Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3798031 A
Publication typeGrant
Publication dateMar 19, 1974
Filing dateNov 9, 1972
Priority dateNov 10, 1971
Also published asCA988767A1, DE2254573A1
Publication numberUS 3798031 A, US 3798031A, US-A-3798031, US3798031 A, US3798031A
InventorsJ Dierckx, W Janssens, R Pollet, H Sneyers, J Vanheertum
Original AssigneeAgfa Gevaert Nv
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Photoconductive 1,2,3,4-tetrahydroquinolines employed in electrophotography
US 3798031 A
Abstract
Electrophotographical recording process wherein a pattern of increased conductivity is produced image-wise in a photoconductive insulating recording layer containing as essential photoconductive compound a photoconductive 1,2,3,4-tetrahydroquinoline. The photoconductive compound can be chemically and spectrally sensitized and charged either negatively or positively.
Images(19)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 J anssens et al.

[451 Mar. 19, 1974 PHOTOCONDUCTIVE 1,2,3,4-TETRAHYDROQUINOLINES EMPLOYED IN ELECTROPHOTOGRAPHY [75] Inventors: Wilhelmus Janssens, Aarschot;

Johannes Josephus Vanheertum, Halle-Zandhoven; Robert Joseph Pollet, Vremde; Hendrik Hubert Sneyers, Wijnegem; Jozef Aime Dierckx, Mechelen. all of Belgium [73] Assignee: Agfa-Gevaert N.V., Mortsel,

Belgium [22] Filed: Nov. 9, 1972 [2]] App]. No.: 304,939

[30] Foreign Application Priority Data Nov. 10, 1971 Great Britain 52287/71 [52] US. Cl 96/1.8, 96/1 PC, 96/l.5, 96/l.6, 96/1.7, 252/501, 260/240 E, 260/2401 [51] Int. Cl G03g 5/06 [58] Field of Search 96/1.5. 1 PC, 1.8; 252/501 [56] I References Cited UNITED STATES PATENTS 3.620.742 11/1971 Willems et a1. 96/l.5 X

3.684.505 8/1972 Vanheertum et al. 96/l.5 X 3.660.084 5/1972 Vanheertum et al. 96/1.5 X 3.307.940 3/1967 Hoegl et a1. 96/1.5 X 3.560.209 2/1971 Jenkins et al. 96/1.5 X 3.232.755 2/1966 l-loegl et al. 96/l.5 X 3.686.153 8/1972 Ono et al..... 96/1.5 X 3.647.428 3/1972 Ono et al. 96/l.5 3.707.369 12/1972 Ono et al. 96/1.5 3.730.711 5/1973 Ono et al. 96/1.5 3.155.503 11/1964 Cassiers et a1... 96/1.5 X

888.016 7/1971 Just 96/126 FOREIGN PATENTS OR APPLICATIONS 1,245,924 9/1971 Great Britain 9 6/15 1.588.977 4/1970 France 96/1.5

Primary Examiner-Norman G. Torchin Assistant Examiner-John R. Miller Attorney, Agent, or FirmWilliam J. Daniel 5 7] ABSTRACT Electrophotographical recording process wherein a pattern of increased conductivity is produced imagewise in a photoconductive insulating recording layer containing as essential photoconductive compound a photoconductive l,2,3,4-tetrahydroquinoline. The photoconductive compound can be chemically and spectrally sensitized and charged either negatively or positively.

40 Claims, No Drawings PHOTOCONDUCTIVE I,Z,3,4 TETRAIIYDROQUINOLINES EMPLOYED IN ELECTROPHOTOGRAPHY wherein:

2, represents the necessary atoms to close an adjacent aromatic nucleus or an adjacent aromatic ring system including an adjacent aromatic nucleus or aromatic ring system substituted with (a) non-ionic substituent(s) e.g. substituted with an alkyl group for example methyl, halogen e.g. F, Cl, Br or I, an alkoxy group e.g. methoxy, an amino group, a substituted amino group e.g. a monoalkylamino or dialkylamino group or a cyano group,

2 represents the necessary methylene groups or substituted methylene groups to close a -membered heterocyclic nitrogen-containing nucleus. Suitable substituents for the methylene groups are one or more C -C alkyl groups e.g. methyl, and

R represents hydrogen, an aliphatic radical including a saturated aliphatic radical, an unsaturated aliphatic radical, a cycle-aliphatic radical and these radicals in substituted form, or an alkylene group which is ring-closed with the carbon atom in periposition of the aromatic ring closed by Z in order to form a julolidine compound.

According to a preferred embodiment R represents an organic group that can be introduced by alkylation, for example an alkyl radical including a substituted alkyl radical, e.g. methyl, a cycloalkyl radical, e.g. cyclohexyl, an allyl radical, an aralkyl radical, e.g. benzyl.

The adjacent aromatic nucleus or ring system closed by the atoms represented by Z is preferably one of the unsubstituted or substituted nuclei or ring systems represented by the following structural formulae:

(benzene) (naphthalene) (anthracene) (carhazole) wherein R represents hydrogen or an alkyl group e.g. methyl or ethyl V H (indole) wherein R represents hydrogen or an alkyl group, e.g.

methyl or ethyl.

wherein: ii represents oxygen or sulphur (benzofuran) (benzothiophene) (phenothiazine) (phenoxazlne) (fluorine) (indene) 0 (xanthene) (quinolin-Z-one) wherein li is hydrogen or an alkyl group, e.g. methyl or ethyl.

Preferred photoconductive compounds according to the present invention and which are considered as new compounds are within the scope of the following general formula (II) wherein Z and 2, have the same significance as described in the above general formula, and A represents a bivalent organic radical of the type that can be introduced by a]- kylation, e.g. A represents an alkylene group, a substituted alkylene group or an alkylene chain interrupted by a bivalent aromatic group. Preferably A represents -CH -CH or Particular examples of photoconductive compounds according to the general formula (I) are listed in the 20 following Table l.

formula of Table l proceeds by hydrogenation of the corresponding 1,2-di-hydroquinoline compounds which are prepared e.g. according to a procedure described in the Belgian Pat. Specification Nos. 775,786 filed Nov. 25, 1971 and 776,380 filed Dec. 8, 1971 both by Agfa-Gevaert N.V.

The substitution of the hydrogen atom in the NH group of the Z -ring by an organic group may proceed TABLE I RI N Number R R, X Y Melting or boiling point 1 CH; G-CH; 7-011; Oily product 2 l. H CH; G-CH; 7-0 H; Oily product 105-106 C./0.5 mm Hg. 3 CH; OH: H H 98100 C./1 mm. Hg oily product. 4 CH: H H H Oily product 130132 C./15 mm. Hg.

5 H H H 145l-l9 C./0.2 mm. Hg.

6 H CH; 6-CgH O H 148-151 0J3 mm. (l)CHg-CH2-CH1(8) (julolidine) H (8)CH:CHzCHz-(1) H Oily product 105-109 C./l mm. Hg.

CH; 6-C H 0 H 86 C.

CH: 138 C.

10 H CH; 116 C.

Particularly useful photoconductive compounds according to the general formula (II) are listed in the following Table II. These compounds are called duplo compounds" for they include two l,2,3,4- tetrahydroquinoline nuclei.

TABLE II in B: X c-R, m-o (5H3 Hg o o l\ I Y R: H R: H

according to known alkylating techniques. This alkylation may be carried out before or after the hydrogenation of the double bond between the threeand fourcarbon atom in the 1,2-dihydroquinoline compound.

