage, that is, when it is below 175 F in the case of Tempilaq No. l75F. This test data is integrated to sharply define the amplitudes of the reflected colors and then the waveforms indicative of the color amplitudes are supplied to logic circuitry, described in detail hereinafter, which provides a first test signal indicative of the proper color amplitudes. The second test provides an indication that the coating 10 has changed state or burned due to continued heating, that is, that the amplitude of one of the reflected colors, blue in the case of Tempilaq" No. 175F, has decreased greatly. This decrease in amplitude and the first test signal are utilized by the logic circuitry to provide a signal indicative of an authentic credit card. The change of state of a heated area of coating 10 also provides a permanent and irreversible indication, to the user and to the associated authentification apparatus, that the area of the coating has been used for a credit purchase. In the case of Tempilaq" No. 175F, a solid (or possibly super cooled liquid) is formed after cooling from about 175 The substance of coating 10 is different from liquid crystals used to produce temporary displays, as described in US. Pat. Nos. 3,637,291 and 3,524,726. Although the substances described in the above patents evidence two chromatic states, i.e., a first translucent state and a second opaque state, when heated to a predetermined temperature, the substance must be able to reverse states to provide the desired change in visable display. This reversal is accomplished by the removal of the heat. It is therefore necessary to continuously apply energy to the liquid crystal material in order to display the images for extended periods of time, since the change in light-reflecting properties is not stable.

The manner in which the credit card 2 can be used and tested is best explained by reference to FIGS. 2 and 3 which show the novel apparatus for testing the validity of credit card 2. A lamp 14, with the aid ofa collecting mirror 16, projects a high intensity light beam through lens assembly 17 toward a credit card holder 18 which has channels (not shown) for holding the credit card. Lamp 14 can be a l2-volt, ISO-watt tungsten halogen lamp. An apertured shutter 20 is positioned between the lamp l4 and the holder 18 to intercept the light beam at all times except when the validity tests are to be performed. To restrict the area of the light beam impinging upon card 2 when it is between the support channels, an apertured mark 19 is positioned adjacent the holder 18 on the side thereof facing lamp 14.

In operation, when the credit card 2 is inserted between the channels of holder 18, a switch is tripped which permits energization of a solenoid 22 which moves shutter 20 to the right, thereby allowing light to be projected through the aperture in shutter 20 and onto a selected area of coating 10. Timing means (not shown) are provided such that shutter 20 is in the light transmissive position for the duration of testing, about eight tenths ofa second when Tempilaq No. 175F is used as the substance of coating 10. If desired, a shoulder, keyway, or other suitable indexing means may be included in the structure of credit card 2 to require a specific orientation of the card before it may be entered into the holder channels, thus obviating the user visually orienting the card for face-up operation.

As previously mentioned, when coating 10 is Tempilaq No. 175F, initial heating (heating below 175 F) produces a spectral reflectance spectrum having a large amplitude blue component, a smaller amplitude green component, and a still smaller amplitude red component. When strip 10 is heated sufficiently, about 175 F, which occurs after about 0.7 seconds of exposure to a high intensity light beam, such as produced by a watt tungsten halogen lamp, the coating 10 burns (changes state) with the result that coating 10 becomes transparent thereby exposing the highly light absorptive strip 8 to the photoconductors 28, 29 and 30 whereby the amplitudes of the reflected light (particularly blue light) decrease rapidly. These colortemperature characteristics of coating 10 are used to produce two test signals, as now will be explained.

Positioned adjacent to the support 18 is a photoconductor assembly which includes three light filterphotoconductor combinations. Specifically, photoconductors 28, 29, and 30 cooperate with filters 32, 33, and 34, respectively, which (when coating 10 is Tempilaq No. l75F) transmit blue, green, and red light, respectively. Accordingly, only the blue component of the light reflected by coating 10 of credit card 2 is incident on photoconductor 28; only the green component of the reflected light is incident on photoconductor 29; and only the red component of reflected light is incident on photoconductor 30. A funnel-shaped shield 36 is positioned adjacent the filters 32, 33, and 34 and the credit card support 18 to prevent stray light (light not reflected by a heated area of coating 10) from contributing to the conductivity of the photoconductors 28, 29, and 30. If desired, light conducting fibers may be used to conduct the reflected light to the location of the filter-photoconductor combination as a further preventative against erroneous signals produced by stray light.

