Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3797494 A
Publication typeGrant
Publication dateMar 19, 1974
Filing dateAug 9, 1971
Priority dateApr 1, 1969
Publication numberUS 3797494 A, US 3797494A, US-A-3797494, US3797494 A, US3797494A
InventorsA Zaffaroni
Original AssigneeAlza Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Bandage for the administration of drug by controlled metering through microporous materials
US 3797494 A
Abstract
A bandage for use in the continuous administration of drugs to the skin or mucosa, comprising a backing member defining one exterior surface, a surface of pressure-sensitive adhesive defining a second exterior surface, and disposed therebetween a reservoir containing drug formulation confined therein. The reservoir can comprise a distinct layer of the bandage or a plurality of microcapsules distributed throughout the adhesive surface, and in either case the drug can be confined within an interior chamber of the reservoir or distributed throughout a reservoir matrix. The drug passes through drug release rate controlling microporous material which continuously meters the flow of drug by viscous or diffusive transfer to the skin or mucosa at a controlled and predetermined rate over a period of time.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 Zaffaroni ]*Mar. 19, 1974 1 1 BANDAGE FOR THE ADMINISTRATION OF DRUG BY CONTROLLED METERING THROUGH MICROPOROUS MATERIALS [75] Inventor: Alejandro Zaffaroni,Atherton,

Calif.

[73] Assignees Alza Corporation, Palo Alto, Calif.

[ Notice: The portion of the term of this patent subsequent to Aug. 10, 1988, has been disclaimed.

[22] Filed: Aug. 9, 1971 [21] Appl. No.: 169,976

Related US. Application Data [63] Continuation-impart of Ser. Nos. 812,116, April 1, 1969, Pat. No. 3,598,122, and Ser. No. 812,117, April 1, 1969, Pat. No. 3,598,123, and Ser. No. 150,085, June 4, 1971, Pat. No. 3,731,683.

[52] US. Cl. 128/268 [51] Int. Cl A611 15/06 [58] Field of Search l28/260, 268, 156, 155,

[56] References Cited UNITED STATES PATENTS 3,598,122 8/1971 Zaffaroni 128/268 3,598,123 8/1971 Zaffaroni 128/268 3,426,754 2/1969 Bierenbaum.... 128/268 X 3,053,255 9/1962 Meyer 128/268 3,464,413 9/1969 Goldfarb et 3].. 128/268 3,512,997 5/1970 Cohly et a1. 128/296 X Primary Examiner-Dalton L. Truluck Assistant Examiner-.1. C. McGowan 5 7 ABSTRACT or distributed throughout a reservoir matrix. The drug passes through drug release rate controlling micropo' rous material which continuously meters the flow of drug by viscous or diffusive transfer to the skin or mucosa at a controlled and predetermined rate over a period of time. i

7 Claims, 5 Drawing Figures PATENTEUIAR I 9 1914 INVENTOR.

BY Alejandro Zaffaroni BANDAGE FOR THE ADMINISTRATION OF DRUG BY CONTROLLED METERING THROUGH MICROPOROUS MATERIALS RELATED APPLICATIONS This application is a continuation-in-part of Ser. No. 812,1 l6, filed Apr. 1, 1969, and now issued on Aug. 10, 1971 as US. Pat. No. 3,598,122 entitled Bandage for Administering Drugs"; Ser. No. 812,1 l7, filed Apr. 1, 1969, and now also issued on Aug. 10, 1971 as US. Pat. No. 3,598,123 entitled Bandage; and Ser. No. 150,085, filed June 4, 1971, and now issued on May 8, 1973 as US. Pat. No. 3,731,683 entitled Bandage for the Controlled Metering of Topical Drugs to the Skin; all being applications of Alejandro Zaffaroni.

BRACKGROUND OF THE INVENTION This invention relates to a device for the administration of drug and, more particularly, to a medical bandage for the controlled continuous metering of flow of systemically or topically active drug to the skin or mucosa over a period of time.

Topically active drugs, as that term is used in this specification and the appended claims, are agents which, when applied to the skin or mucosa, primarily cause a pharmacological or physiological response at or near the site of their application. systemically active drugs, as that term is used in this specification and the appended claims, are agents which, when applied to the skin or mucosa, are absorbed through the body surface to which applied and are transported from their site of application by the recipients circulatory system or lymphatic system, to cause a pharmacologic or physiologic response at a remote site in the body.

systemically active drugs are conventionally administered either orally or by injection, with the primary objective of the mode being to achieve a given desired blood level of drug in circulation over a period of time. However, these prior art methods possess certain shortcomings resulting in the failure to obtain these goals. For example, the oral route is inadequate for several reasons even though the drug is administered at periodic intervals according to a well defined schedule. The rate of absorption of drug through the gastrointestinal tract is affected by both the contents of the tract and the time of passage of drug through the small intestine. Therefore, such variables as whether the drug is administered before or after eating and the type and quantity of food eaten (for example, high or low fat content), or whether administered before or after a bowel movement, affect the. rate of absorption of the drug which takes place in the small intestine. Additionally, the time of passage of drug through the small intestine is affected by the rate of peristaltic contracting, adding further uncertainty. Also important is the rate of circulation of blood to the small intestine and the fact that many drugs administered by this route are rendered inactive by gastric acid and digestive enzymes of the gastrointestinal tract or liver where the drug can be metabolized to an inactive product by that organ. These factors make it difficult to achieve a desired time course of concentration of the drug in the blood. The almost inevitable result of oral administration of drugs through the gastrointestinal tract is, that the level of drug in circulation surges to a peak level at the time the drug is administered, followed by a decline in concentration in 2 the blood and body compartments. Thus, a plot of drug in circulation after'administration of several tablets a day has the appearance of a series of peaks which may surpass the toxic threshold of the drug, and valleys which fall below the critical point needed to achieve the desired therapeutic effect.

The administration of drugs by injection can entail certain disadvantages. For example, very strict asepsis must be maintained to avoid infection of the blood, the vascular system or heart. Drug administration by poor intravenous injection technique may result in perivascular injection when it is not intended; and the typical result of injection into the blood is a sudden rise in the blood concentration followed by an uncontrolled decline. Additionally, administration of drugs by injection is inconvenient and painful. Other dosage forms for systemic administration of drug, such as rectal suppositories and sublingual lozenges, also produce non-uniform levels of the therapeutic agent in circulation. These dosage forms require great patient cooperation, have low patient acceptability, and are sparingly used throughout most of the world.

A large number of locally acting drugs are available to treat skin disorders or other conditions which manifest themselves in a manner such that they are susceptible to treatment via the skin. These drugs are conventionally topically administered to the skin with the active agent carried in the form of ointments, creams, salves, liniments, powders, dressings, and the like. The popularity of these types of formulations resides in the fact that it is quite easy to topically apply the agent to the skin in this manner. In most cases, however, it is not possible to determine how much of the preparation has been taken up or effectively administered to the sking since only non-uniform levels of the agent are available, nor is there any assurance that sufficient medication will be available for the duration of periods that it is required. A further undesirable feature is the unsightliness of these formulations which often discourages patients from using them during their waking hours of the day when they are most likely to be seen by others. Further, the preparations are subject to rub off onto clothing, thus causing much inconvenience and annoyance tothe user.

SUMMARY OF THE INVENTION Accordingly, an object of this invention is to provide a bandage for the improved continuous administration of a predetermined controlled quantity of topically or systemically active drug to or through the skin or body mucosa over a period of time, which overcomes the disadvantages inherent in the aforesaid prior art modes of administration.

Another object of this invention is to provide a bandage which can be adapted to deliver controlled quantities of drug having a wide variety of chemical and physical properties and over a wide range of drug delivery rates.

In accomplishing these objects, one feature of the invention resides ina bandage for the continuous administration of controlled quantities of drug to the skin or mucosa, comprised of a laminate of: (l) a backing member; bearing (2) a discrete middle reservoir layer containing a drug confined within a body, the body being formed from drug release rate controlling microporous material permeable to the passage of the drug, to continuously meter the flow of a therapeutically effective amount of the drug to the skin or mucosa from the reservoir at a controlled and predetermined rate over a period of time; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin or mucosa and positioned on one surface of the reservoir remote from the backing member.

Another aspect of this invention resides in a bandage comprised of a laminate of: (l) a backing member; bearing (2) a discrete middle reservoir containing a drug confined therein, the reservoir being formed of material permeable to passage of the drug; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin or mucosa and positioned on one surface of the reservoir remote from the backing member and wherein one or more drug release rate controlling microporous membranes are interposed between the surface of the reservoir and pressure-sensitive adhesive so as to continuously meter the flow of a therapeutically effective amount of the drug from the reservoir at a controlled and predetermined rate over a period of time. The reservoir can be a container having the agent confined therein or a solid or microporous matrix having agent dispersed therein.

Still another embodiment of this invention resides in an adhesive bandage comprising a laminate of: (l) a backing member; bearing (2) a pressure-sensitive adhesive on one surface thereof adapted for contact with the skin or mucosa, said pressure-sensitive adhesive having distributed therethrough, (3) a plurality of discrete microcapsules, each of which microcapsules comprises a drug confined within a body of drug release rate controlling porous material to continuously meter the flow of a therapeutically effective amount of the drug to the skin or mucosa of the patient from the microcapsules at a controlled and predetermined rate over a period of time.

Other objects, features and advantages of the invention will become more apparent from the following description when taken in conjunction with the accompanying drawings.

The term reservoir, as used herein to define the drug containing portion of the subject bandage, is intended to connote a broad class of structures capable of fulfilling'the intended function, and includes both discrete porous microcapsules, as well as distinct reservoir compartments or layers. Likewise, as will be hereinafter more completely developed, the foregoing term encompasses containers having one or more interior drug containing chambers, as well as solid matrices and microporous matrices having a systemically or topically active drug distributed therethrough.

The term drug or agent, when not further qualitied, includes both topically active and systemically active drugs. as hereinbefore defined.

BRIEF DESCRIPTION OF THE DRAWINGS In the drawings:

FIG. 1 is a cross-sectional view of an embodiment of the medical bandage of the invention, wherein the drug is uniformly distributed throughout a matrix of microporous material permeable to the passage of the drug by flow through the pores of the material and the material is laminated to a backing member. The matrix material which acts as a reservoir for the drug bears a coating of the pressure-sensitive adhesive thereon;

FIG. 2 is a cross-sectional view of still another embodiment of the invention, wherein the adhesive bandage of the invention is comprised of a backing member having a reservoir on one surface thereof of drug uniformly distributed throughout a matrix material permeable to passage of the drug, and on the surface of the reservoir remote from the backing member bearing a pressure-sensitive adhesive coating. A microporous membrane is interposed between the reservoir layer and the pressure-sensitive adhesive coating;

FIG. 3 is a cross-sectional view of another embodiment of the bandage of the invention, wherein the reservoir laminated to the backing member is a hollow container permeable to passage of drug by flow through the pores of one surface thereof, and having the drug confined within the interior chamber thereof. The reservoir bears a coating of pressure-sensitive adhesive thereon;

FIG. 4 is a perspective view of the medical adhesive bandage of the invention, wherein the drug is microencapsulated with a porous material permeable to the passage of the drug, and the microcapsules are uniformly distributed throughout the pressure-sensitive coating;

FIG. 5 is a cross-sectional view of the bandage of the invention shown in FIG. 4.

DETAILED DESCRIPTION OF THE INVENTION In accordance with this invention there is provided a bandage suitable, by virtue of the microporous materials employed therein, for the predetermined controlled administration of drug to the skin or mucosa of the body over a period of time. To use the bandage of the invention it is applied to the patients skin or mucosa and should be in firm contact therewith so as to form a tight seal. Flow of drug from the reservoir is metered through the pores of the rate release controlling material in accordance with the laws of hydrodynamics or diffusion, as hereinafter discussed, at a predetermined rate. In operation, drug molecules are continuously removed from the reservoir and migrate to the skin or mucosa of the patient. In the case of systemic drugs, the drugs are absorbed by the skin or mucosa and enter circulation through the capillary network.

The reservoir containing the drug is formed of material permeable to the drug to permit passage of the drug. Depending upon the particular embodiment as described above, the drug reservoir can be of microporous material or otherwise. However, as is apparent in the latter case, the drug must first pass through a microporous membrane material prior to reaching the skin or mucosa. It is therefore critical to the practice of this invention for all embodiments that, at some point after or concurrent with the release of drug from the reservoir and prior to reaching the skin or mucosa, the drug pass through the drug release rate controlling microporous membrane or matrix material to meter the flow thereof. The rate of passage or permeation of drug through the microporous material is determined by the transfer mechanism which can be either by:

l. diffusive flux of drug molecules as is the case, as hereinafter described, where the micropores of the rate controlling microporous membrane or matrix material are impregnated with a diffusive medium for the drug in which the drug molecules can dissolve in and flow through to a direction of lower chemical potential; or

2. pressure induced viscous type flow of drug molecules through the pores in the microporous membrane or matrix rate controlling material.