For introducing an alkyl substituent by substitution of the hydrogen atom of said NH group any suitable alkylating agent e.g. trialkyl phosphate, alkyl iodides, alkyl bromides and alkyl chlorides may be used, the latter preferably in conjunction with a small amount of potassium iodide.

The preparation of the duplo-compounds" as e.g. represented in Table II proceeds by linking together two l,2,3,4-tetrahydro-quinolines by alkylation through the nitrogen atoms in the l-position.

The preparation of the compounds according to the mation are the B-chloroethyl ester of p-tolusulphonic acid and the p-tolusulphonic acid glycol diester.

As suitable bifunctional alkylating agents are to be The following are illustrative of reactants that may be used in the preparation of the duplo-compounds ethylene dichloride, dibromide and diiodide l-chloro-2-bromoethane propylene dichloride, dibromide and diiodide trimethylene dichloride, dibromide and bromoiodide butylene dichloride, dibromide and diiodide tetramethylene dichloride, dibromide and diiodide pentylene dichloride, dibromide and diiodide hexamethylene dichloride dibromide and diiodide hexylene dichloride, dibromide and diiodide octylene dichloride, dibromide and diiodide pentamethylene dichloride, dibromide and diiodide alpha, beta-styrene dichloride, dibromide and diiodide l ,2-dibromocyclohexane l ,3-dibromobutane l,2-dibromobutane l ,4-dichlorobutene-2 2-phenyl-1,2-dibromopropane l-p-tolyl-l ,2-dichloroethane l,4-di( chloromethyl)benzene 1 ,4-di(bromomethyl )benzene l,4-di( iodomethyl )benzene l-( 2,4-dichlorophenyl )-l ,2-dichloroethane 1-( p-chlorophenyl)-l ,Z-dibromoethane decamethylene dichloride, dibromide and diiodide dodecamethylene dichloride, dibromide and diiodide l,2-dibromobutene-3 l,2-dichloropentene-4 l,2-dichloro-3-methylbutene-3 1,4-dichlorobutene-2 l,4-dibromo-2,3-dimethylbutene-2 1 ,2-dichlorocyclopentene-3 1 ,4-dibromocyclopentene-2 l ,4-dibromo-2,6-dimethylheptene-2 2,3-dichloro-2,6-dimethyloctene-6 Other suitable reactants for the duplo-compound for- Preferred reactants are sym.-dibromoethane and sym.-dichloroethane.

The acid produced during the alkylation reaction may be neutralized by any alkaline neutralizing agent ordinarily employed for neutralizing acids produced in condensation reactions e.g. an organic base.

The following preparations illustrate in more details the manufacture of the compounds enumerated in the Tables I and II.

PREPARATION OF COMPOUND 5 OF TABLE I 0.1 mole of the corresponding l,2,3,4-

Compound 1 of Table I was prepared analogously. Compounds 8 and 9 were recrystallized from acetonitrile.

PREPARATION OF COMPOUND 2 OF TABLE I 0.2 mole of the corresponding l,2-dihydroquinoline and 4 ml of a dispersion of Raney nickel were mixed with 150 ml of dioxan. Hydrogen pressure of 1,500 psi was applied and the hydrogenation effected at C for 2 h. The measured hydrogen acception corresponded with the theoretically possible value. After removal by filtering of the Raney nickel the solvent was removed by evaporation and the residue distilled under reduced pressure with the help of a fractionating column. The fraction boiling between l05-106 C at 0.5 mm Hg was collected.

Compounds 3 and 10 of Table I were prepared analo gously.

Compound 10 was not distilled but recrystallized from ligroin in the presence of active carbon.

PREPARATION OF COMPOUND 4 OF TABLE I A mixture of 0.2 mole of l,2,3,4- tetrahydroquinoline, 0.4 mole of trimethyl phosphate and 0.21 mole of ethyl diisopropylamine were heated at 140 C on an oil-nath for l h.

The reaction mixture was poured into water and treated with sufficient ammonium hydroxide for obtaining a slightly alkaline reaction.

The obtained supernatent oily product was extracted with chloroform. The whole mixture was washed with 2N aqueous hydrochloric acid and thereupon washed with water until neutral. After drying on anhydrous sodium sulphate the extract was distilled under reduced pressure with a distillation column and the fraction boiling between l30132 C at 15 mm Hg collected.

PREPARATION OF COMPOUND 6 OF TABLE I 90.5 g of the corresponding 1,2-dihydroquinoline were hydrogenated in the presence of Raney nickel under 1,500 psi of hydrogen pressure at 70 C in dioxan as a solvent. After removal of the Raney nickel by filtering the solvent was evaporated under reduced pressure and the hydrogenated product purified by distillation. The fraction boiling between l48l5l C at 3 mm Hg was collected.

PREPARATION OF COMPOUNDS 1, 3, 4 and 5 OF TABLE II The hydrogenation of the corresponding 1,2- dihydroquinoline to the indicated l,2,3,4-

PREPARATION OF COMPOUND 2 OF TABLE II The alkylation was carried out by heating with stirring 0.2 mole of the l,2,3,4-tetrahydroquinoline with 0.1 mole of sym.-dibromoethane and 0.2 mole of triisopropanolamine at C for 10 h. The obtained reac- 7 tion product was extracted with dichloroethane and washed first with 2N aqueous hydrogen chloride and then with water until neutral.

The extract was dried over anhydrous sodium sulphate and after filtering the solvent was removed. Recrystallization of the crude product from ethylene glycol monomethyl ether yielded a white powder. Melting point 151 C. Yield 54 percent.

In the preparation of the compounds 6 and 7 of Table II l,4-di( monochloromethybbenzene was used instead of sym.-dibromoethane.

The photoconductive duplo compounds of Table II are particularly interesting for their high photosensitivity and pure state wherein they can be separated. Most of these products are obtained as white powders, which are suited for producing very clear colourless photosensitive layers.

The photoconductive compounds applied according to the present invention may be used alone or in combination with substances imparting desired chemical or physical properties to the recording element. So, these substances may be combined with other substances that either or not are photoconductive and exert an influence e. g. on the dark-resistivity, the dischargeability of conductivity of the recording layer by an exposure to electromagnetic radiation, or on the transparency or the quality of the final image, e.g. by counteracting the fringe effect as described in the United Kingdom Pat. specification No. 1,007,349 filed Oct. 12, 1961 by Gevaert Photo-Producten N.V.

A proper combination with selected binding agents and/or chemical sensitizing agents may result in an enhancement of the total sensitivity. The recording elements according to the present invention preferably contain at least 5 percent by weight of a photoconductive l,2,3,4-tetrahydroquinoline derivative being within the scope of the above general formulae. For use in electrophotography the recording element preferably consists for at least 10 percent by weight of one or more of the said l,2,3,4tetrahydroquinoline derivatives. The electrically insulating binding agent used in a recording layer containing said derivative may provide the desired mechanical strength for instance to tivity of at least 10 ohm.cm.

According to a particular embodiment the recording layer consists of the photoconductor, which, e.g., has been applied to a suitable support in molten state forming a micro-crystalline or glass-like layer on cooling. This technique can be applied when the photoconductive recording element has not to possess a high mechanical strength. For such technique reference is made to the Canadian Pat. specification No. 712,541 filed Feb. 5, 1960 by Gevaert Photo-Producten N.V.

