Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3798048 A
Publication typeGrant
Publication dateMar 19, 1974
Filing dateJul 27, 1971
Priority dateJul 27, 1971
Publication numberUS 3798048 A, US 3798048A, US-A-3798048, US3798048 A, US3798048A
InventorsBrody A, Lipkin E
Original AssigneeNyvel Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for electrostatically coating an object
US 3798048 A
Abstract
An apparatus and method for electrostatically applying a plurality of particles such as flock to an object. The particles are placed into a hopper at an uppermost portion of the apparatus and are propelled downwardly through a metallic screen to which an unchanging electrical charge is applied. The particles are given a predetermined orientation and continue their downward passage through a metallic grid to which a changing electrical charge is applied. In another embodiment, the flock is propelled in an upward direction through changing and unchanging electrically charged zones. The particles attach themselves to the object in a uniformly dense manner and substantially align themselves in accordance with the electrostatic lines of force.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Unite States ate Brody et al.

[ 5] Mar. 19, 1974 [75] Inventors: Albert C. Brody, Philadelphia;

Edward Lipkin, Wyncote, both of Pa.

[73] Assignee: Nyvel Corporation, Croyden, Pa.

[22] Filed: July 27, 1971 [21] Appl. No.: 166,364

Friederici 117/17 Grossteinbeck l 17/ l 7 Primary ExaminerWilliam D. Martin Assistant E.taminerMichael Sofocleous Attorney, Agent, or Firm-Seidel, Gonda & Goldhammer [57] ABSTRACT An apparatus and method for electrostatically applying a plurality of particles such as flock to an object. The particles are placed into a hopper at an uppermost portion of the apparatus and are propelled downwardly through a metallic screen to which an unchanging electrical charge is applied. The particles are given a predetermined orientation and continue their downward passage through a metallic grid to which a changing electrical charge is applied. In another embodiment, the flock is propelled in an upward direction through changing and unchanging electrically charged zones. The particles attach themselves to the object in a uniformly dense manner and substantially align themselves in accordance with the electrostatic lines of force.

HIGH vo LTAQE 0 SOURCE METHOD AND APPARATUS FOR ELECTROSTATICALLY COATING AN OBJECT BACKGROUND OF THE INVENTION A. Field of the Invention The invention relates to the application of comminuted materials to an object. In particular, this invention pertains to the propulsion of flock-type material primarily through a plurality of electrically charged zones onto an adhesively covered surface.

B. Prior Art Prior methods and apparatus are known which apply particles to a wide variey of objects wherein the particles impinging on the object are propelled in the direction of the force of gravity. However, in some of these apparatus no electrostatic force fields are introduced into the particle path. This conventional type of apparatus relies primarily on the force of gravity for propulsion of the particles and results in a non-uniform density as well as a substantially random orientation of the particles with respect to the object surfaces being coated.

In some apparatus of the gravitational-assist type the particles may be blown onto the receiving object wherein a combination of gravity and pressure propulsion is used. However, in this apparatus the particles take on a random directional orientation as well as a non-uniformly dense adhesion to the object.

In some prior systems, an alternating current charge is applied to a zone through which the particles fall before impingement on the object. However, such apparatus causes non-uniform distribution of the particles across the surface of the object and gives it an irregular texture. Additionally, the use of only one alternating current zone does not permit operator control of the flux density of the downwardly-directed particles. Further, in such apparatus, the particles impinge on the object surfaces at substantially non-uniform angles.

SUMMARY OF THE INVENTION Apparatus and method for applying a plurality of particles to an object by propelling the particles through a plurality of electrically charged zones. The particle path passes through at least one zone containing a changing electrical field and at least one other zone which has an unchanging electrical field applied thereto.

BRIEF DESCRIPTION OF THE DRAWINGS The sole FIGURE is a perspective view of the coating apparatus according to the present invention.

DETAILED DESCRIPTION OF THE DRAWINGS Referring now to the FIGURE, there is shown flocking or coating apparatus for applying a plurality of particles or flocking material 12 onto appropriate surfaces of the object M. The method and apparatus invention as herein described provides for the propulsion of particles 12 within the hopper 16 onto the object 14 through passage through a pair of electrically charged zones 18 and 20. The flock 12 in its substantially linear translation between the hopper 16 and the object 14, passes sequentially through a first zone 18 which has applied to it an unchanging electrical charge, and secondly through a changing electrical field zone 20. The application of predetermined voltage to change the respective electric fields within these zones permits the operator to control the flux density of the flock 112 being captured by the object 141. In addition, these controlled voltage fields, as hereinafter described, provide a uniform density of the flocking material 12 on the object surfaces and promote a predetermined nonrandom orientation of the flock 12 on the object 14. The object 14 is adhesively coated with a glue 56 or otherwise treated, as will be described, to assure secured capture of the particles 12 after their passage through electric zones 18 and 20.