Thus, the microporous material has a structure that enables the drug to pass through the pre-existing pores or capillaries, either by diffusive permeability or microporous hydrodynamic flow, depending upon the mode of use as describd hereinafter. Since the microporous rate controlling material is preferably selected so that the drug is substantially insoluble therein, as hereinafter described, flow of drug through the structure of the material can be neglected.

For drug transfer mechanism 1) set forth above, i.e., wherein the drug diffuses through a diffusive medium for the drug, the release rate can be controlled in accordance with Ficks First Law, depending on the particular design by selection of dependent variables such as the diffusivity and solubility of the drug in the diffusive medium and the thickness and porosity of the material properly modified by a tortuosity factor. For drug transfer mechanism (2), i.e., flow of drug through the pores of the microporous rate controlling material, the pressure differential, the thickness of the membrane, the viscosity of the permeant drug, the size of the permeant molecule relative to the pore size, the absolute value of the pore size, and the number of pores or percent voids in the material are the controlling factors governing permeability. For the simplest type of flow mechanism of this type, e.g., viscous flow, the amount of drug passing through the porous structure is given by Poiseuilles equation for viscous flow.

Therefore, the selection of appropriate materials for fabricating the microporous rate controlling membrane or matrix material will be dependent on the particular drug to be used in the bandage. Both organic and inorganic polymeric materials can be shaped into a wide variety of forms with tailored morphology and a wide range of chemical and physical properties to advantageously control release of a wide variety of drugs, including those with large molecular structures such as insulin, and over a large dosage range rate appropriate pore size selection. Additionally, by impregnating the interconnected pores of the microporous structure with a diffusive medium for the drug to be administered, a given microporous membrane or matrix material can be adapted to control the release of drugs having a wide range of chemical properties by diffusive permeability. Thus, by varying the composition, pore size, and effective thickness of the microporous rate controlling material, the viscosity of the drug to be administered by appropriate formulation or by impregnating the material with suitable solvent, the dosage rate per area of bandage can be controlled since the material functions to meter the flow of drug from the device. Therefore, bandages of the same surface area can provide different dosages of a drug by varying the above discussed parameters.

The microporous rate controlling materials of this invention are known in the art and can be visualized as a plurality of sponge-like fused polymer particles which provide a supporting structure having therethrough a dispersion of microscopic sized interconnecting voids or pores. The rate controlling structures formed from the materials can be isotropic, wherein the structure is homogeneous throughout the cross-section of the matrix or membrane material, or anisotropic wherein the structure is non-homogenous. These rate controlling structures are commercially available and can be made by a multitude of different methods, e.g., etched nuclear track, and materials employed, e.g., polyelectrolyte, ion exchange polymers, as described in R. E. Kesting, Synthetic Polymer Membranes, McGraw Hill, Chapters 4 and 5, 1971; J. D. Ferry, Ultrafiltration Membranes, Chemical Review, Vol. 18, Page 373, 1934. Materials possessing from 5 percent to 95 percent voids and having an effective pore size of from about 10 angstroms to about 100 microns can be suitably employed in the practice of this invention. Materials with pore sizes significantly below angstroms can be considered to be molecular diffusion type membranes and matrices. In order to obtain the most advantageous results, the materials should be formed into structures with the desired morphology in accordance with methods known to those skilled in the art to achieve the desired release rate of drug. Additionally, the material must have the appropriate chemical resistance to the drug used and be non-toxic when used as an element of the bandage of the invention.

Materials useful in forming the microporous rate controlling materials used in this invention include, but are not limited to the following.

Polycarbonates, i.e., linear polyesters of carbonic acids in which carbonate groups recur in the polymer chain, by phosgenation of a dihydroxy aromatic such as bisphenol A. Such materials are sold under the trade designation Lexan'by the General Electric Company.

Polyvinylchlorides; one such material is sold under the trade designation Geon 121 by B. G. Goodrich Chemical Company.

Polyamides such as polyhexamethylene adipamide and other such polyamides popularly known as nylon. One particularly advantageous material is that sold under the trade name NOMEX by E. I. DuPont de Nemours & Co.

Modacrylic copolymers, such as that sold under the trade designation DYNEL and formed of polyvinylchloride percent) and acrylonitrile (40 percent), styrene-acrylic acid copolymers, and the like.

Polysulfones such as those of the type characterized by diphenylene sulfone groups :in the linear chain thereof are useful. Such materials are available from Union Carbide Corporation under the trade designation P-l700.

Halogenated polymers such as polyvinylidene fluoride sold under the trade designation Kynar by Pennsalt Chemical Corporation, polyvinylfluoride sold under the trade name Tedlar by E. I. DuPont de Nemours & Co. and the polyfluorohalocarbon sold under the trade name Aclar by Allied Chemical Corporation.

Polychloroethers such as that sold under the trade name Penton by Hercules Incorporated, and other such thermoplastic polyethers.

Acetal polymers such as the polyformaldehyde sold under the trade nambe Delrin by I. DuPont de Nemours & Co., and the like.

Acrylic resins such as polyacrylonitrile polymethyl poly (vinyl alcohol); polyelectrolyte structures formed of two ionically associated polymers of the type as set forth in U.S. Pat. Nos. 3,549,016 and 3,546,142; derivatives of polystyrene such as poly (sodium styrenesulfonate) and polyvinylbenzyltrimethyl-ammonium chloride); poly( hydroxyethyl methacrylate poly(isobutyl vinyl ether), and the like, may also be utilized. A large number of copolymers which can be formed by reacting various proportions of monomers from the aforesaid list of polymers are also useful for preparing rate controlling structures useful in the invention.

As illustrated in FIG. 1, the bandage of the invention is comprised of drug 24 uniformly distributed in the interstices of the microporous matrix material forming reservoir 22. The matrix material is laminated to backing member 21 and bears a pressure-sensitive adhesive coating 23 thereon. The microporous matrix material 22 functions to control the release rate of the drug impregnated therein. The reservoir can be prepared by employing any of the known impregnating techniques. Thus, the drug can be added to the rate controlling material in liquid form and uniformly distributed therethrough by mixing, and subsequently converted to a microporous structure by the various methods known to the art. One such method calls for dissolving a natural or synthetic polymer in a suitable solvent in which it has sufficient solubility to permit the preparation of a solution that is sufficiently viscous for conventional film casting. The preferred method is to cast a film of a polymer solution having the drug therein, and, shortly after casting, to immerse it in a non-solvent or diluent, a medium which is compatible with the solvent, but not a solvent for the polymer. The original solution then forms two phases, one polymer-rich and one polymer-poor. Under the proper conditions, both of these phases are physically continuous, so that the resulting polymer membrane is mechanically reasonably strong, but it is completely interlaced with continuous pores. The size and uniformity of the pores depend on the conditions of preparation. Alternatively, preformed microporous materials can be impregnated with drug by immersion in a bath of the drug to diffuse the drug into the material. While the matrix material can be of any convenient thickness, typically a thickness of from 20 to 200 microns is employed.

FIG. 2 illustrates a further modified form of the invention wherein the adhesive bandage 30 of the invention is comprised of a backing member 21 having a reservoir 32 on one surface thereof. A microporous rate controlling membrane 35 is interposed between the reservoir 32 and a pressure-sensitive adhesive coating 23. Drug 24 is confined in polymeric matrix material 32 which acts as the reservoir for the drug. Matrix material 32 can be solid material as illustrated, or microporous as illustrated for reservoir 22 in FIG. 1. If desired, additional membranes can be juxtaposed next to membrane 35 in order to achieve optimum rate release properties. The matrix material 32 when solid or microporous should have a release rate to drug which is higher than that of the rate controlling microporous membrane 35, such that passage through the latter is the rate controlling step. Materials used to form the matrix reservoir 32 of FIG. 2, when solid, can be those heretofore exemplitied for preparing the microporous rate controlling material and, in addition, include hydrophobic polymers such as plasticized or unplasticized polyvinylchloride, plasticized nylon, plasticized soft nylon, plasticized polyethyleneterephthalate, natural rubber, C -C olefins, e.g., polyethylene, polyisoprene, polyisobutylene, polybutadiene; silicone rubbers, especially the medical grade polydimethylsiloxanes, as described in US. Pat. No. 3,279,996, hydrophilic polymers such as the hydrophilic hydrogels of esters of acrylic and methacrylic acid (as described in US. Pat. Nos. 2,967,576 and 3,220,960, and Belgian Patent No. 701,813), modified collagen, cross-linked polyvinylalcohol, and crosslinked partially hydrolyzed polyvinylacetate. Of course, these materials used to form the matrix must be permeable to passage of the drug, as by diffusion. Accordingly, selection of appropriate materials will, in each instance, be dependent on the particular drug to be administered.

FIG. 3 illustrates a further form of the invention wherein bandage 40 includes a backing member 21 and a reservoir 42 in the form of a hollow container having an interior chamber 43 containing drug 34. Wall or surface 45 of reservoir 42, remote from backing member 21, is of a microporous membrane structure permeable to passage of drug 34, to meter the flow of drug to pressure-sensitive adhesive layer 23 on the outer surface thereof. The sides of the reservoir 42, other than rate controlling microporous membrane 45, preferably are impermeable to passage of the drug, and can be made of the same materials used to make the backing member as hereinafter described. As discussed, one face surface of the drug reservoir bears a backing member 21. The purpose of the backing is to prevent passage of the drug through the surface of the reservoir distant from the adhesive layer. An ancillary purpose of the backing is to provide support for the bandage where needed. When the outer surface of the reservoir 33 is impermeable to the drug and strong enough, the backing becomes unnecessary. The other surface of the reservoir bears a coating of a pressure-sensitive adhesive.

If desired, additional microporous rate controlling membranes can be juxtaposed on top of membrane 45 to further tailor the rate of flow of drug. Of course, in each instance, the membrane will have different characteristics than the reservoir membrane 45 of the particulardevice. This use of a pair of multiplicity of membranes, that is, the reservoir wall and the further membrane, allows for precise metering of drug out of the reservoir; for the thickness, porosity and composition of both membranes can be varied to provide for wide range of dosage levels for a given area of bandage. It will be appreciated that this type of membrane can be used with either the matrix (FIGS. 1 or 2) or container type (FIG. 3) of reservoir. To provide additional mechanical strength, if necessary, the rate controlling microporous membrane 45 can be supported by an appropriate mesh or screen having a greater release rate to drug than does membrane 45. v

The reservoir of the embodiment in FIG. 3 can be formed by molding into the form of a hollow container with the drug trapped therein. While the non-rate controlling walls of the reservoir can be of any convenient thickness, usually they have a thickness of from 0.01 to 7 millimeters. The rate controlling membranes 35 and 45, in FIGS. 2 and 3, respectively, can have varying thickness depending upon the nature of the membrane, its porosity and the number of membranes used in combination. Typically, a thickness of from 20 to 200 microns is employed.

It will, of course, be appreciated that the pressuresensitive adhesive surface need not form a continuous layer on the subject bandage. Particularly in the case of a bandage having a distinct reservoir layer, equally advantageous results are obtained by providing an annu lar surface of adhesive around the periphery of the bandage face. In this manner a liquid tight adhesive seal between the bandage and the patients skin or mucosa is maintained, and at the same time, drug may be directly absorbed by the skin from the exposed surface of the drug reservoir layer without first migrating through an adhesive layer. As a further alternative, in the embodiment of the invention employing a distinct reservoir layer, to prevent passage of the drug into the adhesive layer prior to use, the adhesive can be supplied separately from the reservoir and backing, with the device assembled at the point of use. For example, the adhesive in sheet form can have both surfaces protected with a release film and the wall of the reservoir can be similarly protected. At the point of use, the release films can be removed from the reservoir and one surface of the adhesive, the adhesive sheet applied to the reservoir wall to complete assemblage of the bandage, the remaining release film then removed from the adhesive, and the bandage then applied to the patient.

As previouslydiscussed, one type of drug transfer mechanism is that of flow through the pores or pinholes in microporous rate controlling material. A driving force, Le, a pressure differential across the microporous material, is necessary to cause the flow of drug by this mode. The bandage of the type illustrated in FIG. 3, wherein the reservoir is a hollow container, can be conveniently adapted to meter the flow of drug by a microporous hydrodynamic mechanism by pressurizing the container. This can suitably be accomplished by admixing with the drug a solid particulate material which liberates gas on contact with the drug formulation. For example, in the case wherein the formulation is of an aqueous nature, a conventional effervescent powder such as a mixture of citric acid and sodium bicarbonate can be inserted immediately prior to use through an opening in the reservoir wall so provide for this purpose. After insertion of the effervescent material, the opening is sealed, for example, by means of an adhesive tape. The pressure can be controlled by adjusting the particle size of the effervescent powder composition and the quantity thereof. Pressure in an amount of from 1 mm to 50 mm of mercury can be satisfactorily employed, with the actual amount depending upon the desired release rate and the other parameters previously discussed regarding viscousflow.