Macromolecular compounds suitable for use as insu lating binding agent for the photo-conductive compounds are, e.g., natural resins such as dammar resin, gum arabic, microcrystalline waxes, modified natural substances such as cellulose diacetate, cellulose triacetate, and ethylcellulose, pentaerythrite polyesters or modified colophony resins and ester gums, polymers such as polyethylene, polystyrene and copolymers of styrene, polyvinyl acetate and copolymers of vinyl acetate, polyvinyl acetals of formaldehyde, acetaldehyde or butyraldehyde, polyacrylic acid esters and polymethacrylic acid esters, coumarine-indene resins. epoxy resins and polycondensates such as glycerolphthalate resins and other glyceryl polyesters, alkyd resins, diethylene glycol polyesters, formaldehyde resins and silicone resins.

Preferred binding agents are halogen-containing polymers and epoxy resins combined with silicone resins. The sensitization of organic photoconductors with halogen-containing polymers is described in the United Kingdom Pat. specification No. 964,878 filed May 3, 1960 by Gevaert Photo-Producten N.V. According to said specification a material suitable for use in electrophotography comprises a photoconductive layer incorporating an organic monomeric photoconductor and a halogen-containing polymer in such layer or in a juxtaposed layer (if any), the sensitivity of said photocon ductor having been increased by making it to interact with said halogen-containing polymer by heating.

ln thefollowing Table ll l a list of preterred polymeric binding agents is given, which may be used in combination with the heterocyclic organic photoconductors of use according to the present invention as well as the form a self-supporting layer, and preferably has a resis-j corre sponding suitable solvents.

TABLE III Polymeric binding agent defined by its structural unit(s) Solvent CH3 1 O t OLW 0 cl Ha J J Cl CH: I Do.

(T (Lu: 01 J Table III Continued Polymeric binding agent defined by its structural unit(s) Solvent (C 2)2-C as) CHI According to a Special embodiment the photoconductive compounds applied according to the present invention are used in admixture with inorganic and organic photoconductive substances known to those skilled in the art, e.g. sulphur, selenium, photoconductive oxides, sulphides, and selenides of zinc, cadmium, mercury, antimony, bismuth, lead, anthracene, anthraquinone, and photoconductive polymers e.g. those containing N-vinylcarbazole recurring units and other known monomeric and polymeric organic photoconductors, e.g. those described in the published Dutch Pat. application No. 70/04174 filed Mar. 24, 1970 by Gevaert-Agfa NV.

The inherent spectral sensitivity of most of the photoconductive compounds listed in Tables I and II is mainly situated in the near U.V. range, i.e., in the range of 360 to 420 nm.

The spectral sensitivity of recording materials according to the present invention can be increased in different ways, e.g. by adding so-called spectral sensitizing agents for the photoconductive substances contained in the recording element or by admixing to the said heterocyclic organic photoconductive compounds other photoconductive substances, whose inherent sensitivity for a particular part of the electromagnetic radiation spectrum is higher than that of the present compounds.

Suitable spectral sensitizing dyestuffs for the organic photoconductor are among others organic dyestuffs, known as methine dyes, or xanthene dyes of which the phthaleins and rhodamines are subclasses, and triarylmethane dyes e.g. crystal violet (C.I. 42,555) and the triarylmethane dyes described in published Dutch Pat. application No. 6,704,706 filed April 3, 1967 by Gevaert-Agfa N.V. The term methine dyes includes monoas well as polymethine dyes, which dyes are known to those skilled in the art of the spectral sensitization of light-sensitive silver halide. Preferred methine dyes are of the cationic type. As preferred xanthene dyes Rhodamine B (C.l. 45,170), Rose Bengale (C.I. 45,440) and Fluorescein (C.I. 45,350) are mentioned. The spectral sensitizing dyes are preferably added to the recording layer composition in a proportion of 0.01 to percent by weight in respect of the photoconductive substance(s).

Particularly preferred methine dyes are within the scope of the following general formulae Methylene chloride/acetonc/ethnnol (1:1:1).

wherein w A; stands for a dimethine or tetramethine group including a substituted dimethine or tetramethine group,

n stnads for one or two,

R stands for alkyl including substituted alkyl, an unsaturated aliphatic group e.g. allyl, aralkyl including substituted arakyl, aryl including substituted aryl or cycloalkyl,

R stands for alkyl, aryl including substituted aryl,

e. g. phenyl and phenyl substituted preferably in the X, represents an anion e.g. Cl", Br, I, C10,",

CH SOJ, or

Ha C Q-S O a but is missing when the R group contains already an anion (betaine type salt), and

Z represents the atoms necessary to complete a heterocyclic nucleus of the types used in the production of cyanine dyes e.g. such as those of the thiazole series, e.g. thiazole, 4-methylthiazole, 4- methyl-S-carbethoxythiazole, 4-phenylthiazole, 5-

methylthiazole, S-phenylthiazole, 4-(p-tolyl)- thiazole, 4-( p-bromophenyl )-thiazole, 4 ,5 dimethylthiazole, 4,5-diphenylthiazole, 4-( 2- thienyU-thiazole, 4-(m-nitrophenyl)-thiazole, those of the benzothiazole series, e.g. benzothiazole, 4-chlorobenzothiazole, S-chlorobenzothiazole, -chlorobenzothiazole, 7chlorobenzothiazole, 4-

methylbenzothiazole 5-methylbenzothiazole 6- methylbenzothiazole, 5 -bromobenzothiazole 6- bromobenzothiazole, 6-sulphobenzothiazole, 4- phenylbenzothiazole, 5 -phenylbenzothiazole 4- methoxybenzothiazole S-methoxybenzothiazole -methoxybenzothiazole, 5-iodobenzothiazole, 6- iodobenzothiazole, 4-ethoxybenzothiazole, 5- ethoxybenzothiazole, 4,5,6,7-tetrahydrobenzo- I 13 thiazole, 5,6-dimethoxybenzothiazole, 5,6-dioxymethylenebenzothiazole,

4-phenyloxazole, 4,5-diphenyloxazole, 4- ethyloxazole, 4,5-dimethyloxazole, 5- phenyloxazole, those of the benzoxazole series e.g. benzoxazole, S-chlorobenzoxazole, 5- methylbenzoxazoie, S-phenylbenzoxazole, 6- methylbenzoxazole, 5,6-dimethylbenzoxazole,

4,6-dimethylbenzoxazole, S-methoxybenzoxazole, 6- methoxybenzoxazole, S-hydroxybenzoxazole, 6- hydroxybenzoxazole, those of the naphthoxazole series, e.g. naphtho[2,l-d]oxazole, naphtho[l,2- d]oxazole, those of the selenazole series e.g. 4- methylselenazole, 4-phenylselenazole, those of the benzoselenazole series e.g. benzoselenazole, 5-

chlorobenzoselenazole, 5- methoxybenzoselenazole, 5-rnethyl-6- methoxybenzoselenazole, 5 ,6- dioxymethylenebenzoselenazole, 5- hydroxybenzoselenazole, 4,5 ,6 ,7-

tetrahydrobenzoselenazole, those of the naphthoselenazole series e.g. naphtho[2,l-d]selenazole, naphtho[2,l-d]selenazole, those of the thiazoline series e.g. thiazoline, 4-methylthiazoline, 4- hydroxymethyl-4-methylthiazoline, 4,6-bis-hydroxymethylthiazoline, those of the oxazoline series e.g. oxazoline, those of the selenazoline series e.g. selenazoline, those of the 2-quinoline series e.g.

