Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3804169 A
Publication typeGrant
Publication dateApr 16, 1974
Filing dateFeb 7, 1973
Priority dateFeb 7, 1973
Publication numberUS 3804169 A, US 3804169A, US-A-3804169, US3804169 A, US3804169A
InventorsClosmann P
Original AssigneeShell Oil Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Spreading-fluid recovery of subterranean oil
US 3804169 A
Abstract
In a process for producing shale oil by circulating fluid through a cavity that contacts a subterranean oil shale, the cavity is extended laterally into both an injection well and a plurality of surrounding productions wells and the fluid is circulated at a rate causing the velocity within the cavity to decrease with radial distance away from the injection well to a velocity that is too low to transport relatively large particles of mineral solids.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Closmann Apr. 16, 1974 1 SPREADING-FLUID RECOVERY OF 3,513,914 5/1970 Vogel 166/272 x SUBTERRANEAN OIL 3,700,280 10/1972 Papadopoulos et al 166/271 X 3,739,851 6/1973 Beard 166/271 X Inventor: Philip J- Closmann, Houston, Te 3,741,306 6/1973 Papadopoulos et al [66/271 x Assigneez She" on p y, Houston, Tex 3,753,594 8/1973 Beard 166/271 X [22] Filed: Feb. 7, 1973 Primary Examiner-David H. Brown [21] Appl No 330355 Attorney, Agent, or Firm-H. W. Coryell 57 ABSTRACT [52] U.S.Cl 166/267, 166/272, 166/274 1 v 51 Int. Cl. E21b 43/24, E21b 43/28 a Pmess 9 Pmdumg Shale by f fluld 58] Field of Search 166/272 271 267 264 through a cavity that contacts a subterranean Oll shale, the cavity is extended laterally into both aninjection [56] References Cited well and a plurality of surrounding productions wells and the fluid is circulated at a rate causing the velocity UNITED STATES PATENTS within the cavity to decrease with radial distance away 2,969,226 Huntington X from the injection we" to a velocity that is too low to 5x32; g -g 2 transport relatively large particles of mineral solids. usser e 3,501,201 3/1970 Closmann et al. 166/272 X 5 Claims, 1 Drawing Figure MAX/MUM FLOW VELOCITY -SOL/DS ENTRA/NED l REDUCED FLOW VELOCITY -SOL/DS DEPOS/TED SUB7ANTIALLY EZJLHIBEVFRVEE FLU/D PRODUCT/ON SPREADING-FLUID RECOVERY OF I SUBTERRANEAN OIL BACKGROUND OF THE INVENTION The invention relates to producing shale oil components from a subterranean oil shale formation. More particularly, it relates to circulating a hot fluid through an areally extensive cavity that contracts the oil shale so that the pattern of flow controls the extent to which particles of mineral solids are fluid-transported and avoids the plugging of conduits.

Many subterranean oil shale formations comprise nonporous solid earth materials that are impermeable to fluids and contain more inorganic components than organic components. When the organic components are selectively removed by circulating a hot fluid into contact with an oil shale, the materials remaining in the portions of depleted oil shale (along the walls of a cavity or a fracture) may have a bulk volume that is larger than the bulk volume of the original oil shale. In the course of removing portions of the organic components, the remaining inorganic components become heated, thermally expanded, and pushed apart by invading portions of fluid, so that they form a mass ofliquid permeated solids that is porous and has acquired a larger bulk volume. Such a volume increase tends to cause the depleted materials to swell into and close fractures, or to spall into and fill up cavities, unless the roofs of the fractures or cavities are hydraulically lifted by the fluid pressures within the fractures or cavities. Since the particle sizes of these materials are normally rather small, the permeability of the filled cavities is greatly reduced. A hydraulic lifting within the fractures or cavities is disadvantageous in creating a possibility of break through of highly pressurized fluid to the surface and/or lifting the surface of earth formation into a mound that may be ecologically undesirable and/or creating the possibility of communicating with some other higher zone, such as an aquifer, or the like actions that would be environmentally very undesirable.