FIGS. 4 and 5 illustrate an adhesive bandage of the invention including a backing member 11 bearing a pressure-sensitive adhesive coating 12 on one surface thereof. Adhesive coating 12 has uniformly distributed therethrough microcapsules 13 comprising drug encapsulated with a microporous rate controlling material permeable to passage of the drug. Thus, in the embodiment illustrated herein, porous microcapsules 13 constitute the drug reservoir.

To provide the microcapsules, the encapsulating material can be uniformly impregnated with the drug to form microcapsules which are a porous matrix having the drug distributed therethrough. Alternatively, particles of drug can be encapsulated with a thin microporous-coatingof the encapsulating material to form microcapsules having an interior chamber containing the drug. If desired, particles of a matrix, such as starch, gum acacia, gum tragacanth, and polyvinylchloride, can be impregnated with the drug and encapsulated with other materials such as the microporous rate controlling materials previously described, which function to meter the flow of drug to the adhesives; use of a microporous matrix and a different rate controlling membrane coating to slow the passage of the drug from the microcapsules, which is desirable: with drugs that are released too rapidly from available encapsulating materials, is therefore also contemplated herein.

Any of the encapsulation or impregnation techniques known in the art can be used to prepare the microcapsules to be incorporated into the pressure-sensitive adhesive in accord with the embodiment of FIGS. 4 and 5. The porous microcapsules can be made by techniques as set forth in US. Ser. No. 751,251, corresponding to German Patent No. 1,939,066, entitled Microcapsules with Anisotropic MicroporousLiquid Permeable Polymeric Outer Skin and Internal Macroporous Support Partitions or Structure, Bixler, Michaels, and Sternberg, or by standard coacervation methods. The coacervation method of fabrication, as conventionally employed, consists essentially of the formation of three immiscible phases, a liquid manufacturing phase, a core material phase and a coating phase with deposition of the liquid polymer coating on the core material and rigidizing the coating, usually by thermal, cross-linking or desolvation techniques to form microcapsules. Usually, the microcapsules made by the above techniques have an average particle size of from several tenths of a micron to 5,000 microns, although this feature is not critical to the practice of the invention. Techniques for preparing microcapsules, such as the classic Bungenberg de long and Kass method are reported in Biochem. Z, Vol. 232, Pg. 338 to 345, I931; Colloid Science, Vol. 11, Reversible System,edited by H. R. Kruyt, 1949, Elsevier Publishing Company, Inc., New York; J. Pharm. Sci, Vol. 59, No. 10, Pg 1367 to 1376, 1970; and, Remingtons Pharmaceittical Science, Vol. XIV, Pg. 1676 to 1677, 1970, Mack Publishing Company, Easton, Pennsylvania. Thus, the drug can beadded to the encapsulating material in liquid form and uniformly distributed therethrough by mixing and then forming the microcapsules by any of the above set forth methods. Alternatively, the porous microparticles can be made by the above techniques and impregnated with drug. Still another method is to impregnate a porous solid encapsulating material with a drug by immersion in a bath of the drug to diffuse the drug-into the material, and subsequently the solid material can be, reduced to fine microcapsules by grinding, each of the microcapsules comprising drug coated with and distributed throughout the encapsulating material. Further, drug can be encapsulated with a microporouscoating by suspending dry particles of the drug in an air stream and contacting that stream with a stream containing the encapsulating material to coat the drug particles. Usually, the micro-capsules have an average particle size of form 1 to 1000 microns, although this is not critical to the invention. The microcapsules, however made, are then mixed by conventional methods, e.g., stirring, ballmilling, and the like, with a pressure-sensitive adhesive. The mixture of microcapsules and pressure-sensitive adhesive is then coated onto a backing member, usually to provide an adhesive layer 0.01 to 7 millimeters thick, although these limits can be exceeded if more or less drug is required. The purpose of the backing is to provide support for the bandage and to prevent passage of the drug through the adhesive surface away from the body surface to which the bandage is applied.

As above discussed, the microporous rate controlling materials can be adapted to control the release of drug 1 by diffusive permeation wherein the micropores are impregnated or otherwise filled with a diffusive medium for the drug to be administered. The material can be impregnated with the diffusive medium by methods well known to the art, e.g., as by immersion in a bath of the material to permit the diffusive medium material to fully saturate the micropores. The impregnation technique can be employed with any of the embodiments represented herein. In embodiments illustrated in FIGS, 1, 4 and 5 the micropores can be concurrently impregnated with both drug and diffusive medium material.

In cases where the pressure-sensitive adhesive and microporous rate controlling material employed are water permeable, body fluids will self-migrate into the microporous material after the bandage has been in contact with the skin for a suitable period of time to provide the diffusive medium, as hereinafter described, without the necessity of carrying out a separate impregnation step. Additionally, the pores can be self-filled by migration of the diffusive medium by contact with the composition employed to prepare the drug formulation, as later described.

The diffusive medium is one which enables the drug to dissolve therein and flow by diffusion at the desired rate. It can be either of a liquid or solid nature and be a poor or good solvent for the drug. A medium with poor solvent properties for the drug is desired when the required release rate is low and of course the converse is true when the desired release rate is high.

The art provides many useful approaches to enable selection of particular solvent-drug systems. Specific attention is called to Remingtons Pharmaceutical Sciences, Chapters 19 and 71. The solvent selected must be non-toxic and one in which the rate controlling microporous material has the required solubility. The materials which are useful for impregnating the micropores can be polar, semi-polar or non-polar. Exemplary are any of the pharmaceutically acceptable solvents such as water, alcohols containing 2 to carbon atoms, such as hexanol, cyclohexanol, benzylalcohol, 1,2-butanediol, glycerol, and amyl alcohol; hydrocarbons having 5 to 12 carbon atoms such as n-hexane, cyclohexane, and ethyl benzene; aldehydes and ketones having 4 to 10 carbon atoms such as heptyl aldehyde, cyclohexanone, and benzaldehyde; esters having 4 to 10 carbon atoms such as amyl acetate and benzyl propionate; etheral oils such as oil of eucalyptus, oil of rue, cumin oil, limonene, thyme], and l-pinene; halogenated hydrocarbons having 2 to 8 carbon atoms such as n-hexyl chloride, n-hexyl bromide, and cyclohexyl chloride; or mixtures of any of the foregoing materials.

Also suitable are many of the conventional non-toxic plasticizers used in the fabrication of microporous rate controlling material, e.g., octyl diphenyl phosphate. When these plasticizers are suitable diffusive materials for the drug used, advantageously, the necessity for filling the pores by a separate step is thus obviated. Other plasticizers known to the art can be employed, such as long-chain fatty amides, higher alcohols, and high boiling esters such as di(isooctyl) sebacate or di(2-ethyl hexyl) phthalate.

It is preferred that the diffusive medium also be incorporated in the reservoir in combination with the drug in the form of a pharmaceutically acceptable carrier as hereinafter described.

In practicing this invention one can employ any systemically active drug which will be absorbed by the body surface to which the bandage is applied, consistent with their known dosages and uses. Of course, the amount of drug necessary to obtain the desired therapeutic effect will vary depending on the particular drug used. Suitable systemic drugs include, without limitation, Anti-microbial Agents such as penicillin, tetracycline, oxytetracycline, chlortetracycline, chloramphenicol, and sulfonamides; Sedatives and Hypnotics such as pentabarbital sodium, phenobarbital, secobarbital sodium, codeine, (oz-bromoisovaleryl) urea, carbromal, and sodium pheno-barbital; Psychic Energizers such as 3-( Z-aminopropyl) indole acetate and 3-( 2- aminobutyl) indole acetate; Tranquilizers such as reserpine, chlorpromazine hydrochloride, and thiopropazate hydrochloride; Hormones such as adrenocorticosteroids, for example, 6a-methylprednisolone; androgenic steroids, for example, methyltestosterone, and fluoxymesterone; estrogenic steroids, for example, estrone, l7B-estradiol and ethinyl estradiol; progestational steroids, for example, l7a-hydroxyprogesterone acetate, medroxyprogesterone acetate, 19-norprogesterone, and norethindrone; and thyroxine; Antipyretics such as aspirin, salicylamide, and sodium salicylate; morphine and other narcotic analgesics; Antidiabetics, e.g., insulin; Cardiovascular Agents, e.g., nitroglycerin, and cardiac glycosides such as digitoxin, digoxin, ouabain; Anti-spasmodics such as atropine, methscopolamine bromide, methscopolamine bromide with phenobarbital; Anti-malarials such as the 4-aminoquinolines, 9-amino-quinolines, and pyrimethamine; and Nutritional Agents such as vitamins, essential amino acids, and essential fats.

Additionally, in practicing this invention one can employ a wide variety of topically active drugs consistent with their known dosages and uses. Suitable drugs include, without limitation: Antiperspirants, e.g., aluminum chloride; Deodorants, e.g., hexachlorophene, methylbenzethonium chloride; Astringents, e. g., tannic acid; Irritants, e.g., methyl salicylate, camphor, cantharidin', Keratolytics, e.g., benzoic acid, salicylic acid, resorcinol, iodochlorhydroxyquin; Antifungal Agents, such as tolnaftate, griseofulvin, nystatin and amphotericin; Anti-inflammatory Agents, such as corticosteroids, e.g., hydrocortisone, hydrocortisone-acetate, prednisolone, methylprednisolone, triamcinolone acetonide, fludrocortisone, flurandrenolone, flumethasone, dexamethasone sodium phosphate, bethamethasone valerate, fluocinolone acetonide; fluorometholone; and pram'ox'ine fiCl; Anti-neoplastic Agentsiegl, methotrexate; and Antibacterial Agents, such as bacitracin, neomycin erythromycifi,tetfacycline HCl, chlortetracycline I-lCl, chloramphenicol, oxytetracycline, polymyxin B, nitrofuraxone, mafenide (a-amino-ptoluenesulfonamide), hexachlorophene, benzalkonium chloride, cetalkonium chloride, methylbenzethonium chloride, and neomycin sulfate.

It will be appreciated, with regard to the aforesaid list of drugs, that characterization of the drug as either systemically or topically active is done for purposes of convenience only. Further, a given drug can be both systemically and topically active depending upon its manner of use.

In addition to the aforementioned drugs, simple pharmacologically acceptable derivatives of the drugs, such as ethers, esters, amides, acetals, salts, etc., or formulations of these drugs, having the desired polymeric permeability or transport properties can be prepared and used in practicing the invention. Drugs mentioned above can be used alone or in combination with others and each other. Of course, the derivatives should be such as to convert to the active drugs within the body through the action of body enzyme assisted transformations, pH, etc.

The above drugs and other drugs can be present in the reservoir alone or in combination form with pharmaceutical carriers. The pharmaceutical carriers acceptable for the purpose of this invention are the art known carriers that do not adversely affect the drug, the host, or the material comprising the drug delivery device. Suitable pharmaceutical carriers include sterile water; saline, dextrose; dextrose in water or saline; condensation products of castor oil and ethylene oxide combining about 30 to about 35 moles of ethylene oxide per mole of castor oil; liquid glyceryl triester of a lower molecular weight fatty acid; lower alkanols; oils such as corn oil; peanut oil, sesame oil and the like, with emulsifiers such as mono-or di-glyceride of a fatty acid, or a phosphatide, e.g., lecithin, and the like; glycols; polyalkylene glycols; aqueous media in the presence of a suspending agent, for example, sodium carboxymethylcellulose; sodium alginate; poly(vinylpyrrolidone); and the like, alone, or with suitable dispensing agents such as lecithin; polyoxyethylene stearate; and the like. The carrier may also contain adjuvants such as preserving, stabilizing, wetting, emulsifying agents, and the like.

The drug can also be mixed in the reservoir with a transporting agent, that is, a material that aids or assists the drug delivery device to achieve the administration of a drug to a drug receptor, for example, by enhancing penetration through the skin. The transporting aids suitable for the purpose of the invention are thetherapeutically acceptable transporting aids that do not adversely affect the host, the drug, or alter or adversely affect the materials forming the drug delivery device. The transporting aids can be used alone or they can be admixed with acceptable carriers and the like. Exemplary of transporting aids include manovalent, saturated and unsaturated aliphatic cycloaliphatic and aromatic alcohols having 4 to 12 carbon atoms, such as hexanol, cyclohexane and the like; aliphatic cycloaliphatic and aromatic hydrocarbons having from 5 to 12 carbon atoms such as hexane, cyclohexane, isopropylbenzene and the like; cycloaliphatic and aromaticaldehydes and ketones having from 4 to carbon atoms such as cyclohexanone; acetamide; N,N-di(lower) alkyl acetamides such as N,N-diethyl acetamide, N,N- dimethyl acetamide, N-( Z-hydroxyethyl) acetamide, and the like; and other transporting agents such as aliphatic, cycloaliphatic and aromatic esters; N,N-dilower alkyl sulfoxides; essential oils; halogenated or nitrated aliphatic, cycloaliphatic and aromatic hydrocar- T4 bons; salicylates; polyalkylene glycol silicates; mixtures thereof; and the like.