quinoline, 3-methylquinoline, S-me'thylquinoline, 7-methylquinoline 8-methylquinoline, 6- chloroquinoline, 8-chloroquinoline, 6- methoxyquinoline, 6-ethoxyquinoline, 6-

hydroxyquinoline, S-hydroxyquinoline, etc., those of the 4-quinoline series e.g. quinoline, 6- methoxyquinoline, 7-methylquinoline, 8- methylquinoline, those of the l-isoquinoline series e.g. l-isoquinoline, 3,4-dihydroisoquinoline, those of the 3-isoquinoline series e.g. 3-isoquinoline, those of the pyrimidine series, those of the quinoxaline series, those of the quninazoline series, those of the lphthalazine series, those of the Z-pyridine series, e.g. pyridine, 5-methylpyridine, 3- nitropyridine, those of the 3,3-dialkylindolenine series, e.g. 3,3-dimethylindolenine, 3,3,5- trirnethylindolenine, 3,3,7-trimethylindolenine, etc., those of the benzimidazole series e.g. benzimidazole. 5,6-dichlorobenzimidazole, 5- chlorobenzirnidazole, 5,6-dibromobenzimidazole, 5-chloro-6-aminc-benzimidazole, 5-chloro-6- bromobenzimidazole. S-phenylbenzimidazole, 5-.

fluorobenzimidazole 5.-difluorobenzimidazole, 5-cyanobenzimidazole, 5,6-dicyanobenzimidazole,

carboxybenzimidazole, 7-carboxybenzimidazole,

5-carbethoxybenzimidazole, 7-carbethoxybenzimidazole, 5-sulphamylbenzimidazole. or 5-N- ethylsulphamylbenzimidazole, S-ethylsulphonylbenzimidazole and 5-trifluoromethylsulphonylbenzimidazole;

wherein A stands for a monomethine or trimethine group including a substituted monomethine or trimethine group,

each of R R' and R R",, (the same or differ ent) has one of the significances given for R R X; has the same significance as X,;

III.

wherein each of R, and R", (the same or different) has one of the meanings given for R,,

X; has the same meaning as X,',

A has the same meaning as A each of m and p (the same or different) stands for one or two, and

each of Z, and Z, (the same or different) Stands for the atoms necessary to complete a heterocyclic nucleus of the thiazole, benzothiazole, naphthothiazole, thionaphtheno[7,6-d]-thiazole, thiadiazole, oxazole, benzoxazole, naphthoxazole, selenazole,

benzoselenazole, naphthoselenazole, 2-quinoline,'

4-quino1ine, pyrimidine, quinoxaline, quinazoline,

Z-pyridine, 3,3-dialkylindolenine or of the benzimidazole series;

representative examples of these heterocyclic nuclei can be found above in the definition of Z in formula I.

The dyestuffs corresponding to the above general formulae can be prepared according to the methods known by those skilled in the art of methine dye chemistry.

According to a further embodiment of the invention the recording material contains one or more substances that increase the photoconductivity of the recording material in the inherent spectral sensitivity range of the said heterocyclic organic photoconductive compounds. As already has been said a binding agent can act as a sensitizing agent that enhances the total sensitivity of the recording element. In that respect are to be mentioned compounds containing one or more electronattracting atoms or groups, e. g. those that are known as non-ionic Lewis acids,e.g. the Lewis acids that can form a charge transfer complex as described e.g. in the US. Pat. specification No. 3,408,183 of Joseph Mammino issued Oct. 29, 1968. Good sensitizing results are obtained with organic carboxylic acid anhydrides and with quinones containing electron-attracting substituents, e.g. halogen or cyano, such as in tetrachlorobenzoquinone and tetracyanobenzoquinone, with organic compounds containing a group and with the compounds according to the structural formula of the Belgian Pat. specification No. 734.141 filed June 6, 1969 by Gevaert-Agfa N.V. and the chlorineand/or cyano-containing polymers of Table III.

The l.2.3.4-tetrahydroquinoline derivatives may be used in admixture with diazonium salts that on exposure to electromagnetic radiation produce (a) radical(s), which irreversibly increase(s) the electroconductivity of a recording layer. Such substances as well as details about their incorporation into a recording layer containing an organic photoconductive insulating substance are described in the United Kingdom Pat. specification No. 964,872 filed Apr. 22, 1959 by Gevaert Photo-Producten N.V. and the U.S. Pat. specification No. 3,113,022 of Paul Maria Cassiers, Jean Marie Nys, Jozef Frans Willems and Rene Maurice Hart issued Dec. 3, 1963. A particularly suitable conductivity-increasing diazonium compound is p-nitrobenzene-diazonium chloride. The diazonium compounds are preferably used in an amount of 0.01 to 10 percent by weight in respect of the present photoconductive heterocyclic organic compounds.

Other additives well known in the art of preparing photoconductive coatings for recording purposes may be used, e.g. matting agents. fluorescing compounds, phosphors. optical brightening agents, agents controlling the adhesive power of the recording layer, agents controlling the elasticity, the plasticity and the hardness of the recording layer, agents controlling the viscosity of the coating composition, antioxidants, glossimproving agents, etc.

Transparent and semi-transparent recording materials containing the photoconductive heterocyclic organic compounds as described hereinbefore are especially suited for use in recording materials applied for the production and reproduction of microfilm images. Microfilm images can be copied in contact or enlarged optically on recording materials according to the present invention. According to the type of development, the transparencies obtained (contact copies and enlargements) can serve as negative or positive intermediate prints for further printing, e.g. on diazotype materials.

The semitransparent recording materials according to the present invention preferably have an optical density not larger than 0.30 towards visible light or the copying light used in the printing apparatus wherein it is used as intermediate print.

The photoconductive heterocyclic organic compounds described hereinbefore are further especially suited for being applied in the manufacture of pigment images wherein the pigments may have the properties of a fluorescent compound or phosphor.

As is generally known luminescent phosphors are used in screens of cathode-ray tubes and more particularly in television. X-ray, radar and oscilloscope screens. It is further known that in colour television screens phosphors of different colour have to be fixed on a screen in a particular pattern.

The described photoconductive compounds are successfully used in a process for the production of colour television screens as described in the French Pat. specification No. 1,336,499 filed Sept. 26, 1962 by Comp.- Francaise Thomson-Houston. According to the process described in said specification a pattern of a phosphor on a screen support is produced by the steps of applying to said support a coating of an electroconductive material and to said coating :1 layer comprising a vaporisable or thermolysable photoconductive compound optionally incorporated in a vaporisable or thermolysable binding agent. On said coating an electrostatic charge pattern corresponding with the pigment pattern to be produced is formed in an electrophotographic way, and the electrostatic charge pattern is developed with non-volatile powder particles that have the desired phosphorescent or luminescent properties. Subsequently the photoconductive layer containing the phosphor powder image is heated in order to remove the volatile substances of the photoconductive recording layer and to make the phosphor pattern adhere to the screen support.

In order to fix the powder image before applying the heating step it is preferably overcoated with a layer of a thermolysable binding agent.

According to said French Patent Specification photoconductors of the group of anthracene, anthraquinone and xanthene are used. The recording layer may further contain boric acid.

The photoconductors mentioned in the French Pat. specification are advantageously partly or wholly substituted by the photoconductive substances applied according to the present invention.