Where a subterranean oil shale contains or is interbedded with water soluble minerals, such as nahcolite, trons, soluble halides, or the like, those materials can be used to form a subterranean cavern or cavity that contacts the oil shale. Such a cavity can be formed by solution-mining, and can be used to provide both a path through which a hot fluid can be circulated to contact oil shale, extract shale oil, and provide space in which some or all of the increased bulk of the depleted oil shale components can be accommodated. However, such a solution-mining-preceded recovery process may have a significant disadvantage with respect to postponing the recovery of oil pending a relatively long and expensive mining operation in order to provide a cavity that is big enough to accommodate a significant portion of the depleted oil shale.

Where a subterranean oil shale contains or is interbedded with heat-sensitive carbonate mateirals, such as nahcolite, dawsonite, or the like, a thermal conversion of those materials can be utilized to reduce the bulk of the depleted materials for the extraction of shale oil. In such a procedure, the hot fluid which is circulated into contact with the oil shale to effect a pyrolysis and/or extraction of shale oil components is an aqueous hot fluid (such as steam and/or hot water) that converts the heat-sensitive carbonate materials to water soluble materials. This dissolves and removes a portion of the inorganic components of the oil shale. It 1 may reduce the bulk volume of the spent oil shale residue to an extent such that the rate of fill-up of a cavity may be less than the rate of material removal and thus may cause the cavity to grow in size rather than become filled in with depleted oil shale materials. However, serious problems may be encountered when such a hot aqueous fluid is circulated through a cavity in contact with a subterranean oil shale. For example, in tests in which steam was flowed into and along the walls of a well so that steam contacted an upper portion of the subterreanean oil shale at a temperature of about 500F (ie a temperature sufficient to cause both a relatively rapid pyrolysis of the oil shale kerogen and a heat-induced decomposition of heat-sensitive carbonate components of the oil shale) and the resultant aqueous and organic liquids were withdrawn from a lower level within the oil shale, the production conduits rather quickly became severely plugged with large and small particles of organic and inorganic solid materials.

SUMMARY OF THE INVENTION The present invention relates to producing shale oil from a subterranean oil shale. A cavity that contacts the oil shale is extended into and preferably beyond at least one well pattern that contains more production wells than injection wells. A hot fluid that is adapted to interact with the oil shale to yield shale oil is injected into the cavity through the injection well. Fluid that contains shale oil is produced from the cavity through a plurality of production wells. The rates and velocities of the flow of fluid within the cavity are controlled to provide both substantially equal rates of outflow from the plurality of producing wells surrounding each injection well and a flow velocity within the cavity that diminishes with radial distance away from each injection well and becomes too low to transport significantly large particles of solid mineral materials before reaching the surrounding production wells. Shale oil is recovered from the produced fluid.

DESCRIPTION OF THE DRAWING The drawing is a schematic illustration of a portion of the subterranean oil shale containing wells through which the present invention is practiced.

DESCRIPTION OF THE INVENTION As used herein, the term cavern or cavity refers to any relatively solids-free opening such as a cave, void, tunnel, borehole, or highly permeable mass of rubble or interconnected fractures, etc. Such a cavern contacts a oil shale when a portion of the oil shale forms at least a portion of the wall so that there is fluid communication between the interior of the cavern and the oil shale. The term heat-sensitive carbonate mineral refers to a carbonate mineral that decomposes relatively rapidly at a relatively low temperature (such as between about 250F and 700F) to yield fluid products such as carbon dioxide and water. Examples of heat sensitive carbonate minerals include nahcolite, dawsonite, trona, and the like, which usually contain carbonate and/or bicarbonate compounds or groups.

The drawing shows the application of the present process to a subterranean oil shale formation, which is interbedded with a horizontally extensive layer of water-soluble mineral, such as nahcolite layer 2.