The amount of active agent to be incorporated in the bandage to obtain the desired therapeutic effect will vary depending upon the desired dosage, the permeability of the rate controlling materials of the bandage which are employed to the particular agent to be used, and the length of time the bandage is to remain on the skin or body mucosa. Since the bandage of this invention is designed to control drug administration for an extended period of time, such as 1 day or more, there isno critical upper limit on the amount of agent incorporated into the bandage. The lower limit is determined by the fact that sufficient amounts of the agent must remain in the bandage to maintain the desired dosage. In order to achieve a therapeutic effect in a human adult, the daily release dosage of atropine should be in the range of between 200 and 600 micrograms per day. Thus, for example, using atropine and with a bandage intended to remain in place for 1 week, and with a release rate of 500 micrograms of atropine per day, at least 3.5 mg of atropine would be incorporated in the bandage. Generally, the drug delivery bandages made according to the invention can release at a controlled rate about 25 nanograms to about 1 gram of drug or larger amounts per day. Of course, other devices for use for different time periods such as Week or month are also readily made by the invention.

The effective rate of release of the active agent to the skin or mucosa can be in the range of from 0.5 to 1000 micrograms per square centimeter of bandage per day. The exactamount will depend on the desired dosage as well as the condition to be treated. The desired effective rate of release of active agent can be obtained by altering the earlier discussed parameters affecting the release ratecontrolling barrier. In the case of the micro-encapsulated active agent, the release rate can also be controlled by varying the number of microcapsules present in a given volume of the matrix of the device. This is a particularly desirable feature of this aspect of the invention. Additionally, the duration of action of the device can be altered by controlling the amount of active agent initially incorporated consistent with the release rate. Further, the release rate of drug, as well as the duration of release of the drug from the device, can be predetermined to be in consonance with the optimum therapeutic values. Once thisdosage level in micrograms per square centimeter of bandage has been determined, the total amountof drug to be incorporated in the bandage can be established by obtaining the release rate of the agent in the particular material or materials which are to be used; Those skilled in the art can readily determine the rate of permeation of agent through the porous rate controlling material or selected combinations of rate controlling materials. Standard techniques are described in Encyl. Polymer Science and Technology, Vo. Sand 9, Pg. 65 to and 795 to 807, 1968; and the references cited therein.

Any of the well-known dermatologically acceptable pressure-sensitive adhesives can be used in practicing this invention. Exemplary adhesives include acrylic or methacrylic resins such as polymers of esters of acrylic or methacrylic acid with alcohols such as n-butanol, npentanol, isopentanol, 2-methyl butanol, l-methyl butanol, l-methyl pentanol, Z-methyl pentanol, 3-methyl pentanol, 2-ethyl .butanol, isooctanol, n-decanol, or ndodecanol, alone or copolymerized with ethylenically unsaturated monomers such as acrylic acid, methacrylic acid, acrylamide, methacrylamide, N-

alkoxymethyl acrylamides, N-alkoxymethyl methacrylamides, N-tert. butylacrylamide, itaconic acid, vinylacetate, N-branched alkyl maleamic acids wherein the alkyl group has to 24 carbon atoms, glycol diacrylates, or mixtures of these; natural or synthetic rubbers such as silicone rubber, styrenebutadiene, butylether, neoprene, polyisobutylene, polybutadiene, and polyisoprene; polyurethane elastomers; vinyl polymers, such as polyvinylalcohol, polyvinyl ethers, polyvinyl pyrrolidone, and polyvinylacetate; ureaformaldehyde resins; phenolformaldehyde resins; resorcinol formaldehyde resins, cellulose derivatives such as ethyl cellulose, methyl cellulose, nitrocellulose, cellulose acetatebutyrate, and carboxymethyl cellulose; and natural gums such as guar, acacia, pectins, starch, dextrin, albumin, gelatin, casein, etc. The adhesives may be compounded with tackifiers and stabilizers as is well know in the art.

When the adhesive layer covers one face surface of the bandage or when the reservoir is in the form of microcapsules distributed throughout the adhesive, the adhesive must be permeable to passage of the drug to allow drug released from the reservoir to reach the outer surface of the bandage in contact with the patient. In such cases, the rate of release of drug from the adhesive should exceed the rate of release of drug from the reservoir so that release from the reservoir by passage through the drug release controlling microporous material is the rate limiting step for drug administration by the device of the invention. Of course, when the adhesive is disposed only about the periphery of the bandage face, the adhesive need not be permeable to passage of the drug.

Various occlusive and non-occlusive, flexible or nonflexible backing members can be used in the adhesive bandage of the invention. Suitable backings include cellophane, cellulose acetate, ethylcellulose, plasticized vinylacetate-vinylchloride copolymers, polyethylene terephthalate, nylon, polyethylene, polypropylene, polyvinylidenechloride, paper, cloth, and aluminum foil. Preferably, a' flexible occlusive backing is employed to conform to the shape of the body member to which the adhesive tape is applied and to enhance administration of the agent to the skin.

To prevent passage of the drug away from the exposed surface of the pressure-sensitive adhesive prior to use, the adhesive surface of the tape generally is covered with a protective release film or foil such as waxed paper. Alternatively, the exposed rear surface of the backing member can be coated with a low-adhesion backsize and the bandage rolled about itself. To enhance stability of the active compounds, the therapeutic bandage usually is packaged between hermetically sealed polyethylene terephthalate films under an inert atmosphere, such as gaseous nitrogen.

To use the adhesive bandage of the invention, wherein the drug is topical, it is applied directly to the area of skin to be treated, to release a therapeutically effective amount of the agent to the affected area. For administration of systemic drugs the bandage can be applied to any area of the patients skin, with the lower back and buttocks being the areas of choice. In like manner, the bandage can be applied to the mucosa of the mouth, for example, by application to the palate or the buccal mucosa, to obtain absorption of the drug by the oral mucosa. Although obtaining a liquid tight adhesive seal between the skin and bandage is important, it becomes critical in the mouth. Without such a seal, irrigation of the oral mucosa by saliva will transfer the drug to the gastrointestinal tract, rather than to circulation through the oral mucosa. In addition, the bandage of the invention can be used to administer drugs to other mucosa of the body, for example, it can be applied to the vaginal mucosa, rectal mucosa, etc. By use of this invention, one ensures that an accurately measured quantity of the active drug is available to the site of application.

The following examples are merely illustrative to the present invention and should not be construed as limiting the scope of the invention in any way, as these examples and other equivalents thereof will become apparent to those versed in the art in light of the present disclosure, drawings and accompanying claims.

EXAMPLE 1 Porous, discrete particles of polymerized poly(vinyl chloride) of about 100 microns in diameter are prepared by mixing 100 grams of suspension grade poly(- vinyl chloride) resin with 50 grams of octyl diphenyl phosphate and 10 grams of nitroglycerin. These ingredients are mixed at room temperature into a sticky, wet mass. Next, the solvent is allowed to escape to form dry, free flowing, discrete micro-capsules. 10 grams of the resulting microcapsules of polyvinylchloride/nitroglycerin are mixed with 100 grams of a 22 percent solution in hexane: isopropyl-acetate (:30) of a viscoelastic copolymer of isooctyl acrylate and acrylic acid (94:6) adhesive to uniformly distribute the microcapsules throughout the adhesive solution. The resulting slurry is coated onto a cellophane sheet 10 centimeters in width by centimeters in length and the solvent removed from the coated film.

When a 5 centimeter by 5 centimeter section is cut from the above sheet and applied to the skin of a human adult, the resulting bandage is effective to control the continuous administration of a daily therapeutically effective dosage of nitroglycerin for the prophylactic treatment of angina pectoris.

EXAMPLE 2 Dry crystalline powdered megesterol acetate (0.3 gram) in 10 ml. ethanol is mixed with 25 parts by weight of polydimethylsiloxane, 5 parts by weight of silicone oil and 0.25 parts by weight of stannous octoate catalyst. The ingredients are mixed until a homogenous mixture is produced. The mixture is then cast into a mold and allowed to cure to prepare a matrix having a surface area of 10 square centimeters and 9 mils thick. One face surface of the matrix is bonded to a sheet of cellophane. On the other face surface is placed an ethanol impregnated microporous membrane of the same external surface area as the matrix. The membrane is sold by Millipore Corporation and designated to the trade as HA, and is characterized by a porosity of 60 percent, a pore size of 0.45 microns, and a thickness of 4 mils. Dimethyl silicone rubber adhesive is coated to a thickness of 2 mils on the membrane. The adhesive face surface of the completed bandage has an area of 10 square centimeters. The bandage is effective to slowly release megesterol acetate, and when applied to the female skin, is useful for fertility control.

EXAMPLE 3 10 milligrams of betamethasone in 10 ml. of propylene glycol is placed on a sheet of dimethyl silicone rubber having a thickness of 10 mils. The sheet is folded to provide a surface area of l square centimeters on each face and the flaps sealed with silicone adhesive to provide a thin envelope containing the drug. The top face of the envelope is removed and replaced with a propylene glycol impregnated microporous membrane sold by Amicon Corporation under the designation of PM 30. The membrane is secured to the envelope by means of adhesive to form a tight seal therewith. The membrane is characterized by having an anisotropic structure, with a minimum pore size of 70 angstrom units, an overall porosity of 70 percent, and a thickness of 4 units.

Pressure-sensitive adhesive is prepared by mixing together 90 grams of polyacrylate solution (ethylacetate: hexane/:1) containing 25 percent non-volatile matter (obtained by the catalytic polymerization of isomylacrylate and acrylic acid in the ratio of 95:5 in ethylacetate and then diluting with hexane), 5 grams polyvinylethylether (reduced viscosity= 0.3 i 0.1), 1 gram Castor oil (fislfiand l gra r n s pblyethyleneglycol 400.

One face surface of the envelope is bonded to a sheet of cellophane while the external membrane surface is coated with adhesive prepared above to a thickness of 2 millimeters. The adhesive face surface of the bandage has an area of 100 square centimeters. The bandage is effective to release a therapeutically effective daily dosage of the drug when applied to the skin for control of psoriasis.

EXAMPLE 4 3 grams of a polyacrylonitrile fiber sold under the trade designation Orlon by E. I. DuPont de Nemours & Co. was dissolved in 30 grams of an aqueous solution comprising 70 percent by weight of zinc chloride. After the solution was cooled to about 25C, 0.250 grams of DIGOXIN was added to the solution. Thereupon, the solution was added drop-wise through a No. 21 hypodermic needle into an acetone bath whereupon particles were formed. After being stirred for about thirty minutes in the acetone, the particles were removed and placed in a water bath for four hours at room temperature to leach our residual acetone and salt.

grams of polyvinylethylether (reduced visosity= 5 .0 i 0.5) 4 grams of polyvinylethylether (reduced viscosity= 4 grams of glycerol ester of hydrogenated rosin and 2 grams polyethyleneglycol 400 The resulting DIGOXIN capsules are mixed with pressuresensitive adhesive prepared above to uniformly distribute the microcapsules throughout the adhesive. Immediately thereafter, the adhesive mixture is coated onto one surface of a 1000 square centimeter Mylar sheet. A 5 centimeter by 5 centimeter area of the resulting bandage can be used for control of cardiac disorders.

Thus, this invention provides an easy to use device for administering systemically active drugs through the skin or oral mucosa and other body mucosa. Uncertainties of administration through the gastrointestinal tract are avoided and a controlled constant level of drug in circulation can be obtained. Treatment is begun by applying the bandage to the skin or mucosa and terminated by removing it therefrom. The bandage can contain and administer the complete dosage requirements for a particular time period, for example, 24 hours. Intervention by the patient is required only to apply and remove the bandage, so that uncertainties through patient error are eliminated.

Moreoventhis invention provides a reliable and easy to use device for administering topically active drugs directly to the affected areas of skin or mucosa. Uncertainties resulting from topical application of these agents, from creams and solutions, are not encountered; and a precisely determined amount of the drug is applied in a controlled manner.

Although the product of this invention has been referred to as an adhesive bandage, those skilled in the art will appreciate that the term adhesive bandage" as used herein includes any product having a backing member and a pressure-sensitive adhesive face surface. Such products can be provided in various sizes and configurations, including tapes, bandages, sheets, plasters, and the like.