Suitable thermolysable binding agents belong to the class of the polyacrylic acid esters and polymethacrylic acid esters, e.g. polymethyl methacrylate. polyethyl methacrylate and polyethyl acrylate.

The thickness of the photoconductive layers of the present invention is not critical but is open to choice within a wide range according to requirements in each individual case. Good results are attained with photoconductive layers of a thickness between 1 and 30 11. preferably between 3 and 20 ,u. Too thin layers do not have a sufficient insulating power in the absence of active electromagnetic radiation, whereas too thick layers require extensive exposure times. The photoconductor may be used in a self-supporting or supported layer.

In the manufacture of electrophotographic recording materials according to the present invention preferably a relatively conductive support for the recording layer is used, e.g. an electroconductive sheet or plate, or an insulating sheet or plate covered with an electroconductive interlayer. By electro-conductive plate or sheet is understood a plate or sheet whose electrical resistivity is smaller than that of the non-irradiated (darkadapted) photoconductive layer. i.e., in general smaller than 10 ohm.cm and preferably is at least times as small as that of the recording layer. Supports whose resistivity is not higher than 10 ohm.cm are preferred. The recording layers themselves have preferably an electrical insulating power as high as possible without affecting too much the photosensitivity by means of too high an amount of insulating binding agent. Preferably the recording layers have in non-irradiated state (darkadapted state) a resistivity of at least 10 ohm.cm.

Suitable conductive plates are, e.g., plates of. metals such as aluminium, zinc, copper, tin, iron, or lead.

Suitable electroconductive interlaye rs for insulating supports are, e.g., vacuum-coated metal and conduc- -tive metal compound (metal oxide or metal salt) layers such as silver. tin, aluminium, titanium dioxide and copper iodide conductive layers, transparent conductive polymer layers, e.g. applied from polymers containing quaternized nitrogen atoms, such as those described in the United Kingdom Pat. specification No. 950.960 filed Sept. 23. 1960 by Gevaert Photo- Producten N.V., or layers containing conductive particles, e.g. carbon black and metal particles dispersed in a binder. The binder used for said particles has a resistivity preferably lower than ohm.cm. A suitable binder for that purpose is gelatin.

It is possible to produce transparent photoconductive recording materials by applying the photoconductive compounds together with a suitable binder (if necessary) from a clear solution to a conductive transparent base or a transparent insulating base coated with an electroconductive transparent interlayer.

As transparent bases resin sheets having an optical density of not more than 0.10 are preferred, e.g., a sheet made of polyethylene terephthalate or cellulose triacetate. The conductive interlayer preferably consists of a metal coating, e.g. a vacuum-coated aluminium layer having an optical density of not more than 0.30, or of a conductive transparent polymer layer composed, e.g., of an organic polyionic polymer, e.g. a polymer containing quaternized nitrogen atoms such as a quaternized polyethylene-imine.

ln reproduction techniques wherein the prints are to be produced on an opaque background preferably a paper sheet is used as support for the recording layer.

Paper sheets that have an insufficient electrical conductivity are coated or impregnated with substances enhancing their conductivity, e.g. by means of a conductive overcoat such as a metal sheet laminated thereto.

As substances suited for enhancing the conductivity of a paper sheet and which can be applied in the paper mass are particularly mentioned hygroscopic compounds and antistatic agents as described, e.g., in the United Kingdom Pat. specification No. 964,877 filed May 2, 1960 by Gevaert Photo-Producten N.V., and antistatic agents of polyionic type, e.g. CALGON CONDUCTIVE POLYMER 261 (trade mark of Calgon Corporation, Inc. Pittsburgh, Pa., U.S.A.) for a solution containing 39.1 percent by weight of active conductive solids, which contain a conductive polymer having recurring units of the following type a chlorinated hydrocarbon, e.g. methylene chloride. The solution or dispersion thus obtained is uniformly spread on a surface of a suitable support. e. g. by centrifuging. spraying, brushing. or coating. Thereupon the layer formed is dried in such a way that a solid photoconductive layer is formed on the surface of the support.

Recording materials according to the present invention can be used in any of the different techniques known in recording with the aid of photoconductors. According to a preferred embodiment they are used in a technique based on the discharge of an electrostatically charged recording layer by exposure to light.

Photoconductive recording materials prepared according to the present invention can be used in exposure units equipped with incandescent lamps, so that they need not be exposed with light rays rich in ultraviolet such as those emitted by a high-pressure mercury vapour bulb.

The electrostatic charging of photoconductive recording elements according to the present invention can be effected according to any method known in electrophotography, e.g. by friction with a smooth material, with a material possessing a high electric resistance, e.g. a cylinder coated with polystyrene, by corona discharge, by contact charge, or by discharge of a capacitor.

Recording materials containing the said organic photoconductive substances can be used in a recording technique comprising a negative corona charging as well as in a recording technique comprising a positive corona charging.

In order to obtain an electrostatic image it is possible to effect the charging and exposure steps simultaneously and even to expose the recording layer imagewise before charging since a conductivity image is formed that is not destroyed immediately, especially if diazonium salts are used in the recording element. It is preferred, however, that the charging is effected before image-wise exposure.

The electrostatic latent image can be converted into a visible image either on the electrophotographic material wherein the latent image was formed, or on a material to which the electrostatic latent image was transferred, e.g. by application of the method described in the Belgian Pat. specification No. 529,234 filed May 29, 1954 by Chester Floyd Carlson.

The conversion of the original or transferred latent image into a visible image can occur according to one of the techniques known in electrophotography, wherein use is made of a conductivity pattern (e.g. electrolysis) or the electrostatic attraction or repulsion of finely divided coloured substances, which, e.g., are present in a powder mixture, in an electrically insulating liquid (e.g. in the form of a suspension) or in a gas (e. g. in the form of an aerosol), or wherein electrostatic attraction is used for selectively wetting charged per tions of the recording layer, as described in the United Kingdom Pat. specification Nos. 1,020,505 filed Nov. 8, 1961 and 1,033,419 filed Nov. 26. 1962 both by Gevaert Photo-Producten N.V.

When the sign of the charge of the developing powder or developing liquid is properly chosen, either a negative or a positive print can be obtained from any original. If both printing material and developing powder or developing liquid have the same sign of charge, the powder only adheres to the discharged areas so that 'e.g., in the United Kingdom Pat. specification No.

a negative print is obtained. if the signs of the recording material and of the developing powder or developing liquid differ. a positive print is obtained.

If a coloured powder is used for making visible the latent image. the visible image obtained can, if necessary. be fixed according to one of the methods known in electrophotography, e.g.. by heating. or it can be transferred to another support, e.g. according to the method described in the United Kingdom Pat. specification No. 658.699 filed Apr. 14, 1949 by Battelle Memorial Institute and fixed thereon.

The present heterocyclic organic photoconductive compounds can also be supplied in a thermoplastic recording process to form a ripple-image as described,

964.881 filed May 17. Producten N.V.

Evidently the present invention by no means is limited to one or other particular embodiment of using the electrophotographic material containing the photoconductive compounds as described herein. The exposure technique. the charging method. the formation of the charge pattern. the transfer of such pattern if applied, the developing method. and the fixation or the transfer of the developing material pattern may be modified or 1960 by Gevaert Photo- I adapted.

The composition of the recording materials used in these methods may be adapted to the requirements of the recording process used.

Electrophotographic materials according to the present invention can be employed in reproduction techniques, wherein different kinds of electromagnetic radiations are used, e.g. visible light. U.V.-radiation, X- rays and y-rays.