The oil shale, to which the present process is applied, is preferably one that contains a significant amount of heat-sensitive carbonate. Such an oil shale may contain sections of vertical intervals of as much as several tens of feet thick, which are substantially devoid of heatsensitive and/or water soluble materials. In such a heterogeneous oil shale formation, in the course of application of the present process, such heat-sensitive or soluble minerals are converted to fluids and/or dissolved and removed so that portions of the oil shale become incompetent and form fractures that provide passageways for the circulation of fluid.

In a preferred embodiment of the present invention, a borehole is extended into a relatively low-lying portion of oil shale that contains or is adjacent to a layer or region that is relatively rich in water-soluble minerals. Water-soluble minerals, which are generally saline materials, are frequently encountered in oil shales in the United States, such as the Green River formation in Colorado, in the form of beds, lenses, nodules, nodes, veins or the like. Such minerals include the alkali metal halide salts such as the sodium or potassium chlorides and/or water soluble heat-sensitive carbonate minerals such as nahcolite, trona, or the like.

Portions of subterranean oil shale that contain selected mineral components such as heat-sensitive carbonate minerals and/or water soluble minerals, can be located by means of known geological investigation procedures and equipment. Such procedures are preferably utilized to locate a portion of an oil shale that contains heat-sensitive carbonate mineral and is adjacent to a portion or layer of water-soluble mineral. The water-soluble mineral is utilized to form a cavern or cavity in contact, for example, along its roof, with the oil shale. The cavern formation can readily be accomplished by means of known techniques, such as solution mining and/or mechanical mining, hydraulic and/or explosive fracturing, slurry mining, or the like, that are currently available Wells 3 and 4 are drilled and completed in horizontally-spaced locations within the oil shale. The wells are preferably spaced close enough to facilitate their interconnection by forming and propagating fractures through or along the boundaries of the nahcolite layer 2. The nahcolite layer, or at least the upper portion of it, can be solution-mined by circulating an aqueous fluid, which can advantageously be warmed and/or made acidic, between the wells. The mining and/or extensive fracturing forms a cavern or cavity 6 extending to a fluid-communicative contact with the wells 3 and 4 and the oil shale 1. The wells may be initially completed by installing and cementing casing and perforating them only along the sections adjacent to the cavity. As known to those skilled in the art, by reversing the flow direction of the solution mining fluid, varying the injection and production pressures, and the like, the cavity 6 can be provided with a signficant areal extent.

After the cavity 6 has been formed, the injection well 3 and the production wells 4 preferably opened along substantially all of the oil shale interval, for example, by perforating a well casing. As known to those skilled in the art, in certain situation, *barefoot" or open hole completions can be utilized. The injection well 3 is preferably equipped with fluid inflow conduit arrangement, such as tubing string 8 and packer 9, to facilitate an inflow of a hot fluid, such as steam, from a surface location into contact with the oil shale 1. An injection well 3, when opened into a vertical interval of the oil shale, particularly when the oil shale is contacted with a hot fluid, is apt to become partly or completely filled with oil shale chunks or rubble 10.

The oil-shale-contacting hot fluid used in this invention can comprise aqueous or nonaqueous fluids such as superheated, dry, or wet, steam or substantially any gas, vapor or liquid, such as carbon dioxide, phenols, hydrocarbons, alcohols, halogenated hydrocarbons, acids, or the like, or substantially any hot aqueous liquid solution, such as an aqueous acid or base or solution of neutral salt. The inflowing hot fluid can be heated by means of surface located and/or downhole located heaters, such as steam generators, water heaters or the like. The heating can be effected or supple mented by an in situ combustion within the oil shale formation. The inflowing fluid is preferably (at least at some location within the cavity) a hot aqueous fluid having a temperature of from about 250F to a temperature sufficient to cause a relatively rapid oil shale pyrolysis (e.g., from about 600l ,0OOF), with sufficient aqueous liquid being present (or being formed by steam condensation) to dissolve a significant portion of inorganic solid material.

The production wells 4 are each equipped with an arrangement for returning the circulating fluid to a surface location, such as tubing 11 and packer 12. The fluid-return, or production conduit, is preferably arranged to provide an inlet above, but in fluid communication with, the cavity 6.