Photoconductors 28, 29, and 30 form parts of conventional integration circuits 40, 41, and 42, respectively, as shown in FIG. 4. With the coating 10 of Tempilaq No. F having the spectral reflectance sequence previously set forth, that is, reflectance of a large amount of blue light, a smaller amount of green light, and a still amaller amount of red light prior to burn, with a decrease in the amplitude of these colors reflected by coating 10 after it burns or changes state, the output waveforms of the integrators 40, 41 and 42 will be as shown in FIG. 6. As indicated by FIG. 6, the output waveform of integrator 40 (blue light) reaches a high value of amplitude (due to the large amplitude of blue light reflected) prior to the time that the output waveforms of integrators 41 (green light) and 42 (red light) reach a high level, with the output waveform of integrator 41 (green light) reaching a high value before the output waveform of integrator 42 (red light) reaches a high value (due to the larger amplitude of green light reflected than red light reflected). FIG. 6 also shows that the output waveform of integrator 40 decreases rapidly once the strip 10 burns or changes state.

The output signals of integrators 40, 41 and 42 are supplied to input terminals of a logic circuit (FIG. 5) which is one form of logic circuit that can be used to make the determination of whether the amplitudes of the light components (colors) reflected by coating 10 is proper when coating 10 is in the first state (first test), and whether the amplitude of the blue component of the reflected light diminishes rapidly when coating 10 is heated sufficiently to change state (second test). Referring specifically to FIG. 5, the output of integrator 40 (blue light waveform) is supplied to the D input terminalof a flip-flop 50 and to one input terminal of a NOR gate 52. The output of integrator 41 (green light waveform) is supplied to the CL (clock) input of flipflop 50. The Q or'high voltage output of flip-flop 50 is coupled to the D input of a flip-flop 54. The output signal of integrator 42 (red light waveform) is supplied to the CL (clock) input of flip-flop 54, the Q output of flip-flop 54 being supplied to another input of NOR gate 52. The third input to NOR gate 52 is connected to a dropping resistor 56 which has its non-ground side connected to a dc source through a switch 57 which is open only when shutter 20 is permitting light from lamp 14 to illuminate coating or an area thereof. The output terminal of NOR gate 52 is connected to an input terminal of a NOR gate 58 which forms part of a clamping circuit 60. Circuit 60 also includes a NOR gate 62 which has its output signal feedback to a second input terminal of NOR gate 58. The output terminal of gate 58 is connected to an input terminal of gate 62, the other input terminal of gate 62 being connected both to the non-grounded side of a dropping resistor 64 and to a dc source via a switch 66.

In operation of the circuit of FIG. 5, the output of NOR gate 50 will be positive only if all the input signals thereto are negative. This will occur only when the spectral pulses occur in the sequence shown in FIG. 6' and the coating 10 burns. In the proper sequence, the leading edge of the green signal will provide a clock pulse while the blue signal is positive, producing a positive signal at the output of flip-flop 50, thus arming flipflop 54. The leading edge of the red signal clocks flipflop 54 after it is armed, producing a negative signal at the lower input terminal of gate 52. Shortly thereafter, the blue signal decreases, producing a negative going appear at the bottom input terminal of gate 52. Similarly, if the leading edge of the integrated green signal did not attain a high value while the integrated blue signal was at a high value, the flip-flop 54 would not be armed, and it would not produce a negative pulse upon will be devided into discrete areas, each area representing a single credit purchase. In the case of multiple purchases, the testing equipment would include apparatus (indicated generally as 70 in FIG. 2) for transporting the credit card horizontally and vertically such that the light from lamp 14 can be made to fall sequentially on adjacent areas of the coating 10 of credit card 2. When the credit card is used with a copying of duplicating apparatus, the credit card would be indexed such that the desired number of copies can be made.