The invention as herein defined pertains to a wide variety of comminuted materials which have the capability of accepting electrostatic charges. One such material used in the invention is commonly and commercially referred to as DC. electrostatically finished flock. This type of flock may be made of cotton, rayon, synthetic fiber polyester or similar material. One company producing such material is Precision Fibers, Inc. of Chadds Ford, Pennsylvania. The comminuted material 12, as used in the instant invention generally takes the form of elongated members having for an example, a length in the range between 50 and 250 mm, and a fineness between 6.0 and 19.0 denier. Although the flock having these lengths and weights is commercially available, the subject invention is operative through a wider range of dimensions dependent on the environmental conditions such as temperature, humidity, pressure, and other physical parameters of like nature. These physical parameters combined with the flock characteristics determine the electrical parameters to be applied in order to achieve the desired coating characteristics on the object 14.

The particles 12 are permanently secured to the object surface through application ofa glue layer 56 covering the surface to be covered. The glue 56 may be one of a number sold on the market such as waterbased adhesives. Although glue 56 has been commonly used for the adhesion of the particles to the object, the object surface could be treated so as to permanently capture the particles 12 in a number of alternate ways. One method of treatment applicable to thermoplastic object surfaces is to heat the object 14 until its surface becomes relatively soft and accepts at least parts of particles 12. It is even conceivable that the objects surface could be heated and that the ends of thermoplastic flock would be rendered tacky thereby and thus stick thereto.

The flocking material 12 is placed within the hopper 16 either manually or through some conventional automatic filling means not important to the inventive concept. The hopper 16 comprises two pairs of opposing sidewalls 22 having a screen floor 24 which permits passage of the comminuted material 112 in a downward direction. The sidewalls 22 may be opaque or transparent and made of glass, plastic or some like material to permit visual observation of the flock 12 within the hopper 16 during subsequent operations.

Opposing tracks 26 as shown in the FIGURE can be used to support the hopper 16 over the electrically charged zones 18 and 20. If desired, the hopper 16 may be adapted to oscillate longitudinally on the tracks 26 to permit agitation of the flock l2 and facilitate the discharge of the material 12 through the screen 24. Also, if desired, in order to break up clumps of flocking material that may form in the hopper 16, there may be included some moveable blade members or other agitation devices within hopper 16 which may also operate to force more particles through the screen mesh.

The material 12 falls from the hopper 16 into the zone 18 whose charge is produced and maintained constant by the application of a DC voltage applied to screen-member 30. The screen-member 30 comprises a frame 34 and an attached screen 32 whose mesh is considerably larger than the mesh of floor 24 sinceit is not intended to retain a body of particles but only to produce an electrostatic field influencing the particles passing through the mesh. The frame 32 is mounted by insulating members, for example, to sidewalls (not shown) or to other structural components which are not important to the invention. The screen 32 is constructed of a highly conductive material such as stainless steel and is electrically connected through conductor 40 to a positive terminal of a high voltage D.C. source 36 whose other terminal is grounded. The application of the DC. voltage to screen 32 produces an unchanging positive electrical field throughout zone 18. In combination with gravity assist, the positive field attracts the flock 12 from the hopper 16 downward. The voltage source 36 may be adjusted between for example, 10,00060,000 volts D.C., although the voltage, being dependent on environmental and other factors such as distance of the hopper to the object, etc., may be outside this range. The choice of voltage can also be used to modify the particle flow, e.g., to control the particle flux density.

The material 12 passing through the screen 30 is attracted into changing charge zone 20 which is produced by a changing voltage applied to the grid 42. As shown, the grid 42 comprises opposing tracks 48 passing in the longitudinal direction 28 which are joined by transverse rails 50. The grid 42 is made of an electrically conductive material such as stainless steel or some like material. A high voltage alternating current source 46 is connected to the ground 38 and also to the grid 42 via electrical conductor 44. In operation, the AC high voltage source 46 and DC. high voltage source 36 produce a pair of electrically charged zones 18 and 20, one being a constant charge zone of one sign and the other being a changing charge zone of alternately varying signs. The flocking material 12 is further propelled onto the object 14.

The object 14- is maintained on an upper surface of the endless belt 52 which moves by contact with rollers 54 that are driven by motors or the like in direction 28. The belt 52 is connected to ground conditions 38 so as to ground the object 14. As shown, the object 14 is transported in the direction 28 under the falling flocking material 12 which then adheres to the object surfaces.