What is claimed is:

l. A medical bandage for the continuous administration of controlled quantities of drug to the skin or mucosa, comprised of a laminate of: (l) a backing mem' ber; bearing (2) a discrete middle reservoir layer containing a drug confined within a body, the body being comprised of drug release rate controlling microporous material permeable to the passage of drug, to continuously meter the flow of a therapeutically effective amount of the drug to the skin or mucosa from the reservoir at a controlled and predetermined rate over a period of time; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin or mucosa and postitioned on one surface of the reservoir remote from the backing member.

2. The bandage as defined by claim 1 wherein the pores of the microporous rate controlling material are filled with a medium to permit controlled diffusion of the drug from the reservoir.

3. A medical bandage for the continuous administration of controlled quantities of drug to the skin or mucosa, comprised of a laminate of: (l) a backing member; bearing (2) a discrete middle reservoir containing a drug confined therein, the reservoir being formed of material permeable to passage of the drug; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin or mucosa and positionedon one surface of the reservoir remote from the backing member and wherein one or more drug release rate controlling microporous membranes are interposed between the surface of the reservoir and pressure-sensitive adhesive so as to continuously meter the flow of a therapeutically effective amount of the drug from the reservoir at a controlled and predetermined rate over a period of time.

4. The bandage as defined by claim 3 wherein the reservoir is a container having the drug confined therein.

5. The bandage as defined by claim 4 wherein the reservoir is pressurized to permit controlled microporous flow of the drug from the reservoir.

6. The bandage as defined by claim 3 wherein the reservoir is a solid or microporous matrix having the drug dispersed therein.