Obviously, the testing apparatus would include apparatus (not shown) which would index the tranport system to the first unburned area of the credit card. This could be achieved by a photoconductor positioned adsignal at the middle input of gate 52. Since the signal applied to the top input terminal of gate 52 is always negative (ground) when the shutter 20 is open (about 0.8 seconds), the proper sequence of colors produces negative pulses at all three input terminals of NOR gate 52 and thus a positive signal at the output terminal of NOR gate 52. The latch circuit 60 provides a permanent indication of the positive signal at the output of gate 52. The output of gate 62 of the latch circuit 60 is coupled to control circuitry (not shown). which reacts only to a positive signal to induce operation of a a machine, such as a copier. When the machine has cycled, the switch 66 is closed, providing a high voltage signal to the lower input of gate 62, with the result that the output of gate 62 becomes negative. NOR gate 52 is reset by the closing of switch 57 when the shutter 20 closes.

If the coating 10 did not burn or change state, that is, did not cease to reflect a large amount of blue light, the input signal to the middle input terminal of gate 52 would remain positive and the output signal thereof would not become positive. If the amplitude of the reflected colors, and accordingly the timing sequence of pulses produced by the integrator networks 40, 41, and 42, did not occur as desired, for example, if the amplitude of the red signal was too large and the edge of the high voltage signal produced by integrator 42 occurred before either the integrated blue or green signal attaining a high value, the flip-flop 54 would be clocked prior to being armed, and a negative going signal would not jacent the coating 10. If a light beam, either produced by lamp 14 or by another light source, incident on an area of coating 10 does not provide a minimal amount of reflected light (incident on the photoconductor) within a few tenths of a second, indexing apparatus would move the credit card holder to a new position such that light now falls on an adjacent area of coating 10. A typical stepping motor control circuit which would be used to move or index the credit card when it is intended for multiple purchases is shown in FIG. 7. Each time that switch- 57 closes the relay switch R is closed, momentarily resulting in the conduction of controlled rectifier Q and, as a result, the conduction of controlled rectifier Q The current flow through the motor control winding, as a result of conduction of controlled rectifier O is sufficient to produce one increment of revolution of a motorshaft which is coupled to holder 18, such as through an appropriate geartrain. Accordingly, the holder 18 would move one increment, depending uponthe size of the descrete areasof the coating 10, each time thatthe shutter switch 57 is closed.

1 In addition to defining the second spectral reflectance after coatingl0 has changed to a transparent liquid (and then to a solid on cooling), highly light absorptive strip 8 serves two other functions. First, it absorbs radiant energy incident thereon thereby reducing the time necessary to heat coating 10 to the burn" temperature. Second, it absorbs the liquid of coating 10 when it changes to a liquid state thereby helping to prevent the possibility of mechanically manipulating the substance of coating 10 once it has changed state.

While the present invention has been described with reference to preferred arrangements, it will be understood to those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the true spirit and scope of the invention. Specifically, a different color light absorptive strip 8 could be used instead of black. If strip 8 were red, the second authenticity test would indicate that the amplitude of blue light reflected by the card had decreased substantially, while the magnitude of red light reflected had increased substantially. In addition, the bandwidth of the light filter can be changed to correspond to the light colors used to test the validity of the credit card, and the coating or any area thereof can be heated by apparatus other than lamp 14. Additional filters could be included between the lamp l4 and the credit card holder which would permit only the passage of infrared light and light of those colors used in the testing of the credit card.

What is claimed is:

1. Apparatus for testing the authenticity of a credit card having a layer of a substance with a first optical reflectance characteristic when within a first temperature range, and a second optical reflectance characteristic when heated to a temperature beyond said first temperature range, comprising:

first means for heating said substance through at least a portion of said first temperature range and thereafter to beyond said first temperature range,

second means for projecting a high intensity beam of light onto said substance,

a plurality of photoelectric assemblies positioned adjacent said substance, each of said photoelectric assemblies responsive to electromagnetic radiation of a different frequency reflected by said substance,

a plurality of networks, each including a component of said photoelectric assemblies, for transforming the electromagnetic radiation of said different frequencies to time-amplitude varying electrical signals, and

logic means coupled to said networks for determining if said time-amplitude varying electrical signals are within desired amplitude ranges when said substance is heated through said first temperature range and beyond said first temperature range.