Where a single pattern of wells is opened into a cavity, the well pattern can advantageously be one such as a five spot (Or six, or seven, or nine spot) with the injection well in the center and the producing wells relatively uniformly displaced radially around the injection well. Where a cavity is extended into and around a plurality of patterns of wells, the patterns are preferably arranged so that the fluid injected through each injection well is produced through a plurality of producing wells, i.e., so that the cavity interconnects the wells of a well pattern in which the ratio of production wells to injections wells is greater than 1 (and thus the well patterns are preferably a series serious of seven spot or nine spot patterns).

The flow directions and velocities of fluids within the wells and the cavity are illustrated by the arrows in the drawing. In the injection well 3 the velocity of the inflowing fluid is relatively high. However, as fluid moves radially through cavity 6 the flow velocity diminishes and, by the time it reaches any of the production wells, the velocity is relatively low. In accordance with this invention, the rates and velocities are controlled so that in an intermediate zone between the injection and production wells the flow velocity diminishes to one at which significantly sized particles of mineral solids are dropped out of the flowing fluids to form a layer such as layer 7 along the bottom of the cavity. The sodeposited solids are repetitively swept by incoming portions of the hot fluid and subsequently become substantially completely depleted of shale oil. Plugging is avoided since the flow within the cavity is substantially radially outward from the injection well with each increment of flowing fluid moving towards larger and larger volumes of free space within the cavity. Any localized plugs thus tend to be temporarily by passed and subsequently depleted as their exposed surfaces are swept by the incoming portions of hot fluid.

As indicated by the dashed line 13 around the borehole of the injection well 3, with the time, the extraction of organic and inorganic components from the borehole walls causes the walls to move generally radially outward. As known to those skilled in the art periodic expansions of a cavity and/or revisions of the patterns of flow within the wells in a cavity can be employed to vary or enhance the rate or extend of oil recovery as long as the well patterns are arranged to include at least one injection well and the fluid injected through it is produced from a plurality of surrounding production wells.

The rates and/or amount of carbonate and/or other heat sensitive or water soluble minerals removed by the hot fluid can be controlled, for example by alternating slugs of aqueous and nonaqueous fluids to vary the rates of extraction of water soluble minerals.

What is claimed is:

l. A process of producing shale oil from a subterranean oil shale which comprises:

extending a subterranean cavity that contacts the oil shale generally radially throughout at least one well pattern that contains more production wells than injection wells;

injecting a hot fluid that is adapted to interact with the oil shale to yield shale oil into the cavity through at least one injection well;

producing fluid inclusive of shale oil from the cavity through a plurality of production wells;

coordinating the rates and velocities of said injections and production of fluid to maintain both substantially equal rates of outflow from a plurality of production wells around each injection well, and a pattern of flow velocities within the cavity that diminish with radial distance away from each injection well and become too low to transport significantly large particles of solid material into the production wells; and

recovering shale oil from the produced fluid.

2. The process of claim 1 in which the injected fluid is flowed into contact with oil shale located above the cavity and is flowed down along a generally vertical section of exposed oil shale.

3. The process of claim 1 in which an initial well pattern is expanded by forming a generally radial extension of the cavity and opening additional wells in the so-expanded cavity with said wells being located in an arrangement that provides a plurality of injection wells which are each surrounded by a plurality of production wells.

4. The process of claim 1 in which the injected fluid includes at least one slug each of a hot aqueous fluid and a hot nonaqueous fluid.