7. The bandage as defined by claim 3 wherein the pores of the microporous rate controlling material are filled with a medium to permit controlled diffusion of the drug from the reservoir.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3053255 *Dec 16, 1958Sep 11, 1962Meyer FriedrichProcess of percutaneously administering exact doses of physiologically active agents and composite unit therefor
US3426754 *Sep 14, 1966Feb 11, 1969Celanese CorpBreathable medical dressing
US3464413 *May 26, 1967Sep 2, 1969United Merchants & MfgMedical bandages
US3512997 *Sep 29, 1966May 19, 1970Tee Pak IncExtrusion of microporous collagen articles
US3598122 *Apr 1, 1969Nov 23, 1982 Title not available
US3598123 *Apr 1, 1969Aug 10, 1971Alza CorpBandage for administering drugs
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3972995 *Apr 14, 1975Aug 3, 1976American Home Products CorporationDosage form
US4031894 *Sep 7, 1976Jun 28, 1977Alza CorporationBandage for transdermally administering scopolamine to prevent nausea
US4039653 *Jul 21, 1975Aug 2, 1977Defoney, Brenman, Mayes & BaronBreath deodorants, sustained release
US4060084 *Jan 28, 1977Nov 29, 1977Alza CorporationMethod and therapeutic system for providing chemotherapy transdermally
US4201211 *Jul 12, 1977May 6, 1980Alza CorporationTherapeutic system for administering clonidine transdermally
US4230105 *Nov 13, 1978Oct 28, 1980Merck & Co., Inc.Transdermal delivery of drugs
US4262003 *Mar 14, 1977Apr 14, 1981Alza CorporationPrevention of motion sickness
US4286592 *Feb 4, 1980Sep 1, 1981Alza CorporationTherapeutic system for administering drugs to the skin
US4341208 *Jul 14, 1980Jul 27, 1982Whitman Medical CorporationMoisture-retentive covering for ointment application
US4432756 *Nov 27, 1981Feb 21, 1984Alza CorporationParenteral controlled therapy
US4460372 *Apr 1, 1983Jul 17, 1984Alza CorporationPercutaneous absorption enhancer dispenser for use in coadministering drug and percutaneous absorption enhancer
US4479793 *Oct 11, 1983Oct 30, 1984Alza CorporationParenteral administration using drug delivery device
US4479794 *Oct 11, 1983Oct 30, 1984Alza CorporationSystem for intravenous therapy
US4484909 *Oct 17, 1983Nov 27, 1984Alza CorporationFor the administration of a beneficial drug formulation
US4493702 *Oct 17, 1983Jan 15, 1985Alza CorporationParenteral administration using osmotically motivated delivery system
US4511351 *May 14, 1984Apr 16, 1985Alza CorporationParenteral delivery system utilizing a hollow fiber cellular unit
US4511352 *May 14, 1984Apr 16, 1985Alza CorporationParenteral delivery system with in-line container
US4511353 *Oct 9, 1981Apr 16, 1985Alza CorporationIntravenous system for delivering a beneficial agent
US4515585 *Oct 31, 1983May 7, 1985Alza CorporationSystem for parenteral administration of agent
US4525162 *Mar 9, 1984Jun 25, 1985Alza CorporationFor administering a drug formulation to a recipient
US4548599 *Jan 5, 1984Oct 22, 1985Alza CorporationIn intravenous delivery systems
US4552556 *Jan 4, 1985Nov 12, 1985Alza CorporationFor administering a beneficial agent formulation
US4573996 *Jan 3, 1984Mar 4, 1986Jonergin, Inc.Device for the administration of an active agent to the skin or mucosa
US4579553 *Jan 7, 1985Apr 1, 1986Alza CorporationFor administering a beneficial agent formulation to an animal
US4583981 *Jan 7, 1985Apr 22, 1986Alza CorporationParenteral controlled therapy, using a porous matrix with parenteral agent
US4585452 *Apr 12, 1983Apr 29, 1986Key Pharmaceuticals, Inc.Transdermal systemic dosage forms
US4586922 *Feb 15, 1985May 6, 1986Alza CorporationIntravenous system for delivering a beneficial agent
US4596555 *Jan 28, 1985Jun 24, 1986Alza CorporationParenteral delivery system utilizing a hollow fiber cellular unit
US4615697 *Nov 9, 1984Oct 7, 1986Bio-Mimetics, Inc.Bioadhesive compositions and methods of treatment therewith
US4624665 *Oct 1, 1984Nov 25, 1986Biotek, Inc.Microencapsulated drug, bandages
US4645502 *May 3, 1985Feb 24, 1987Alza CorporationTransdermal delivery of highly ionized fat insoluble drugs
US4655767 *Sep 26, 1985Apr 7, 1987Dow Corning CorporationReduced sensitivity to amino-functional drugs
US4661105 *Jun 9, 1986Apr 28, 1987Alza CorporationMedical bandage for administering vasodilator drug
US4664650 *Oct 31, 1983May 12, 1987Alza CorporationApparatus for parenteral infusion of fluid containing beneficial agent
US4666441 *Dec 17, 1985May 19, 1987Ciba-Geigy CorporationMulticompartmentalized transdermal patches
US4671953 *May 1, 1985Jun 9, 1987University Of Utah Research FoundationMethods and compositions for noninvasive administration of sedatives, analgesics, and anesthetics
US4680172 *Mar 5, 1985Jul 14, 1987Ciba-Geigy CorporationArecoline and derivatives
US4690683 *Jul 2, 1985Sep 1, 1987Rutgers, The State University Of New JerseyTransdermal varapamil delivery device
US4698062 *Oct 30, 1985Oct 6, 1987Alza CorporationMedical device for pulsatile transdermal delivery of biologically active agents
US4704119 *Nov 19, 1986Nov 3, 1987Alza CorporationVasodilators, time-release
US4710191 *Dec 16, 1985Dec 1, 1987Jonergin, Inc.Transdermal
US4725272 *Jun 29, 1981Feb 16, 1988Alza CorporationNovel bandage for administering beneficial drug
US4738670 *Jul 10, 1987Apr 19, 1988Bayer AktiengesellschaftElastic sheet convering reservoir or medicine, elastomer, carrier; controlled release through skin
US4740103 *Feb 15, 1985Apr 26, 1988Alza CorporationIntravenous system for delivering a beneficial agent
US4740197 *Feb 14, 1985Apr 26, 1988Alza CorporationFormulation chamber, controlled rate of release
US4740198 *Feb 15, 1985Apr 26, 1988Alza CorporationMethod of administering intravenous drug using rate-controlled dosage form
US4740199 *Feb 14, 1985Apr 26, 1988Alza CorporationIntravenous system for delivering a beneficial agent
US4740200 *Feb 15, 1985Apr 26, 1988Alza CorporationIntravenous system for delivering a beneficial agent
US4740201 *Feb 19, 1985Apr 26, 1988Alza CorporationIntravenous system for delivering a beneficial agent
US4741734 *Feb 15, 1985May 3, 1988Alza CorporationReleasing means for adding agent using releasing means to IV fluid
US4741735 *Feb 14, 1985May 3, 1988Alza CorporationIntravenous system for delivering a beneficial agent
US4743249 *Jun 10, 1987May 10, 1988Ciba-Geigy Corp.Dermal and transdermal patches having a discontinuous pattern adhesive layer
US4752478 *Dec 17, 1984Jun 21, 1988Merck & Co., Inc.Transdermal system for timolol
US4756710 *Mar 7, 1986Jul 12, 1988Merck & Co., Inc.pH-Mediated drug delivery system
US4764379 *Aug 24, 1987Aug 16, 1988Alza CorporationTransdermal drug delivery device with dual permeation enhancers
US4765985 *May 20, 1987Aug 23, 1988Ciba-Geigy CorporationTransdermal administration of pyrolo(2,3-b)indole derivatives
US4776850 *May 12, 1986Oct 11, 1988Beiersdorf AktiengesellschaftTransdermal drug delivery
US4790820 *Oct 25, 1984Dec 13, 1988Alza CorporationParenteral agent dispensing equipment with drug releasing member
US4795436 *Sep 22, 1986Jan 3, 1989Bio-Mimetics, Inc.Bioadhesive composition and method of treatment therewith
US4812305 *Nov 9, 1987Mar 14, 1989Vocal Rodolfo SWell medicine strip
US4812313 *Dec 14, 1987Mar 14, 1989Alza CorporationMedical bandage containing a gelled silicone fluid, silicon dioxide and a vasodilator
US4820720 *Mar 29, 1988Apr 11, 1989Alza CorporationGlycerol monolaurate and ethanol enhancers;controlled drug delivery
US4833172 *Sep 15, 1988May 23, 1989Ppg Industries, Inc.Stretched microporous material
US4834979 *Dec 14, 1987May 30, 1989Alza CorporationMedical bandage for administering beneficial drug
US4836217 *Sep 23, 1985Jun 6, 1989Fischer Torkel IHypersensitivity test means
US4839174 *Oct 5, 1987Jun 13, 1989Pharmetrix CorporationNovel transdermal nicotine patch
US4846826 *Nov 21, 1986Jul 11, 1989Alza CorporationVasodilators, topically and internally co-administered
US4849226 *Dec 14, 1987Jul 18, 1989Alza CorporationMethod for increasing oxygen supply by administering vasodilator
US4857052 *May 4, 1987Aug 15, 1989Alza CorporationIntravenous system for delivering a beneficial agent
US4861644 *Aug 30, 1988Aug 29, 1989Ppg Industries, Inc.Printed microporous material
US4863737 *Jun 8, 1987Sep 5, 1989University Of UtahTransmucosal delivery
US4863738 *Nov 23, 1987Sep 5, 1989Alza CorporationTransdermal drug delivery
US4871360 *Apr 21, 1986Oct 3, 1989Alza CorporationSystem for intravenous delivery of a beneficial drug at a regulated rates
US4877618 *Mar 18, 1988Oct 31, 1989Reed Jr Fred DTransdermal drug delivery device
US4885173 *Jun 8, 1987Dec 5, 1989University Of UtahAllowing patient to suck lollipop containing drug, which is rapidly absorbed; removing when symptoms have been relieved
US4898920 *Oct 15, 1987Feb 6, 1990Dow Corning CorporationAdhesive compositions, controlled release compositions and transdermal delivery device
US4904475 *Feb 24, 1987Feb 27, 1990Alza CorporationTransdermal delivery of drugs from an aqueous reservoir
US4906463 *Apr 8, 1988Mar 6, 1990Cygnus Research CorporationTransdermal drug-delivery composition
US4906475 *Feb 16, 1988Mar 6, 1990Paco Pharmaceutical ServicesEstradiol transdermal delivery system
US4908019 *Sep 16, 1988Mar 13, 1990Alza CorporationApparatus comprising dual reservoirs for parenteral infusion of fluid containing beneficial agent
US4911707 *Aug 10, 1988Mar 27, 1990Ciba-Geigy CorporationMonolithic user-activated transdermal therapeutic system
US4917688 *Jun 27, 1988Apr 17, 1990Nelson Research & Development Co.Bandage for transdermal delivery of systemically-active drug
US4938759 *Sep 2, 1986Jul 3, 1990Alza CorporationTransdermal delivery device having a rate controlling adhesive
US4943435 *Oct 28, 1988Jul 24, 1990Pharmetrix CorporationTransdermal drug delivery, polyethylene membrane
US4954344 *Nov 10, 1988Sep 4, 1990Alza CorporationMethod for treating nocturnal angina
US4969871 *Feb 15, 1989Nov 13, 1990Alza CorporationIntravenous system for delivering a beneficial agent
US4971800 *Sep 18, 1989Nov 20, 1990The Regents Of The University Of CaliforniaDrug delivery through skin, penetration
US4973307 *Apr 25, 1989Nov 27, 1990Alza CorporationMethod for administering drugs to a patient
US4973468 *Mar 22, 1989Nov 27, 1990Cygnus Research CorporationSkin permeation enhancer compositions
US4983392 *Dec 20, 1988Jan 8, 1991Bio-Mimetics, Inc.Bioadhesive compositions and methods of treatment therewith
US4985017 *Apr 25, 1989Jan 15, 1991Alza CorporationParenteral therapeutical system comprising drug cell
US4994031 *Apr 17, 1989Feb 19, 1991Alza CorporationIntravenous system for delivering a beneficial agent
US5006342 *Feb 10, 1989Apr 9, 1991Cygnus CorporationResilient transdermal drug delivery device
US5024657 *May 4, 1990Jun 18, 1991Baxter International Inc.Drug delivery apparatus and method preventing local and systemic toxicity
US5028435 *May 22, 1989Jul 2, 1991Advanced Polymer Systems, Inc.System and method for transdermal drug delivery
US5035894 *Sep 8, 1989Jul 30, 1991Dow Corning CorporationControlled release compositions and transdermal drug delivery device
US5045059 *Aug 15, 1990Sep 3, 1991Alza CorporationIntravenous system for delivering a beneficial agent
US5045317 *Sep 20, 1990Sep 3, 1991The Regents Of The University Of CaliforniaUsing polyetherurethane copolymers
US5051260 *Sep 20, 1990Sep 24, 1991The Regents Of The University Of CaliforniaMethod and composition for enhancing the cutaneous penetration of pharmacologically active agents
US5053227 *Jun 12, 1990Oct 1, 1991Cygnus Therapeutic SystemsTransmittance of drug in mixture of diethylene glycol ethyl and/or methyl ether and ester
US5059189 *Sep 8, 1987Oct 22, 1991E. R. Squibb & Sons, Inc.Method of preparing adhesive dressings containing a pharmaceutically active ingredient
US5059426 *Jun 12, 1990Oct 22, 1991Cygnus Therapeutic SystemsSkin permeation enhancer compositions, and methods and transdermal systems associated therewith
US5069671 *Jun 23, 1988Dec 3, 1991Alza CorporationIntravenous medication
US5071656 *Nov 14, 1988Dec 10, 1991Alza CorporationNitroglycerin delivery to skin or mucosa
US5080646 *Oct 3, 1988Jan 14, 1992Alza CorporationMembrane for electrotransport transdermal drug delivery
US5091087 *Jun 25, 1990Feb 25, 1992Hoechst Celanese Corp.Fabrication of microporous PBI membranes with narrow pore size distribution
US5091186 *Aug 15, 1989Feb 25, 1992Cygnus Therapeutic SystemsDelivers drug at therapeutic rate in initial phase, no drug in secondary phase
US5122127 *Sep 5, 1989Jun 16, 1992University Of UtahApparatus and methods for use in administering medicaments by direct medicament contact to mucosal tissues
US5124157 *Aug 18, 1989Jun 23, 1992Cygnus Therapeutic SystemsUsing adhesive skin patch
US5132114 *Sep 5, 1989Jul 21, 1992University Of Utah Research FoundationCompositions and methods of manufacture of compressed powder medicaments
US5141750 *Nov 14, 1988Aug 25, 1992Alza CorporationDelayed onset transdermal delivery device
US5147296 *Aug 28, 1991Sep 15, 1992Alza CorporationMembrane for electrotransport transdermal drug delivery
US5151271 *Oct 24, 1989Sep 29, 1992Nitti Electric Industrial Co., Ltd.Pressure-sensitively adhering composite medicinal preparation
US5160320 *Feb 14, 1990Nov 3, 1992Alza CorporationIntravenous system for delivering a beneficial agent
US5164189 *Mar 11, 1991Nov 17, 1992G. D. Searle & Co.Single layer transdermal drug administration system
US5164416 *May 8, 1991Nov 17, 1992Lintec CorporationImproved absorption
US5169382 *Jan 30, 1991Dec 8, 1992Alza CorporationMembrane exhibits electrically assisted flux of analgesics therethrough and impedes passive flux
US5169383 *Oct 2, 1989Dec 8, 1992Alza CorporationControl membrane for electrotransport drug delivery
US5213965 *Jul 16, 1990May 25, 1993Cholestech CorporationSolid-phase precipitation assay device
US5232438 *Jun 15, 1992Aug 3, 1993Alza CorporationIontophoretic agent delivery electrode for fentanyl or sufentanil
US5234690 *Aug 23, 1991Aug 10, 1993Cygnus Therapeutic SystemsTransdermal drug delivery device using an unfilled microporous membrane to achieve delayed onset
US5268179 *Feb 14, 1992Dec 7, 1993Ciba-Geigy CorporationUltrasonically sealed transdermal drug delivery systems