The following examples illustrate the present invention.

The percentages and ratios are by weight unless otherwise indicated.

EXAMPLE 1 An aluminium-laminated paper sheet was coated with the following composition:

5 s 45 ml.

The coating was carried out in such a ratio that the 50 dried photoconductive layer contained 2 g of photoconductor per sq.m.

After a negative corona charging with a potential difference of 6.000 V between the corona wires and the ground. the charged recording layer was contactexposed for 30 sec through a step wedge having 0.20 log exposure increments. In this exposure 5 Osram (trade name) L 20 fluorescent tubes. mainly emitting in the UV. range and the shorter wavelengths of the visible spectrum were placed at a distance of 20 cm from the recording layer.

The latent wedge image obtained was electrophoretically developed by means of an electrophoretic developer prepared by diluting the concentrated developer composition described hereinafter in a volume ratio of 65 l5/l.000 by means of ISOPAR H (an isoparaffinic hydrocarbon mixture having a boiling range of l77-l88 C sold by Esso Belgium N.V., Antwerp. Belgium):

carbon black (average particle size: 20 nm) 30 g zinc monotrideeyl phosphate as dispersing agent l.5 g lSOPAR H (trade name) 750 ml. resin solution prepared as described hereinafter 150 g The resin binder solution was prepared by heating 500 g of ALKYDAL L 67 (of Farbenfabriken Bayer A.G.. Leverkusen. W.Germany for a linseed oilmodified (67 percent by weight) alkyd resin) and 500 ml of white spirit containing 11 percent by weight of aromatic compounds at 60 C till a clear solution was obtained. and subsequent cooling.

A black positive copy of the wedge original on a transparent base was obtained.

From the wedge prints obtained the relative speed values of the developed materials were calculated based on a comparison of the number of non-toned (discharged) steps present in the wedge prints obtained with material containing a photoconductor of Table l or II with the number of non-toned steps produced in a material containing photoconductor number 3 of Table ll to which is given arbitrarily the speed value 100.

Number of compound of Table l or II l.l

Relative Speed values EXAMPLE 2 An electrophotographic recording material was prepared by coating onto an aluminium laminated paper a solution containing:

l07r by weight solution in methylene chloride of an organic photoconductor listed in Table l or ll 50 ml. copoly(vinyl chloride/vinyl acetate/maleic anhydride) (mol ratio 86.5/13.3/0.2) 5 g Rhodamine B (Cl Basic Violet 10 Cl.

1.2-dichloroethane The dried recording layer contained 2 g of photoconductor per sq.m.

The coated samples were negatively charged with a negative corona having a potential difference of 6,000 V between the corona wires and the ground.

The charged recording layer was contact-exposed for 6 sec. through a step-wedge having 0.20 log exposure increments. In the exposure tungsten filament lamp light was used.

The latent wedge images were electrophoretically developed as described in Example 1.

The relative speed values of the developed materials were compared with the electrophotographic material containing photoconductor number 3 of Table II which is given arbitrarily the speed value 100.

Number of compound of Relative Speed values Table l or ll EXAMPLE 3 45 ml. 45 ml.

methylene chloride LZ-dichloro-ethane copoly (vinyl chloride/vinyl acetate/maleic anhydride)(molar ratio 86.5/l3.3/O.2) 5 g Rhodamine B (Cil. Basic Violet C.I. 45.170) 0.025 g The dried recording layer containing approximately 3 g of photoconductor per sq.m., was charged with-a negative corona and contact-exposed with 100 lux.sec with the same light source as in Example 2. The latent image was electrophoretically developed for 5 see. with the developer described in Example 1. A good copy of the original was obtained.

EXAMPLE 4 HaCC H: CH3 CH3 5 s copoly(vinyl chloride/vinyl acetate/maleic anhydride)(molar ratio 86.5/l3.3/0.2) 5 g methylene chloride 45 g l.2-dichloroethane 45 g After a negative corona charging with a potential difference of '6,000 V, the charged recording layer was 5 contact-exposed for sec through a positive transparency of a test chart with 5 Osram (trade name) L 20 fluorescent tubes at a distance of 20 cm from the reias s s ,7 A.

After the exposure the latent image was developed v20 for 5 sec with a triboelectrically charged positive toner on the base of three parts by weight of pitch, four parts 'by weight of colophony and three parts by weight of a sm la k-.7 i i A contrasty transparent positive copy of the transparency was obtained.

EXAMPLE 5 The effect on the speed of electrophotographic recording materials resulting from a few chemical sensitizers was examined. V Therefor the following photoconductive composi- To a polyethylene terephthalate Support of 63 M a trons were coated on an aluminium laminated paper:

conductive transparent coating was applied from a 10 7: aqueous solution of polystyrene sulphonic acid sodium salt methanol 40 ml. 60 ml.

The coating was carried out in such a way that the dried material contained 1.75 g of polystyrene sulphonic acid sodium salt per sq.m. The electrical resistivity was 5 X 10 /cm2.

l0 by weight solution in methylene chloride of the organic photoconductor number 2 of Table II 50 ml. 40 copoly(vinyl chloride/vinyl acetate/maleic anhydride)(molar ratio 86.5[l3.3/0.2) 5 g a chemical sensitizer listed in Table IV 0.05 g

The dried layers contained 2 g of photoconductor per An electrophotographic recording material was prei- 7- pared by coating onto said conductive layer at a coverage of 3 g per sq.m of photoconductor a solution containing Processing of the materials was carried out in the same way as described in Example 1. The relative s peed values are listed hereinafter.

mNQoHQ 0,N- Cl I ll 01 Cl -L=0 & CH3

w 6 The recording layers were charged, exposed and de- Electrophotographic recording materials were preveloped as desuibed m Example pared by coating onto a conductive layer as described F m h b i d prints h l iv Speed v l in Example 3 a composition containing 2 were calculated based on a comparison of the spec- 60 trally sensitized materials with the material without compound number of l'a ble ll I 5 g copoly-(vinyl chloride/vinyl acetate/maleic spectral sensmzer to which arbitrarily the speed value anhydride)(molar ratio 86.5/l3.3/0.2) 5g methylene chloride 45 ml of 100 was given LZ-dichloroethane 45 ml 4-. l r a sensitizing dye as listed in the table v 0.025 g The relative speed values are listed hereinafter.

TABLE v i H A" w Relafiivn speed N0. Structural formula of spectral sensitizing agent. value 0 None 100 HOOC 01- H50: CzHs 0 H 0 CQHJ 011, /N C CH G1- a H3O CCH=C I BrhH; $5115 i i CN /C C HaC-N C=CHCH=CH-C N-CHa C104 F? I H H C S 0:0 N-CH: I 1

CCH=CHC=-- I 1L+ Q 7 CIi: 6H: s W* i /s\ CHr-CH: l

i i Table V-Continued m .r MW n Relative speed N 0. Structural formula of spectral sensitizing agent value EITIT... di? ,666

I s 0 \N OH=CH /N\ PLE 7 R represents hydrogen, an aliphatic radical, or an alkylene group which is ring closed with the carbon atom in peri-position of the aromatic ring closed by 2,, and R represents hydrogen or a lower alkyl An electrophotographic recording material was prepared by coating onto a conductive layer as described in Example 3 a solution containing 5 group.