5. The process of claim 4 in which the oil shale being treated contains a heat sensitive mineral component and the rate of its extraction is controlled by adjusting the volumes of said alternating slugs of injected fluid.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2969226 *Jan 19, 1959Jan 24, 1961Pyrochem CorpPendant parting petro pyrolysis process
US3358756 *Mar 12, 1965Dec 19, 1967Shell Oil CoMethod for in situ recovery of solid or semi-solid petroleum deposits
US3468376 *Feb 10, 1967Sep 23, 1969Mobil Oil CorpThermal conversion of oil shale into recoverable hydrocarbons
US3501201 *Oct 30, 1968Mar 17, 1970Shell Oil CoMethod of producing shale oil from a subterranean oil shale formation
US3513914 *Sep 30, 1968May 26, 1970Shell Oil CoMethod for producing shale oil from an oil shale formation
US3700280 *Apr 28, 1971Oct 24, 1972Shell Oil CoMethod of producing oil from an oil shale formation containing nahcolite and dawsonite
US3739851 *Nov 24, 1971Jun 19, 1973Shell Oil CoMethod of producing oil from an oil shale formation
US3741306 *Apr 28, 1971Jun 26, 1973Shell Oil CoMethod of producing hydrocarbons from oil shale formations
US3753594 *Sep 24, 1970Aug 21, 1973Shell Oil CoMethod of producing hydrocarbons from an oil shale formation containing halite
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3880238 *Jul 18, 1974Apr 29, 1975Shell Oil CoSolvent/non-solvent pyrolysis of subterranean oil shale
US3888307 *Aug 29, 1974Jun 10, 1975Shell Oil CoHeating through fractures to expand a shale oil pyrolyzing cavern
US3915234 *Aug 28, 1974Oct 28, 1975Cities Service Res & Dev CoIn situ production of hydrocarbon values from oil shale using H{HD 2{B S and CO{HD 2{B
US3967853 *Jun 5, 1975Jul 6, 1976Shell Oil CompanyProducing shale oil from a cavity-surrounded central well
US4408665 *Oct 2, 1978Oct 11, 1983Equity Oil CompanyIn situ recovery of oil and gas from water-flooded oil shale formations
US7040397Apr 24, 2002May 9, 2006Shell Oil CompanyThermal processing of an oil shale formation to increase permeability of the formation
US7100994 *Oct 24, 2002Sep 5, 2006Shell Oil CompanyProducing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7559368 *Oct 20, 2006Jul 14, 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US7640987Aug 17, 2005Jan 5, 2010Halliburton Energy Services, Inc.Communicating fluids with a heated-fluid generation system
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Oct 19, 2007Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Apr 20, 2007Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7770643Oct 10, 2006Aug 10, 2010Halliburton Energy Services, Inc.Hydrocarbon recovery using fluids
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221May 31, 2007Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7809538Jan 13, 2006Oct 5, 2010Halliburton Energy Services, Inc.Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832482Oct 10, 2006Nov 16, 2010Halliburton Energy Services, Inc.Producing resources using steam injection
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Apr 18, 2008Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Oct 19, 2007Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Apr 18, 2008Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Oct 13, 2008Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203Jan 4, 2010May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Oct 13, 2008Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Apr 21, 2006Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Apr 18, 2008Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Apr 20, 2007Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Oct 13, 2008Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 10, 2009Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335Apr 10, 2009May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Oct 13, 2008Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8200072Oct 24, 2003Jun 12, 2012Shell Oil CompanyTemperature limited heaters for heating subsurface formations or wellbores
US8220539Oct 9, 2009Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Apr 21, 2006Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Sep 29, 2010Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Oct 24, 2003Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Oct 13, 2008Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Oct 9, 2009Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Oct 9, 2009Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Oct 9, 2009Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Oct 13, 2008Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 13, 2008Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2009Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Apr 18, 2008Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Apr 22, 2005Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707Apr 9, 2010May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8701788Dec 22, 2011Apr 22, 2014Chevron U.S.A. Inc.Preconditioning a subsurface shale formation by removing extractible organics