2. The apparatus of claim 1 wherein said first and second means is a single high intensity light source.

3. The apparatus of claim 1 wherein said networks are electrical integration networks.

4. The apparatus of claim 3 wherein each of said photoelectric assemblies includes a light filter responsive only to light ofa given frequency and a photoconductor positioned to receive only light passing through said filter associated therewith, said photoconductors being components of said electrical integration networks.

5. The apparatus of claim 4 wherein said logic means includes an electrical latch circuit.

6. The apparatus of claim 5 wherein said logic means further includes first and second flip-flop circuits and a multi-input electronic gate,the high voltage output of said first flip-flop is coupled to an input of said second flip-flop, and the low voltage output of said second flipflop is supplied to an input of 'said gate, said plurality of photoelectric assemblies being three in number with the output of two of said assemblies being supplied to the arming and clock terminals of said first flip-flop,

and the output of said other photoelectric assembly being supplied to the clock input of said second flip- 7. The apparatus of claim 6 wherein said apparatus includes means for preventing stray light from affecting said photoelectric assemblies.

8. Apparatus for testing the authenticity of areas of a layer of a substance having a first optical reflectance characteristic when within a first temperature range and a second optical reflectance characteristic when heated to a temperature beyond said first temperature range, said substance forming part of a credit card, comprising:

means for heating one area of said substance through at least a portion of said first temperature range and thereafter beyond said first temperature range,

means for projecting a high intensity beam of light onto said one area of said substance,

' a plurality of photoelectric assemblies positioned adjacent said substance, each of said photoelectric assemblies being responsive to electromagnetic radiatiori of a different frequency reflected by said area,

a plurality of networks, each including a component of said photoelectric assemblies for transforming the electromagnetic radiation of said different frequencies to time-amplitude varying electrical signals,

logic means coupled to said networks for determining if said electromagnetic radiation of different fre-- quencies reflected by said area is within desired amplitude ranges during both said first temperature range and beyond said first temperature range, and

means for moving said credit card after said area of said substance hasbeen tested so that another area of said credit card can be tested.

9. The apparatus of claim 8 wherein each of said photoelectricassemblies includes a filter responsive only to light of a given frequency and a photoconductor positioned to receive only light passing through said filter associated therewith.