2. A recording process according to claim 1, wherein Cmnpomld 5 of "r 1 R represents an alkyl radical introduced by alkylation acetate/male; anhydnde) 50 g' 3. A recording process according to claim 1, wherein it$i32fii3a3331:11::1311::::::::::::::::::::::::::: $3 $1 1 represents the necessary atoms to clcse an adjacent M025; 1O benzene nucleus.

4. A recording process according to claim 1, wherein each R represents a methyl group. B000 7 5. A recording to claim 1, wherein the photoconduc tive compound corresponds to the following general (637mm. 0,115 Z represents the necessary atoms to close an adja- Cm g, cent aromatic nucleus or an adjacent aromatic ring system including such a nucleus or ring system sub- Q stituted with one or more substituents having a fi 3O non-ionic character, A represents an alkylene \\CCH=CHC 01 group, or an alkylene chain interrupted by a bivalent aromatic group, and R represents hydrogen or C CH a lower alkyl group.

6. A method for recording and reproducing information comprising the steps of producing an electrostatic The coating was carried out at a coverage of 1.35 g charge Pattern y electrostatically Charging f i of photoconductor per sq.m. mation-wise exposing to electromagnetic radiation a After a negative corona charging the recording layer recording element containing a phfnoconductwe was exposed in a microfilm camera for 10 sec. with Pound corresponding to the following general formula: 00 lux to a halftone multicolour original. The dia. 40 Wu--- phragma setting was 4.5 and the original was reduced R1 optically 20 times. The obtained electrostatic charge i; R2 image was developed as described in Example 1. We claim: 5 1. In a recording process wherein a photoconductive insulating recording layer is exposed to an electromagnetic radiation image to produce an imagewise pattern R2 of increased conductivity in said photoconductive recording element and said conductivity pattern is develwherein: oped to produce a record of said image, the improve- Z represents the necessary atoms to close an adjament wherein said element comprises an organic phocent aromatic nucleus or an adjacent aromatic ring toconductive compound corresponding to the followsystem including such a nucleus or ring system subing general formula: stituted with one or more substituents having a non-ionic character, *v R represents hydrogen, an aliphatic radical, or an l alkylene group which is ring closed with the carbon Z atom in peri-position of the aromatic ring closed by Z: i l i 21, and

R represents hydrogen or a lower alkyl group, producing thereby an information-wise increase of the H conductivity in the recording element, and developing the resulting latent electrostatic charge patwherein: tern with a substance that can be electrostatically 2 represents the necessary atoms to close an adja- 5 attracted.

cent aromatic nucleus or an adjacent aromatic ring 7. A process according to claim 1, wherein the resystem including such a nucleus or ring system subcording element is a recording layer that has been apstituted with one or more substituents having a plied to an electro conductive layer or support having non-ionic character, a resistivity lower than that of the dark-adapted recording element.

8. A process according to claim 7, wherein the electro conductive layer or support has a resistivity at least as low as that of the recording element in the dark.

9. A process according to claim 7, wherein the support is a paper support.

10. A process according to claim 7, wherein the support is an insulating transparent resin support coated with a transparent electroconductive interlayer.

11. A process according to claim 10, wherein said interlayer contains a polyionic resin.

12. A process according to claim 1, wherein the photoconductive compound is used in admixture with a polymeric binding agent.

13. A process according to claim 1, wherein the photoconcluctive compound is used in admixture with a halogen-containing polymer, an epoxy resin and/or silicone resin.

14. A process according to claim 13, wherein the halogen-containing polymer contains vinyl chloride units.

15. A process according to claim 1, wherein the photoconductive compound is used in admixture with a substance increasing the photosensitivity of the recording element.

16. A process according to claim 1, wherein the photoconductive compound is used in admixture with a spectral sensitizing dye.

17. A process according to claim 1, wherein the defined organic photoconductive compound is used in admixture with (an) other inorganic and/or organic photoconductive substance(s).

18. A recording material containing a photoconductive insulating recording element capable of being electrostatically charged in the absence of active electromagnetic radiation and capable of retaining the applied charge for a period of time long enough to produce thereon a developed electrostatic charge pattern, characterized in thatthe recording element stands in electroconductive relationship to a layer or support with a lower resistivity than that of the recording element and in that the recording element contains an organic photoconductive compound corresponding to the following general formula:

20. A recording material according to claim-18,

wherein Z, represents the necessary atoms to close an adjacent benzene nucleus.

21. A recording material according to claim 18, each R represents a methyl group.

22. A recording material according to claim 18, wherein the photoconductive compound corresponds to the following general formula:

wherein Z, represents the necessary atoms to close an adjacent aromatic nucleus or an adjacent aromatic ring system including such a nucleus or ring system substituted with one or more substituents having a non-ionic character, A represents an alkylene group, or an alkylene chain interrupted by a bivalent aromatic group, and R represents hydrogen or a lower alkyl group.

23. A recording material according to claim 22, wherein Z, represents the necessary atoms to cloSe an adjacent benzene nucleus or adjacent benzene nucleus substituted with methyl or alkoxy, and A represents an alkylene group, a substituted alkylene group or an alkylene chain interrupted by a bivalent aromatic group.

24. A recording material according to claim 18, each R represents a methyl group.

25. A recording material according to claim 18, wherein the recording element is a supported or selfsupported layer.

26. A recording material according to claim 18, wherein the recording element contains said organic photoconductive compound in an amount of at least 5 percent by weight.

27. A recording material according to claim 18, wherein the recording element is in layer or sheet form and stands in electroconductive contact with a layer or support that has a resistivity being at least 10 times as low as that of the recording element in the dark.

28. A recording material according to claim 18, wherein the support is a paper support.

29. A recording material according to claim 18, wherein the support is an insulating transparent resin support coated with a transparent electroconductive interlayer.

30. A recording material according to claim 29, wherein said interlayer contains a polyionic resin.

31. A recording material according to claim 18, wherein the organic photoconductive compound is used in admixture with a polymeric binding agent.

32. A recording material according to claim 31, wherein the photoconductive compound is used in admixture with a halogen-containing polymer, epoxy resin and/or silicone resin.

33. A recording material according to claim 18, wherein the organic photoconductive compound is used in admixture with a spectral sensitizing dye.

34. A recording material according to claim 18, wherein the organic photoconductive compound is used in admixture with (an) other inorganic and/or other organic photoconductive substance(s).

35. A recording material according to claim 34, wherein the or ganic photoconductive compound is 38. A recording material according to claim 18, wherein the recording element contains as chemical sensitizing agent a compound having (a) substituent(s) with srong electron-attracting (electro-negative) character.

39. A recording material according to claim 38, wherein the chemical sensitizing agent is a non-ionic Lewis acid compound.

40. A recording material according to claim 39, wherein the chemical sensitizing agent is a quinone, which is substituted with halogen or cyano.

- UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No 3 I 79 8 I 0 31 Dated March 19 19 74 Inventor) Wilhelmus JANSSENS et a1 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 29, Claim 1, lines 5O& 51, change "developed" to used Signed and sealed this 9th day of July 1974.