US5273755 *Aug 23, 1991Dec 28, 1993Cygnus Therapeutic SystemsTransdermal drug delivery device using a polymer-filled microporous membrane to achieve delayed onset
US5273756 *Aug 23, 1991Dec 28, 1993Cygnus Therapeutic SystemsA backing, a pressure-rupturable reservoir, adsorbent wick, drug-permeable polymer adhesive, an unplasticized microporous membrane, and a drug-permeable membrane
US5288497 *Sep 5, 1989Feb 22, 1994The University Of UtahCompositions of oral dissolvable medicaments
US5290561 *Apr 10, 1992Mar 1, 1994G. D. Searle & Co.Patch of room temperature vulcanizable organopolysiloxane rubber, albuterol, diffusion enhancer of normal hydrocarbon alcohol
US5298257 *Mar 19, 1992Mar 29, 1994Elan Transdermal LimitedControlled transdermal nicotine delivery; anti-irritant
US5322502 *Jan 13, 1993Jun 21, 1994Alza CorporationMembrane for electrotransport transdermal drug delivery
US5340585 *May 17, 1993Aug 23, 1994University Of Southern CaliforniaMethod and formulations for use in treating benign gynecological disorders
US5340586 *May 17, 1993Aug 23, 1994University Of Southern CaliforniaSlow release formulations of estrogens and androgens
US5378730 *Dec 3, 1992Jan 3, 1995Alza CorporationPermeation enhancer comprising ethanol and monoglycerides
US5405614 *Jan 11, 1993Apr 11, 1995International Medical Associates, Inc.Electronic transdermal drug delivery system
US5411740 *Feb 8, 1994May 2, 1995Alza CorporationTransdermal administration of oxybutynin
US5422118 *Sep 21, 1992Jun 6, 1995Pure Pac, Inc.Transdermal administration of amines with minimal irritation and high transdermal flux rate
US5451407 *Jun 21, 1993Sep 19, 1995Alza CorporationReduction or prevention of skin irritation or sensitization during transdermal administration of a irritating or sensitizing drug
US5484602 *Jan 20, 1995Jan 16, 1996University Of Utah Research FoundationDrug contained in lollipop
US5498417 *May 12, 1994Mar 12, 1996Coating Sciences, Inc.Transdermal delivery of appetite suppressant drug
US5500222 *Feb 15, 1995Mar 19, 1996Alza CorporationMixed with monoglyceride permeation enhancer
US5505958 *Oct 31, 1994Apr 9, 1996Algos Pharmaceutical CorporationTransdermal drug delivery device and method for its manufacture
US5508039 *Oct 16, 1992Apr 16, 1996Alza CorporationControlled transdermal administration of melatonin
US5512292 *Dec 21, 1994Apr 30, 1996Alza CorporationTransdermal contraceptive formulations methods and devices
US5582836 *Oct 16, 1991Dec 10, 1996Vectorpharma International S.P.A.Transdermal therapeutic compositions
US5591767 *Jun 6, 1995Jan 7, 1997Pharmetrix CorporationLiquid reservoir transdermal patch for the administration of ketorolac
US5612382 *Jul 15, 1994Mar 18, 1997Frances B. FikeTransdermal drug delivery using a hydroxy alkyl amide
US5633009 *Nov 12, 1993May 27, 1997Sano CorporationTransdermal administration of azapirones
US5641507 *Oct 26, 1995Jun 24, 1997Devillez; Richard L.Delivery system for dermatological and cosmetic ingredients
US5643596 *Jun 7, 1995Jul 1, 1997Clarion Pharmaceuticals, Inc.Hemostatic patch
US5643905 *Jan 10, 1994Jul 1, 1997Therapie-System Gmbh & Co., KgPharmaceutical formulation for the treatment of nicotine dependence
US5645849 *Jun 7, 1995Jul 8, 1997Clarion Pharmaceuticals, Inc.Containing thrombin and epsilon aminocaproic acid; accelerates clot formation at wound surface
US5650165 *Nov 7, 1995Jul 22, 1997Nitto Denko CorporationPercutaneous absorption preparation
US5668143 *Nov 3, 1994Sep 16, 1997Merrell Pharmaceuticals Inc.Heterocyclic benzenesulfonylimine derivatives as inhibitors of IL-1 action
US5684017 *Nov 3, 1994Nov 4, 1997Merrell Pharmaceuticals Inc.Antiarthritic agents, rheumatic diseases, antidiabetic agents for inhibiting interloeukins
US5707612 *Apr 8, 1996Jan 13, 1998Alzo, Inc.Use urethane polymers of castor oil skin and personal care product compositiions
US5728688 *Jun 7, 1995Mar 17, 1998Endoreoherche, Inc.Therapeutic methods and delivery systems utilizing sex steroid precursors
US5747065 *Sep 29, 1994May 5, 1998Lee; Eun SooMonoglyceride/lactate ester permeation enhancer for oxybutynin
US5750137 *Sep 29, 1994May 12, 1998Taskovich; Lina TormenDrug delivery, permeability, glycerides and lactates
US5756117 *Aug 10, 1992May 26, 1998International Medical Asscociates, Inc.Laminate composite with a plurality of compartments, each a reservoir for a unit dose of a drug; individual removable seals to release dose into contact with skin
US5762952 *Apr 27, 1993Jun 9, 1998Hercon Laboratories CorporationTransdermal delivery of active drugs
US5776923 *Jan 18, 1994Jul 7, 1998Endorecherche, Inc.Method of treating or preventing osteoporosis by adminstering dehydropiandrosterone
US5780460 *Jun 7, 1995Jul 14, 1998Endoreoherche, Inc.Therapeutic methods and delivery systems utilizing sex steroid precursors
US5785991 *Jun 7, 1995Jul 28, 1998Alza CorporationTransdermal drug delivery
US5798347 *Jun 7, 1995Aug 25, 1998Endorecherche, Inc.Dehydroepiandrosterone and dehydroepiandrosterone sulfate used for inhibiting proliferation of ovarian cancer
US5807571 *Oct 7, 1997Sep 15, 1998Lts Lohmann Therapie-Systeme GmbhDrug delivery
US5807849 *Jun 13, 1995Sep 15, 1998Endorecherche, Inc.Therapeutic methods and delivery systems utilizing sex steroid precursors
US5817331 *Jun 7, 1995Oct 6, 1998Sano CorporationAbsorption; drug delivery device
US5820876 *Jun 6, 1995Oct 13, 1998Lts Lohmann Therapie-Systeme Gmbh & Co. KgButadiene-acrylonitrile-methyl acrylate terpolymer, paper, and aluminum sealing bag containing a nicotine patch
US5824671 *Jun 7, 1995Oct 20, 1998Endorecherche IncVaginal atrophy, hypogonadism and loss of collagen or connective tissues
US5827529 *Jun 10, 1994Oct 27, 1998Teikoku Seiyaku Kabushiki KaishaExternal preparation for application to the skin containing lidocaine
US5837280 *Jun 7, 1995Nov 17, 1998Sano CorporationTransdermal administration of azapirones
US5837700 *Jun 7, 1995Nov 17, 1998Endorecherche, Inc.Therapeutic methods and delivery systems utilizing sex steroid precursors
US5840327 *Aug 15, 1996Nov 24, 1998Alza CorporationTransdermal drug delivery device having enhanced adhesion
US5843468 *May 13, 1996Dec 1, 1998Alza CorporationSkin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate
US5843932 *Jun 7, 1995Dec 1, 1998Endorcaherche, Inc.Therapeutic methods and delivery systems utilizing sex steroid precursors
US5854229 *Jun 7, 1995Dec 29, 1998Endorecherche, Inc.Therapeutic methods and delivery systems utilizing sex steroid precursors
US5855908 *Nov 15, 1994Jan 5, 1999University Of Utah Research FoundationAbsorption through mucous menbrane
US5861170 *Mar 22, 1994Jan 19, 1999Lts Lohmann Therapie-Systeme Gmbh & Co. KgAcetylsalicyclic acid-containing transdermal application system for antithrombotic therapy
US5869086 *Apr 25, 1994Feb 9, 1999Lts Lohmann Therapie-Systeme GmbhSystems for the controlled release of pilocarpine
US5872114 *Jun 7, 1995Feb 16, 1999Endorecherche, Inc.Therapeutic methods and delivery systems utilizing sex steroid precursors
US5891868 *Nov 21, 1997Apr 6, 1999Kaiser Foundation Health Plan, Inc.Methods for treating postmenopausal women using ultra-low doses of estrogen
US5900250 *Apr 30, 1998May 4, 1999Alza CorporationMonoglyceride/lactate ester permeation enhancer for oxybutnin
US5912009 *Oct 29, 1997Jun 15, 1999Theratech, Inc.Fatty acid esters of glycolic acid and its salts
US5919478 *Jun 24, 1994Jul 6, 1999Alza CorporationIncorporating poly-N-vinyl amide in a transdermal system
US5922700 *Jun 7, 1995Jul 13, 1999Endorecherche, Inc.Kit for drug delivery of steroids
US5932240 *Dec 8, 1997Aug 3, 1999Americare Technology, Inc.Multidose transdermal drug delivery system
US5939095 *Dec 6, 1994Aug 17, 1999Lts Lohmann Therapie-Systeme GmbhAt least one parasympathomimetically active substance and at least one parasympatholytically active substance
US5948434 *Jun 7, 1995Sep 7, 1999Endorecherche, Inc.Administering dehydroepiandrosterone or dehydroepiandrosterone sulphate via transdermal patch
US5952000 *Oct 29, 1997Sep 14, 1999Theratech, Inc.Transdermal drug delivery system: an active pharmaceutical permeant in a penetration enhancing system of fatty acid esters of lactic acid salts such as sodium lauroyl lactylate and a pressure sensitive adhesive carrier vehicle
US5955455 *Nov 13, 1997Sep 21, 1999Endorecherche, Inc.Therapeutic methods and delivery systems utilizing sex steroid precursors
US5962011 *Jun 24, 1997Oct 5, 1999Schering-Plough Healthcare Products, Inc.The device is useful for treating lesions or abnormal skin features such as corns, warts, calluses, bunions, actinic keratoses and hard hyperkeratotic skin as is often found on the face, arms, legs or feet.
US6001390 *Dec 18, 1996Dec 14, 1999Alza CorporationFormulations for transdermal delivery of pergolide
US6004578 *Oct 23, 1997Dec 21, 1999Alza CorporationFor enhancing the percutaneous absorption of drugs when administered to a body surface or membrane
US6007837 *Feb 3, 1999Dec 28, 1999Alza CorporationHeating device comprising drug-supersaturated first layer and drug-free second layer to cause controlled drug migration from first layer into second layer, rapidly cooling to yield supersaturated concentration of drug in both layers
US6074665 *Jun 24, 1996Jun 13, 2000Lts Lohmann Therapie-Systeme GmbhMultilayer
US6110488 *Jun 6, 1995Aug 29, 2000Lts Lohmann Therapie-Systeme Gmbh & Co. KgApplying a polymeric acrylic pressure sensitive adhesive to a detacable protective layer, applying absorbent factric to the adhesive, applying a drug and laminating a backing layer to the fabric material
US6117448 *Jun 6, 1995Sep 12, 2000Lts Lohmann Therapie-Systeme Gmbh & Co. KgConsists of a layer of backing material which is substantially impermeable to nicotine and a matrix of nicotine in a body of pressure sensitive acrylate copolymer which is laminated to a protective layer, used for transdermal drug delivery
US6126963 *Jun 6, 1995Oct 3, 2000Lts Lohmann Therapie-Systeme Gmbh & Co. KgBags for transdermal drug therapy
US6139868 *Jun 6, 1995Oct 31, 2000Lts Lohmann Therapie-Systeme Gmbh & Co. KgTransdermal therapeutic system, its use and production process
US6143303 *Aug 14, 1999Nov 7, 2000Janakiram; ChodavarapuPlant extracts
US6163720 *Dec 3, 1998Dec 19, 2000Alza CorporationLayered rate controlling membranes for use in an electrotransport device
US6174545Feb 3, 1999Jan 16, 2001Alza CorporationDevice for the transdermal administration of testosterone through intact, non-scrotal skin over an administration period
US6187322 *Jan 5, 1995Feb 13, 2001Lts Lohmann Therapie-Systeme GmbhProcess and a device for the production of a flat administration form comprising a preparation which contains pharmaceutical active substances
US6203817Jun 5, 1998Mar 20, 2001Alza CorporationReduction of skin reactions caused by transdermal drug delivery
US6224900Mar 9, 1998May 1, 2001Lts Lohmann Therapie-Systeme Gmbh & Co. KgNicotine barrier layer of nitrile rubber and degradation agent
US6238700May 5, 1998May 29, 2001Alza CorporationMethod for preventing crystal formation in a dispersion of a liquid in a matrix
US6264977Oct 28, 1999Jul 24, 2001Lts Lohmann Therapie-Systeme Gmbh & Co. KgTransdermal therapeutic system, its use and production process
US6267984Dec 17, 1998Jul 31, 2001Alza CorporationImproved transdermal drug delivery
US6300327Feb 6, 1997Oct 9, 2001The University Of Southern CaliforniaNeurotropin inhibitors
US6326524 *Mar 2, 2000Dec 4, 2001Bristol-Myers Squibb CompanyHydrocolloid foam dressing
US6348210Nov 10, 1999Feb 19, 2002Alza CorporationMethods for transdermal drug administration
US6375978Dec 17, 1998Apr 23, 2002Alza CorporationPre-annealing membrane polymer
US6465440Jun 4, 2001Oct 15, 2002Wellstat Therapeutics CorporationAntimutagenic compositions for treatment and prevention of photodamage to skin
US6465445Jun 11, 1998Oct 15, 2002Endorecherche, Inc.Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US6512010Jul 14, 1997Jan 28, 2003Alza CorporationFormulations for the administration of fluoxetine
US6537571Aug 18, 1998Mar 25, 2003Lts Lohmann Therapie-Systeme AgTransdermal therapeutic system containing the active substance scopolamine base
US6548510Feb 8, 2000Apr 15, 2003Lts Lohmann Therapie Systeme AgPharmaceutical composition containing deoxypeganine for the treatment of nicotine dependence
US6569448Oct 17, 1997May 27, 2003Alza CorporationMethod for preventing crystal formation in a dispersion of a liquid in a matrix
US6572879Jun 7, 1995Jun 3, 2003Alza CorporationFormulations for transdermal delivery of pergolide
US6592892Aug 29, 2000Jul 15, 2003Tepha, Inc.Flushable disposable polymeric products
US6627631 *Feb 8, 2000Sep 30, 2003Lts Lohmann Therapie-Systeme AgDesoxypeganine and its pharmaceutically acceptable acid addition salts can be used in the treatment of alcoholism. Said substances are administered preferably in a continuous and controlled manner. The pharmaceutical administration form
US6649681 *Feb 5, 2001Nov 18, 2003Ferro CorporationAdhesive polymers system dissolved in an organic solvent such as an atactic polypropylene and low density polyethylene in a blend of d-limonene and 4-heptanone or cyclohexanone; for bonding polymeric fitting to olefin-containing tubing
US6660295Sep 29, 1998Dec 9, 2003Alza CorporationA pouch containing (a) a transdermal drug delivery device comprising a drug reservoir layer positioned between a release liner and a backing alyer, one of the layer being non-occlusive, (b) oxybutynin as antioxidant and desiccant
US6670346Jun 11, 1999Dec 30, 2003Endorecherche, Inc.Treatment and/or inhibition of the development of osteoporosis, breast cancer, hypercholesterolemia, hyperlipidemia or atherosclerosis in susceptible warm-blooded animals including humans, administering selective estrogen
US6692763Nov 21, 1998Feb 17, 2004The Regents Of The University Of CaliforniaEquivalent to a serum estadiol level not exceeding of between about 5 pg/ml and about 15 pg/ml, for treatment of physical conditions associated with menopause: hot flashes; bone loss; headache; nausea etc.
US6698162 *Mar 20, 2001Mar 2, 2004Teikoku Pharma Usa, Inc.Methods of producing a terminally sterilized topical patch preparation