10. The apparatus of claim 9 wherein said logic means includes first and second flip-flop circuits and a multi-input electronic gate, the high voltage output of said first flip-flop is coupled to an input of said second flip-flop, and the low voltage output of said second flipflop is supplied to an input of said gate, said plurality of photoconductor assemblies being three in number with the output of two of said assemblies being supplied to the arming and clock terminals of said first flip-flop, and the output of said other photoconductor assembly being supplied to the clock input of said second flipflop.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3560715 *May 29, 1967Feb 2, 1971Omron Tateisi Electronics CoApparatus for changing the information recorded on cards
US3587806 *Dec 18, 1968Jun 28, 1971Arita KoseiToken-destroying vending system
US3638201 *Jun 29, 1970Jan 25, 1972Licentia GmbhOptical data storage system
US3653480 *Oct 9, 1969Apr 4, 1972Omron Tateisi Electronics CoAutomatic vending system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4908516 *Apr 7, 1987Mar 13, 1990West Michael AApparatus and process for checking the authenticity of an article having a magnetic storage information means
US5206701 *Sep 20, 1991Apr 27, 1993Amoco CorporationApparatus for near-infrared spectrophotometric analysis
US6437316Oct 30, 1997Aug 20, 2002Oridion Medical Ltd.Fluid analyzer with tube connector verifier
US6719199Apr 29, 2003Apr 13, 2004International Business Machines CorporationCredit card/smart card test device
US7188258 *Sep 17, 1999Mar 6, 2007International Business Machines CorporationMethod and apparatus for producing duplication- and imitation-resistant identifying marks on objects, and duplication- and duplication- and imitation-resistant objects
US7614958 *Nov 15, 2002Nov 10, 2009Creative Kingdoms, LlcInteractive quest game
US7749089Apr 10, 2000Jul 6, 2010Creative Kingdoms, LlcMulti-media interactive play system
US8089458Oct 30, 2008Jan 3, 2012Creative Kingdoms, LlcToy devices and methods for providing an interactive play experience
US8164567Dec 8, 2011Apr 24, 2012Creative Kingdoms, LlcMotion-sensitive game controller with optional display screen
US8169406Sep 13, 2011May 1, 2012Creative Kingdoms, LlcMotion-sensitive wand controller for a game
US8184097Dec 6, 2011May 22, 2012Creative Kingdoms, LlcInteractive gaming system and method using motion-sensitive input device
US8226493Mar 4, 2010Jul 24, 2012Creative Kingdoms, LlcInteractive play devices for water play attractions
US8248367Apr 20, 2012Aug 21, 2012Creative Kingdoms, LlcWireless gaming system combining both physical and virtual play elements
US8342929Jul 2, 2010Jan 1, 2013Creative Kingdoms, LlcSystems and methods for interactive game play
US8368648May 18, 2012Feb 5, 2013Creative Kingdoms, LlcPortable interactive toy with radio frequency tracking device
US8373659Apr 30, 2012Feb 12, 2013Creative Kingdoms, LlcWirelessly-powered toy for gaming
US8384668Aug 17, 2012Feb 26, 2013Creative Kingdoms, LlcPortable gaming device and gaming system combining both physical and virtual play elements
US8475275May 11, 2012Jul 2, 2013Creative Kingdoms, LlcInteractive toys and games connecting physical and virtual play environments
US8491389Feb 28, 2011Jul 23, 2013Creative Kingdoms, Llc.Motion-sensitive input device and interactive gaming system
US8531050Nov 2, 2012Sep 10, 2013Creative Kingdoms, LlcWirelessly powered gaming device
US8608535Jul 18, 2005Dec 17, 2013Mq Gaming, LlcSystems and methods for providing an interactive game
US8686579Sep 6, 2013Apr 1, 2014Creative Kingdoms, LlcDual-range wireless controller
US8702515Apr 5, 2012Apr 22, 2014Mq Gaming, LlcMulti-platform gaming system using RFID-tagged toys
US8708821Dec 13, 2010Apr 29, 2014Creative Kingdoms, LlcSystems and methods for providing interactive game play
US8711094Feb 25, 2013Apr 29, 2014Creative Kingdoms, LlcPortable gaming device and gaming system combining both physical and virtual play elements
US8727215 *Nov 23, 2012May 20, 2014Uniform Industrial Corp.Test device for magnetic stripe decoder chip
US8753165Jan 16, 2009Jun 17, 2014Mq Gaming, LlcWireless toy systems and methods for interactive entertainment
US8758136Mar 18, 2013Jun 24, 2014Mq Gaming, LlcMulti-platform gaming systems and methods
US8790180Feb 1, 2013Jul 29, 2014Creative Kingdoms, LlcInteractive game and associated wireless toy
US8814688Mar 13, 2013Aug 26, 2014Creative Kingdoms, LlcCustomizable toy for playing a wireless interactive game having both physical and virtual elements
US8827810Aug 12, 2011Sep 9, 2014Mq Gaming, LlcMethods for providing interactive entertainment
US20130126613 *Nov 21, 2012May 23, 2013Uniform Industrial Corp.System and method for testing magnetic stripe decoding chip
US20130240625 *Nov 23, 2012Sep 19, 2013Uniform Industrial Corp.Test device for magnetic stripe decoder chip
WO1987007415A1 *Apr 7, 1987Dec 3, 1987Michael Anthony WestArticle verification
Classifications
U.S. Classification250/226, 250/556, 235/473, 235/469, 235/487, 194/207, 356/71, 250/568
International ClassificationG07F7/00, G07F7/02, B44F1/12, G07F7/08, B44F1/00
Cooperative ClassificationG07F7/086, G06Q20/3433, G07F7/02
European ClassificationG06Q20/3433, G07F7/08B, G07F7/02