(SEAL Attest:

McCOY M. GIBSON, JR. C. MARSHALL DANN ttesting Officer Commissioner of Patents FORM PO-IOSO (10-69)

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US888016 *Nov 24, 1906May 19, 1908John A JustProcess of producing dried milk.
US3155503 *Feb 26, 1960Nov 3, 1964Gevaert Photo Prod NvElectrophotographic material
US3232755 *Jun 13, 1960Feb 1, 1966Azoplate CorpPhotoconductive layers for electrophotographic purposes
US3307940 *May 23, 1960Mar 7, 1967Azoplate CorpElectrophotographic process employing photoconductive polymers
US3560209 *Oct 9, 1968Feb 2, 1971Eastman Kodak CoElectrophotographic sensitizing dyes
US3620742 *Jan 24, 1969Nov 16, 1971Agfa Gevaert NvPhotoconductive element containing a dihydroquinoline polymer
US3647428 *Nov 27, 1970Mar 7, 1972Fuji Photo Film Co LtdPhotoconductive material for electrophotography
US3660084 *Mar 24, 1970May 2, 1972Agfa Gevaert NvRecording process using quinolin-2-one or quinolin-4-one organic photoconductive substances
US3684505 *Mar 27, 1970Aug 15, 1972Agfa Gevaert NvMethine dye sensitization of a dihydroquinoline photoconductor
US3686153 *Oct 19, 1970Aug 22, 1972Chiaki OsadaProcess for the preparation of linear high molecular weight compounds
US3707369 *Aug 20, 1970Dec 26, 1972Fuji Photo Film Co LtdPhotoconductive elements containing 2-methyl-3,3-dimethyl indole derivatives
US3730711 *Aug 13, 1970May 1, 1973Fuji Photo Film Co LtdPhotoconductive material for electrophotography
FR1588977A * Title not available
GB1245924A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4243668 *Jul 9, 1979Jan 6, 1981E. I. Du Pont De Nemours And CompanyOctahydro-1H-benzo[4,5]furo[3,2-e]-isoquinoline analgesic and narcotic antagonistic compounds
US4260761 *May 19, 1980Apr 7, 1981E. I. Du Pont De Nemours And CompanyIntermediates for the preparation of octahydro-1H-benzo[4,5]furo[3,2,-e]-isoquinoline analgesic and narcotic antagonistic compounds
US4647520 *Sep 27, 1985Mar 3, 1987Konoshiroku Photo Industry Co., Ltd.Electrophotographic photoreceptor containing an azo compound
US5137795 *Apr 9, 1991Aug 11, 1992Agfa-Gevaert, N.V.Photosensitivity, contrast
US5141831 *Aug 10, 1990Aug 25, 1992Mitsubishi Paper Mills LimitedIndole derivatives
US5145759 *Apr 16, 1990Sep 8, 1992Agfa-Gevaert, N.V.Conductive support, negatively chargeable photoconductive layer containing insulating polymeric binder with pigment and charge transport substance
US5340675 *Jan 14, 1993Aug 23, 1994Agfa-Gevaert, N.V.Photoconductive layer containing 1,2-dihydroquinoline compounds
US5688808 *Jun 5, 1995Nov 18, 1997Ligand Pharmaceuticals IncorporatedSteroid receptor modulator compounds and methods
US5688810 *Jun 5, 1995Nov 18, 1997Ligand Pharmaceuticals IncorporatedSteroid receptor modulator compounds and methods
US5693646 *Jun 5, 1995Dec 2, 1997Ligand Pharmaceuticals IncorporatedSteroid receptor modulator compounds and methods
US5693647 *Jun 5, 1995Dec 2, 1997Ligand Pharmaceuticals IncorporatedSteroid receptor modulator compounds and methods
US5696127 *Jun 5, 1995Dec 9, 1997Ligand Pharmaceuticals IncorporatedSteroid receptor modulator compounds and methods
US5696130 *Jun 5, 1995Dec 9, 1997Ligand Pharmaceuticals IncorporatedTricyclic steroid receptor modulator compounds and methods
US5696133 *Jun 5, 1995Dec 9, 1997Ligand Pharmaceuticals IncorporatedAdministering compound which modulates activity of progesterone receptor
US5994544 *Oct 8, 1997Nov 30, 1999Ligand Pharmaceuticals IncorporatedProducing a 5h-chromeno(3,4-f)quinoline
US6093821 *Oct 8, 1997Jul 25, 2000Ligand Pharmaceuticals IncorporatedProcess for preparing steroid receptor modulator compounds
US6121450 *Oct 8, 1997Sep 19, 2000Ligand Pharmaceuticals IncorporatedNon-steroidal compounds which are high affinity, high selectivity modulators for steroid receptors
US6448405Oct 8, 1997Sep 10, 2002Ligand Pharmaceuticals IncorporatedCoupling a 2-halo-5-nitrobenzoic acid and a 2-methoxyphenyl boronic acid; cyclizing to a nitrobenzocoumarin; reducing to the amine; converting to a coumarino(3,4-f)quinoline; reduction to a 5h-chromeno(3,4-f)quinoline
US6462038Aug 25, 2000Oct 8, 2002Ligand Pharmaceuticals, Inc.Such as 1,2,3,6-tetrahydro-1-methyl-9-(trifluoromethyl)-7h-(1,4)oxazino(3,2 -g)quinolin-7-one; nonsteroidal, high affinity and specificity antagonists and agonists or partial agonists, i.e. partial and/or tissue specific activators
US6534516Nov 24, 1999Mar 18, 2003Ligand Pharmaceuticals IncorporatedMethod of affecting androgen receptor activity comprising the in vivo administration of a composition
US6566372Aug 24, 2000May 20, 2003Ligand Pharmaceuticals IncorporatedUseful in female hormone replacement therapy and as modulators of fertility; therapy of dysfunctional uterine bleeding, dysmenorrhea, endometriosis, leiomyomas (uterine fibroids), hot flashes, mood disorders, meningiomas, cancer
US6593493Sep 14, 2000Jul 15, 2003Ligand Pharmaceuticals, Inc.2-(Carboxy(unsaturated)alkyl)-1-(haloalkoxy)benzene derivatives; retinoid X receptors; cardiovascular, skin, eating and vision disorders; anticarcinogenic agents; non-insulin-dependent diabetes
US6667313Aug 25, 2000Dec 23, 2003Ligand Pharmaceuticals Inc.8-substituted-6-triflouromethyl-9-pyrido [3,2-G] quinoline compounds as androgen receptor modulators
US6696459Oct 14, 1997Feb 24, 2004Ligand Pharmaceuticals Inc.Using high affinity, high selectivity quinoline derivativesw
US6964973Nov 18, 2002Nov 15, 2005Ligand Pharmaceuticals IncorporatedNonsteroidal agonists and antagonists
US7696246Jun 23, 2005Apr 13, 2010Ligand Pharmaceuticals IncorporatedUseful in female hormone replacement therapy and as modulators of fertility; therapy of dysfunctional uterine bleeding, dysmenorrhea, endometriosis, leiomyomas (uterine fibroids), hot flashes, mood disorders, meningiomas, cancer; 6-(bis-2,2,2-Trifluoroethyl)amino-4-trifluoromethylcoumarin
Classifications
U.S. Classification430/63, 546/62, 252/501.1, 430/76, 544/143, 548/121, 544/296, 548/472, 430/78, 548/159, 548/455, 546/77, 546/181, 548/156, 430/77, 430/79, 430/88, 546/152, 546/178, 544/135, 549/320
International ClassificationC07D215/06, G03G5/06, C07D221/18, C07D455/04, C07D215/20
Cooperative ClassificationG03G5/0661, C07D215/20, C07D215/06, G03G5/0646, G03G5/0637, C07D221/18, C07D455/04
European ClassificationC07D455/04, C07D221/18, G03G5/06D2F2, G03G5/06D4D, C07D215/20, G03G5/06D4B, C07D215/06