In the manner described, the apparatus provides for the particles 12 to be propelled sequentially through a first or unchanging charge zone 18 and then through a second or changing charge zone 20. The particles after passage through the zones 18 and impinge on and stick to the adhesively covered or otherwise treated surfaces of the object 14. The particles 12 align themselves substantially in the direction of the electric field lines and therefore maintain a predetermined non-random orientation with respect to the object surface.

It should be understood that the positions of the electrical zones 18 and 20 as shown in the FIGURE may in some instances be reversed such that the particles 12 initially enter the changing charge zone 20 and then pass to the unchanging charge zone 18. Furthermore, the particles 12 contained within the hopper 16 are shown to be aided by gravity during propulsion to the object surfaces, but the particles may be propelled in a gravitationally opposed direction toward the object through the DC and AC fields as taught herein.

In such an embodiment, the hopper 16 would be located below the belt (or object) and above the hopper there would be electrostatic zone 18 and electric zone 20 and-finally the object 14. In this case, the object 14 would have to be mounted or somehow fixedly secured to an upper panel member over the upwardly-directed material 12.

Another embodiment of the method and apparatus invention concept may be found through the use of more than two charged zones. In this embodiment, the particles 12 may be propelled through three or more zones in an alternative sequence of changing, unchanging, changing, etc., charge characteristics. The flux density of the object impinging flock material 12 may thus be varied by controlling the DC. voltage applied to the electrodes of one or more of the unchanging charge zones as is done in the embodiment shown in the sole FIGURE.

While different and desirable embodiments of the present invention have been shown, it is to be understood that this disclosure is for the purpose of illustration only and that various changes and modifications may be made without departing from the spirit and scope of the invention as set forth in the appended claims.

What is claimed is:

1. An apparatus for applying a plurality of flock particles to an object comprising means for supporting an object to which particles are to be applied, means for supplying particles which are to be applied to the object, first means for generating an unchanging electrical field, said first means being disposed between said supply means and said supporting means; second means for generating a changing electrical field, and said first means being disposed between said supply means and said second means.

2. An apparatus as defined in claim 1 wherein said object supporting means is below said supply means.

3. An apparatus as defined in claim 1 wherein said first and second means comprise electrically conductive members with openings therein, and said openings are large enough to permit substantially unimpeded passage of said particles therethrough, said first means being coupled to a source of direct current and said second means being coupled to a source of alternating current.

4. An apparatus as defined in claim 1 wherein said object supporting means is above said supply means.

5. An apparatus as defined in claim 4 wherein said first and second means comprise electrically conductive members with openings therein, and said openings are large enough to permit substantially unimpeded passage of said particles therethrough, said first means being coupled to a source of alternating current and said second means being coupled to a source of direct current.

6. A method for applying a plurality of flock particles to an object comprising the steps of providing a supply of flock particles and an object to which said flock particles are to be applied, applying a changing electric field to said flock particles between said supply and said object, and applying an unchanging electric field to said flock particles between said changing electric field and said supply so that some of said flock particles are repelled by said unchanging electric field and the remainder of said flock particles are driven by said changing electric field to said object.

7. A method as defined in claim 6 wherein said unchanging electric field is achieved by applying a direct current thereto and said changing electric field is achieved by applying an alternating current thereto.