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8839860Dec 22, 2011Sep 23, 2014Chevron U.S.A. Inc.In-situ Kerogen conversion and product isolation
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8851177Dec 22, 2011Oct 7, 2014Chevron U.S.A. Inc.In-situ kerogen conversion and oxidant regeneration
US8857506May 24, 2013Oct 14, 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US8936089Dec 22, 2011Jan 20, 2015Chevron U.S.A. Inc.In-situ kerogen conversion and recovery
US8992771May 25, 2012Mar 31, 2015Chevron U.S.A. Inc.Isolating lubricating oils from subsurface shale formations
US8997869Dec 22, 2011Apr 7, 2015Chevron U.S.A. Inc.In-situ kerogen conversion and product upgrading
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033033Dec 22, 2011May 19, 2015Chevron U.S.A. Inc.Electrokinetic enhanced hydrocarbon recovery from oil shale
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9133398Dec 22, 2011Sep 15, 2015Chevron U.S.A. Inc.In-situ kerogen conversion and recycling
US9181467Dec 22, 2011Nov 10, 2015Uchicago Argonne, LlcPreparation and use of nano-catalysts for in-situ reaction with kerogen
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9309755Oct 4, 2012Apr 12, 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9399905May 4, 2015Jul 26, 2016Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9528322Jun 16, 2014Dec 27, 2016Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US20020029885 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a coal formation using a movable heating element
US20020038069 *Apr 24, 2001Mar 28, 2002Wellington Scott LeeIn situ thermal processing of a coal formation to produce a mixture of olefins, oxygenated hydrocarbons, and aromatic hydrocarbons
US20020038711 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US20020040780 *Apr 24, 2001Apr 11, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a selected mixture
US20020043365 *Apr 24, 2001Apr 18, 2002Berchenko Ilya EmilIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US20020046883 *Apr 24, 2001Apr 25, 2002Wellington Scott LeeIn situ thermal processing of a coal formation using pressure and/or temperature control
US20020053431 *Apr 24, 2001May 9, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a selected ratio of components in a gas
US20020056551 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US20020057905 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020077515 *Apr 24, 2001Jun 20, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US20020084074 *Sep 24, 2001Jul 4, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20030066642 *Apr 24, 2001Apr 10, 2003Wellington Scott LeeIn situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US20030102124 *Apr 24, 2002Jun 5, 2003Vinegar Harold J.In situ thermal processing of a blending agent from a relatively permeable formation
US20030102125 *Apr 24, 2002Jun 5, 2003Wellington Scott LeeIn situ thermal processing of a relatively permeable formation in a reducing environment
US20030102130 *Apr 24, 2002Jun 5, 2003Vinegar Harold J.In situ thermal recovery from a relatively permeable formation with quality control
US20030131994 *Apr 24, 2002Jul 17, 2003Vinegar Harold J.In situ thermal processing and solution mining of an oil shale formation
US20030155111 *Oct 24, 2002Aug 21, 2003Shell Oil CoIn situ thermal processing of a tar sands formation
US20030205378 *Oct 24, 2002Nov 6, 2003Wellington Scott LeeIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US20030209348 *Apr 24, 2002Nov 13, 2003Ward John MichaelIn situ thermal processing and remediation of an oil shale formation
US20050051327 *Apr 23, 2004Mar 10, 2005Vinegar Harold J.Thermal processes for subsurface formations
US20070137857 *Apr 21, 2006Jun 21, 2007Vinegar Harold JLow temperature monitoring system for subsurface barriers
US20070221377 *Oct 20, 2006Sep 27, 2007Vinegar Harold JSolution mining systems and methods for treating hydrocarbon containing formations
US20070289733 *Apr 20, 2007Dec 20, 2007Hinson Richard AWellhead with non-ferromagnetic materials
US20080017370 *Oct 20, 2006Jan 24, 2008Vinegar Harold JTemperature limited heater with a conduit substantially electrically isolated from the formation
US20090321071 *Apr 18, 2008Dec 31, 2009Etuan ZhangControlling and assessing pressure conditions during treatment of tar sands formations
US20100147521 *Oct 9, 2009Jun 17, 2010Xueying XiePerforated electrical conductors for treating subsurface formations
US20100181066 *Jan 4, 2010Jul 22, 2010Shell Oil CompanyThermal processes for subsurface formations
Classifications
U.S. Classification166/267, 166/272.3, 166/272.1
International ClassificationE21B43/00, E21B43/28
Cooperative ClassificationE21B43/281
European ClassificationE21B43/28B