US6699497Jul 23, 1999Mar 2, 2004Alza CorporationPermeation enhancer
US6775570Apr 18, 2002Aug 10, 2004Ceramatec, Inc.Iontophoretic treatment device
US6933321Feb 14, 2003Aug 23, 2005Endorecherche, Inc.For therapy of androgen-dependent diseases such as prostate cancer, benign prostatic hyperplasia, precicious puberty, polycystic ovarian syndrome, acne, hirsutism, seborrhea, androgenic alopecia and premature male baldness
US6960353Sep 29, 2003Nov 1, 2005Alza CorporationFormulations for the transdermal administration of fenoldopam
US6974588Dec 7, 1999Dec 13, 2005Elan Pharma International LimitedTransdermal patch for delivering volatile liquid drugs
US7011844Nov 22, 2002Mar 14, 2006Alza CorporationFormulations for the administration of fluoxetine
US7047069Feb 4, 2002May 16, 2006Ceramatec, Inc.Iontophoretic fluid delivery device
US7063859Sep 18, 2002Jun 20, 2006Noven Pharmaceuticals, Inc.Barrier film lined backing layer composition and method for topical administration of active agents
US7087640Mar 14, 2003Aug 8, 2006Technology Commercialization CorpSubstance with sedative effect
US7166617Feb 26, 2001Jan 23, 2007Mitsubishi Pharma CorporationCyclic amide derivatives
US7169409Sep 8, 2003Jan 30, 2007Alza CorporationHeating film or laminate of a transdermal delivery device which comprises a dispersion of liquid drug in a matrix immediately following film formation or lamination; maintaining heat; cooling
US7349733Nov 2, 2001Mar 25, 2008Ceramatel, Inc.Iontophoretic drug delivery systems
US7429576Dec 30, 2003Sep 30, 2008Endorecherche, Inc.treatment for osteoporosis, hypercholesterolemia, hyperlipidemia, atherosclerosis, breast cancer, endometrial cancer, ovarian cancer and uterine cancer while minimizing undesirable side effects
US7553923Oct 26, 2007Jun 30, 2009Metabolix, Inc.Medical devices and applications of polyhydroxyalkanoate polymers
US7622136Jun 18, 2004Nov 24, 2009Alza CorporationTransparent transdermal nicotine delivery devices
US7641825Jul 29, 2005Jan 5, 2010Tepha, Inc.Method of making a polyhydroxyalkanoate filament
US7732430May 23, 2002Jun 8, 2010Pantarhei Bioscience B.V.Drug delivery system comprising a tetrahydroxilated estrogen for use in hormonal contraception
US7795038Apr 8, 2003Sep 14, 2010Cholestech CorporationHigh-density lipoprotein assay device and method
US7824879Jan 9, 2008Nov 2, 2010Cholestech CorporationMultizonal apparatus which utilizes affinity binding reagents to determine low density lipoprotein concentration in blood
US7871995May 23, 2002Jan 18, 2011Pantarhei Bioscience B.V.Drug delivery system comprising a tetrahydroxylated estrogen for use in hormonal contraception
US7884092Oct 3, 2006Feb 8, 2011Endorecherche, Inc.Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US7923440Jun 11, 2003Apr 12, 2011Pantarhei Bioscience B.V.Method of treating or preventing immune mediated disorders and pharmaceutical formulation for use therein
US7943603Oct 3, 2006May 17, 2011Endorecherche, Inc.Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US7943604Jun 11, 2003May 17, 2011Pantarhei Bioscience B.V.Method of treating human skin and a skin care composition for use in such a method
US7943683Oct 31, 2007May 17, 2011Tepha, Inc.Thin bioabsorbable materials; toughness, low modulus, tensile strength; tissue repair, drug delivery and support; solvent casting or melt extrusion continuous production
US7988991 *Mar 7, 2002Aug 2, 2011Hisamitsu Pharmaceutical Co., Inc.Adhesive patch
US8017598May 16, 2007Sep 13, 2011Knopp Neurosciences, Inc.Compositions of R(+) and S(−) pramipexole and methods of using the same
US8026228May 23, 2002Sep 27, 2011Pantarhei Bioscience B.V.Estrogenic compounds in combination with progestogenic compounds in hormone-replacement therapy
US8034270Apr 30, 2004Oct 11, 2011Tepha, Inc.Absorbable polyesters; surgery meshes
US8048869 *May 17, 2002Nov 1, 2011Pantarhei Bioscience B.V.Estrogenic component comprising estetrol and estetrol-like substances, which has relatively low estrogenic potency, metabolic stability, long half-life; triene steroids; osteoporosis, arteriosclerosis, cognitive disturbances, Alzheimer's disease, peri- or post-menopausal disorders
US8075911Aug 20, 2007Dec 13, 2011Alza CorporationTransparent transdermal nicotine delivery devices
US8084125Dec 11, 2009Dec 27, 2011Tepha, Inc.Non-curling polyhydroxyalkanoate sutures
US8124689Jun 6, 2007Feb 28, 2012Dow Corning CorporationSilicone acrylate hybride composition and method of making same
US8188066Oct 3, 2006May 29, 2012Endorecherche, Inc.Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US8197844Jun 8, 2007Jun 12, 2012Activatek, Inc.Active electrode for transdermal medicament administration
US8207159Apr 18, 2002Jun 26, 2012Hf Arzneimittelforschung Gmbhfor the treatment of disorders of the central nervous system such as cerebral, central nervous or psychiatric symptoms, defunctionalization manifestations or disorders which occur as a result of unintentional or intentional intake of psychotropic
US8236785Jan 7, 2008Aug 7, 2012Pantarhei Bioscience B.V.Method of treating or preventing infertility in a female mammal and pharmaceutical kit for use in such method
US8241662Dec 21, 2006Aug 14, 2012Watson Laboratories, Inc.Unoccluded topical oxybutynin gel composition and methods for transdermal oxybutynin therapy
US8246979Jul 22, 2003Aug 21, 2012Ucb Pharma GmbhMultilayer drug delivery system; protective foils, microreservoirs; silicone pressure sensitive adhesive; Parkinson's disease
US8246980 *Jul 28, 2003Aug 21, 2012Ucb Pharma GmbhTransdermal delivery system
US8329734Jul 27, 2009Dec 11, 2012Afgin Pharma LlcTopical therapy for migraine
US8361272Jun 27, 2007Jan 29, 2013Ferring B.V.Polyurethane elastomers
US8361273Sep 6, 2012Jan 29, 2013Ferring B.V.Polyurethane elastomers
US8389548Feb 18, 2005Mar 5, 2013Endorecherche, Inc.Administering an estrogen receptor for treatment of osteoporosis, breast cancer, hypercholesteremia, hyperlipidemia or artheriosclerosis by administering estrogen modulators
US8440222 *Dec 31, 2009May 14, 2013Acino AgReservoir system with closed membrane
US8445474Aug 5, 2011May 21, 2013Knopp Neurosciences, Inc.Compositions of R(+) and S(−) pramipexole and methods of using the same
US8460707Mar 26, 2012Jun 11, 2013Ferring B.V.Stabilised prostaglandin composition
US8491934Jul 28, 2005Jul 23, 2013Ferring B.V.Stabilised prostaglandin composition
US8518926Dec 14, 2007Aug 27, 2013Knopp Neurosciences, Inc.Compositions and methods of using (R)-pramipexole
US8519148Mar 14, 2008Aug 27, 2013Knopp Neurosciences, Inc.Synthesis of chirally purified substituted benzothiazole diamines
US8524254Oct 15, 2007Sep 3, 2013Ferring B.V.Bioresorbable polymers
US8524695Mar 14, 2008Sep 3, 2013Knopp Neurosciences, Inc.Modified release formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and methods of using the same
US8557281Jul 13, 2010Oct 15, 2013Ferring B.V.Water-swellable polymers
US8569416Oct 21, 2011Oct 29, 2013Dow Corning CorporationSingle phase silicone acrylate formulation
US8592424Jun 29, 2009Nov 26, 2013Afgin Pharma LlcTopical regional neuro-affective therapy
US8614278Nov 29, 2011Dec 24, 2013Dow Corning CorporationSilicone acrylate hybrid composition and method of making same
US8617591Apr 27, 2012Dec 31, 2013Ucb Pharma GmbhTransdermal delivery system for the administration of rotigotine
US8628798Aug 10, 2012Jan 14, 2014Ferring B.V.Water-swellable polymers
US8663680Dec 5, 2011Mar 4, 2014Alza CorporationTransparent transdermal nicotine delivery devices
US8696637Feb 28, 2011Apr 15, 2014Kimberly-Clark WorldwideTransdermal patch containing microneedles
US8709482May 31, 2013Apr 29, 2014Ferring B.V.Stabilised prostaglandin composition
US8715723Feb 26, 2007May 6, 2014Noven Pharmaceuticals, Inc.Compositions and methods for delivery of amino-functional drugs
US8753555Apr 11, 2011Jun 17, 2014Tepha, Inc.Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers
US8758657Jul 16, 2013Jun 24, 2014Tepha, Inc.Process of making polyhydroxyalkanoate medical textiles
US8778382Apr 30, 2004Jul 15, 2014Purdue Pharma L.P.Tamper resistant transdermal dosage form
US20100172959 *Dec 31, 2009Jul 8, 2010Acino AgReservoir system with closed membrane
US20120245538 *Dec 2, 2010Sep 27, 2012Michael HorstmannTransdermal Therapeutic System for the Administration of Peptides
USRE34365 *Aug 5, 1991Aug 31, 1993 Intravenous system for delivering a beneficial agent
USRE35474 *Oct 13, 1994Mar 11, 1997Dow Corning CorporationTransdermal drug delivery devices with amine-resistant silicone adhesives
USRE37934Feb 3, 2000Dec 10, 2002Lts Lohmann Therapie-Systeme AgTransdermal therapeutic system
CN101010065BJul 27, 2005Feb 29, 2012陶氏康宁公司Silicone adhesive formulation containing an antiperspirant
DE2604718A1 *Feb 6, 1976Aug 19, 1976Alza CorpTherapeutische vorrichtung zur verabreichung von skopolaminbase
DE2647581A1 *Oct 21, 1976Apr 27, 1978Henkel KgaaBlisterpackung
DE3205258A1 *Feb 15, 1982Sep 16, 1982Alza CorpDosierungseinheit zur gleichzeitigen verabreichung von wirkstoffen und die perkutane absorption verstaerkenden mitteln
DE4241128A1 *Dec 7, 1992Jun 24, 1993Lohmann Therapie Syst LtsTransdermal aspirin dosage forms - for antithrombotic therapy or cancer prophylaxis
DE102010053792A1Dec 8, 2010Jun 14, 2012Frank BecherDevice for germ-free keeping of surfaces, such as door handles, handrails, grip bars, handles of shopping carts and toilet seating surfaces, has flat support material and self-adhesive portion formed on one side of flat support material
EP0114125A2 *Jan 18, 1984Jul 25, 1984Almedco, Inc.Medication application systems
EP0153200A2 *Feb 21, 1985Aug 28, 1985Yamanouchi Pharmaceutical Co., Ltd.Medicinal patch
EP0174108A2 *Aug 9, 1985Mar 12, 1986Leonora I. JostTransdermal delivery devices
EP0196769A2 *Feb 24, 1986Oct 8, 1986Rutgers, The State University of New JerseyA novel transdermal pharmaceutical absorption dosage unit
EP0261402A1 *Aug 20, 1987Mar 30, 1988LTS Lohmann Therapie-Systeme GmbH & Co. KGTranscutaneous therapeutic device; use and preparation thereof
EP0272918A2 *Dec 22, 1987Jun 29, 1988Cygnus Therapeutic SystemsDiffusion matrix for transdermal drug administration and transdermal drug delivery devices including same
EP0273004A2 *Nov 16, 1987Jun 29, 1988Ciba-Geigy AgUser-activated therapeutical system
EP0285563A1Mar 24, 1988Oct 5, 1988Ciba-Geigy AgTransdermal therapeutic systems for combinations of active agents
EP0316168A1 *Nov 10, 1988May 17, 1989Theratech, Inc.Device for administering an active agent to the skin or mucosa
EP0439430A2 *Jan 17, 1991Jul 31, 1991Ciba-Geigy AgTransdermal administration of zwitterionic drugs
EP0481443A1 *Oct 15, 1991Apr 22, 1992Vectorpharma International S.P.A.Transdermal therapeutic compositions
EP0593807A1 *Oct 22, 1992Apr 27, 1994LTS Lohmann Therapie-Systeme GmbH & Co. KGPatch for transdermal administration of volatile pharmaceutically active ingredients of chemically basic nature and a process for preparation
EP0648264A1 *Jun 2, 1993Apr 19, 1995Case Western Reserve UniversityBandage for continuous application of biologicals
EP0841056A2 *Feb 21, 1996May 13, 1998Hisashi MinetaPersonal clothing with effects caused by weak electromagnetic waves
EP1674068A1Feb 19, 1997Jun 28, 2006Acrux DDS Pty LtdDermal penetration enhancers and drug delivery systems involving same
EP2087892A2Jun 22, 2000Aug 12, 2009Pharmacia & Upjohn Company LLC(S,S) reboxetine for treating age associated learning and mental disorders
EP2090312A1Jun 22, 2000Aug 19, 2009Pharmacia & Upjohn Company LLC(S,S) reboxetine for treating attention deficit disorder
EP2158903A2Dec 14, 1999Mar 3, 2010ALZA CorporationTransparent Transdermal Nicotine Delivery Devices
EP2584016A1Oct 19, 2012Apr 24, 2013Dow Corning CorporationSingle phase silicone acrylate formulation
EP2599847A1Nov 29, 2012Jun 5, 2013Dow Corning CorporationA Silicone Acrylate Hybrid Composition and Method of Making Same
WO1980001139A1 *Dec 6, 1979Jun 12, 1980Svedman PaulDevice for treating tissues,for example skin
WO1982000005A1 *Jun 26, 1981Jan 7, 1982Key PharmaPolymeric diffusion matrix containing a vasodilator
WO1987000042A1 *Jun 27, 1986Jan 15, 1987Univ New JerseyTransdermal verapamil delivery device
WO1987001938A1 *Sep 11, 1986Apr 9, 1987Univ CaliforniaLiposome transdermal drug delivery system
WO1987003477A1 *Dec 12, 1985Jun 18, 1987Flexcon Co IncTransdermal methods and adhesives
WO1988001516A1 *Aug 20, 1987Mar 10, 1988Lohmann Gmbh & Co KgTransdermal therapeutic system, its use and production process
WO1992001498A2 *Jul 15, 1991Jan 17, 1992Cholestech CorpSolid-phase precipitation assay device and method
WO1993003692A1 *Aug 14, 1992Mar 4, 1993Cygnus Therapeutic SystemsTransdermal drug delivery device using a membrane-protected microporous membrane to achieve delayed onset
WO1993003693A1 *Aug 17, 1992Mar 4, 1993Cygnus Therapeutic SystemsTransdermal drug delivery device using a polymer-filled microporous membrane to achieve delayed onset
WO1994008571A2 *Oct 20, 1993Apr 28, 1994Lohmann Therapie Syst LtsPlaster for the transdermal administration of volatile, pharmaceutically active, chemically alkaline ingredients, and processs for producing the same
WO1997004818A2 *Jun 24, 1996Feb 13, 1997Michael HorstmannTransdermal therapeutic sysgtem for administering active agents to the human body via the skin
WO1999011265A1 *Aug 18, 1998Mar 11, 1999Lohmann Therapie Syst LtsTransdermal therapeutic system containing the active substance scopolamine base
WO2000030693A1 *Sep 23, 1999Jun 2, 2000Deotexis IncDressing
WO2002062292A2 *Jan 23, 2002Aug 15, 2002Ferro CorpAdhesive composition primarily intended for use in medical applications
WO2005066194A1Jan 6, 2005Jul 21, 2005Endorech IncHelix 12 directed steroidal pharmaceutical products
WO2008104032A1 *Feb 29, 2008Sep 4, 2008Ben McmurtrieBody wrap with sodium carbonate dosage pack
Classifications
U.S. Classification424/434, 424/448, 424/449
International ClassificationA61K9/00, A61L15/58, A61F9/00, A61M31/00, A61L15/16, A61K9/70
Cooperative ClassificationA61K9/7076, A61M31/002, A61K9/7061, A61K9/7092, A61K9/7084, A61K9/0004, A61L15/58, A61F9/0017
European ClassificationA61M31/00D, A61F9/00B2, A61K9/00L4, A61L15/58, A61K9/70E2B6B2, A61K9/70E2D, A61K9/70E2B8, A61K9/70E2K