8. A method as defined in claim 6 including the step changing electric field by regulating the strength of said.

unchanging electrical I =I =l=

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2328577 *Jan 12, 1940Sep 7, 1943Behr Manning CorpProcess and apparatus for grading and for coating with comminuted material
US2773472 *Aug 14, 1951Dec 11, 1956Gen Motors CorpApparatus for electrostatic spray coating
US2811134 *Jun 15, 1953Oct 29, 1957Standard Products CoApparatus for preventing flock build-up on a flocking machine electrode
US3269356 *Aug 22, 1963Aug 30, 1966Standard Products CoElectrostatic flocking apparatus
US3327685 *Apr 23, 1964Jun 27, 1967Bayer AgApparatus for applying small particles to articles in an electric field
US3329125 *May 1, 1964Jul 4, 1967Battelle Institut E VElectrostatic flocking apparatus
US3375124 *Nov 7, 1963Mar 26, 1968Linneborn WalterMethod and apparatus for electrostatically applying flock to filament material
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3976031 *Jul 7, 1975Aug 24, 1976Onoda Cement Company, Ltd.Electric discharge coating apparatus
US3979487 *Apr 19, 1974Sep 7, 1976M. Lowenstein & Sons, Inc.Process for manufacturing a foamed resin article having a flocked three dimensional surface design
US4014648 *Nov 8, 1974Mar 29, 1977Microfibres, Inc.In-line flock cutting process
US4060648 *Oct 14, 1975Nov 29, 1977Union Carbide CorporationSurface coating process
US4147813 *Jun 9, 1977Apr 3, 1979Microfibres, Inc.Method of making a splinter-flocked fabric from a multifilament tow
US4385588 *Nov 26, 1980May 31, 1983Societe Industrielle De Decoration Et Application "Sida"Electrifiable-material applicator
US4879969 *Jul 17, 1987Nov 14, 1989Toyo Flocking Co.Electrostatic flocking apparatus
US5534099 *Aug 1, 1994Jul 9, 1996Riso Kagaku CorporationProcess for producing heat-sensitive stencil sheet
US6294024 *Oct 20, 1998Sep 25, 2001Delsys Pharmaceutical CorporationElectrostatic chucks and a particle deposition apparatus therefor
US6440486 *Dec 19, 2000Aug 27, 2002Delsys Pharmaceutical Corp.Method of depositing particles with an electrostatic chuck
US6670038Jun 17, 2002Dec 30, 2003Delsys PharmaceuticalMethod of depositing particles with an electrostatic chuck
US7052741 *May 18, 2004May 30, 2006The United States Of America As Represented By The Secretary Of The NavyMethod of fabricating a fibrous structure for use in electrochemical applications
US7056558 *Sep 10, 2003Jun 6, 2006The Topline CorporationFabric shoe outsole manufacturing methods by electrostatic flocking
US7354626 *Oct 26, 2006Apr 8, 2008The United States Of America As Represented By The Secretary Of The NavyMethod for increasing fiber density in electrostatic flocking
US7374331Feb 18, 2005May 20, 2008Goodson David MMethod and apparatus electrostatically controlling the viscosity and other properties of ceramic compositions
US8590176Dec 26, 2011Nov 26, 2013Seychelles Imports, LlcShoe bottom having interspersed materials
US8591790Oct 23, 2009Nov 26, 2013Seychelles Imports, LlcShoe bottom having interspersed materials
US8647460Oct 26, 2010Feb 11, 2014Dynasty Footwear, Ltd.Shoe having a bottom with bonded and then molded-in particles
US8661713Sep 8, 2006Mar 4, 2014Dynasty Footwear, Ltd.Alternating bonded particles and protrusions
US8808487Oct 26, 2010Aug 19, 2014Dynasty Footwear, Ltd.Shoe bottom surface made of sheet material with particles bonded to it prior to shaping
US8984769Oct 26, 2013Mar 24, 2015Seychelles Imports, LlcShoe bottom having interspersed materials
US9049900Nov 14, 2011Jun 9, 2015Seychelles Imports, LlcShoe having a bottom surface formed from a piece of fabric material and a separate insert piece
US9078492Jul 3, 2003Jul 14, 2015Dynasty Footwear, Ltd.Shoe having a contoured bottom with small particles bonded to the lowest extending portions thereof
US9226546Feb 23, 2015Jan 5, 2016Seychelles Imports, LlcShoe bottom having interspersed materials
US9414643Jun 9, 2015Aug 16, 2016Dynasty Footwear, Ltd.Shoe having individual particles embedded within its bottom surface
US20040163283 *Sep 10, 2003Aug 26, 2004Daniels Paul W.Shoe outsole manufacturing methods
US20040194341 *Jul 3, 2003Oct 7, 2004Koo John C. S.Shoe having a contoured bottom with small particles bonded to the lowest extending portions thereof
US20050266161 *May 18, 2004Dec 1, 2005Medeiros Maria GMethod of fabricating a fibrous structure for use in electrochemical applications
US20070017124 *Sep 8, 2006Jan 25, 2007John KooAlternating bonded particles and protrusions
US20070079527 *May 1, 2006Apr 12, 2007The Topline CorporationShoe outsole manufacturing methods
US20100058620 *Oct 23, 2009Mar 11, 2010Anthony CoxShoe bottom having interspersed materials
US20140359952 *Jun 3, 2014Dec 11, 2014Grand Fashion Trading LTDFootwear sole with leather fiber surface and method of making the same
DE2939436A1 *Sep 28, 1979Jun 3, 1982Brueckner Trockentechnik GmbhElectrostatic spraying plant with spaced electrode elements - has electrode mounting unit where distance and angle can be varied w.r.t. conveyor belt
Classifications
U.S. Classification427/462, 427/474, 118/640, 118/638
International ClassificationB05D1/16, B05C19/00, B05D1/00
Cooperative ClassificationB05D1/007, B05C19/002, B05D1/16
European ClassificationB05D1/16, B05C19/00B2