Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3805894 A
Publication typeGrant
Publication dateApr 23, 1974
Filing dateAug 15, 1972
Priority dateApr 19, 1971
Publication numberUS 3805894 A, US 3805894A, US-A-3805894, US3805894 A, US3805894A
InventorsGiroux R
Original AssigneeHalliburton Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Swivel control head and method of control
US 3805894 A
Abstract
A method and apparatus for providing flow control at a wellhead, characterized by the integration of a remotely operated control valve with a swivel assembly.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 11 1 1111 3,805,894 Giroux Apr. 23, 1974 [54] SWIVEL CONTROL HEAD AND METHOD 3,441,097 4/1969 Ahlgren et al. 175/214 OF CONTROL 3,478,822 11/1969 110mm, Jr. et a1. 166/88 [75] Inventor: Richard Lee Giroux, Duncan, Okla.

[73] Assignee: Halliburton Company, Duncan,

Okla.

[22] Filed: Aug. 15, 1972 [21] Appl. No.: 280,753

Related US. Application Data [62] Division of Ser. No. 135.219, April 19, 1971, Pat.

[52] US. Cl 166/314, 166/78, 175/214 [51] Int. Cl E2lb 21/02, E2lb 33/03 [58] Field of Search 166/78, 88, 91, 97, 224, 166/314, 315; 175/60, 65, 214, 218

[5 6] References Cited UNITED STATES PATENTS 2,804,293 8/1957 Parks 175/214 X 1,662,984 3/1928 Scott et al.... 166/78 2,788,073 4/1957 Brown 166/78 3,303,897 2/1967 Casper 175/214 Mam Primary Examiner-Werner H. Schroeder Attorney, Agent, or Firm-John H. Tregoning [57] ABSTRACT A method and apparatus for providing flow control at a wellhead, characterized by the integration of a remotely operated control valve with a swivel assembly.

The mode of operation and structure of the control valve are such as to enable the valve to be opened in response to the imposition of a biasing force and enable a valve to be maintained open in response to the imposition of a relatively lower biasing force.

5 Claims, 3 Drawing Figures PATENTEDAPR 23 m4 SHEET 1 (1F 2 PATENTED PR 23 I914 SHEET 2 0F 2 'III! II;

z no 6 III SWIVEL CONTROL HEAD AND METHOD OF CONTROL This is a division of application Ser. No. 135,219, filed Apr. 19, 1971, now US. Pat. No. 3,750,749.

GENERAL BACKGROUND OF THE INVENTION This invention relates to a wellhead safety device and a method of control, and more particularly to a remote controlled swivel control unit having a safety valve.

In connection with many well operations a swivel unit is supported at a wellhead so as to permit fluid flow between the interior of a well and a surface facility.

Conventionally, such a swivel arrangement provides a body which is connected by way of conduit means to a surface facility. A conduit string, rotatably supported relative to the body of the swivel unit, extends into the well conduit means or casing. The interior of the swivel unit provides fluid communication between the interior of the conduit string and the conduit means extending from the swivel body to the surface facility.

During many well operations it becomes highly desirable to be able to control the flow of fluid either into or out of the conduit string.

However, because of the relatively rotatable nature of the swivel components, and the rotatable and longitudinally movable nature of the conduit string, substantial complications are presented with respect to the provision of an accessible, reliable, control mechanism.

The control over flow through a conduit string, where a swivel assembly is employed, often becomes significant in connection with well testing operations.

In many well testing operations, a testing string is rotatably supported relative to the body of a swivel assembly which is located at the wellhead.

In conducting testing operations with an assembly of this nature the passage through the swivel assembly is opened to permit well fluid to flow upwardly from a formation, through the conduit or testing string, and then through the various communicating passage means of the swivel assembly to a surface facility which receives the formation fluid during the testing operations.

In the event that noxious or excessively high pressure fluids should pass upwardly through the conduit string during such a testing operation it may be highly desirable to be able to safely and reliably terminate such a flow of well fluids, especially when uncontrollable, and prevent such well fluids from passing through the swivel assembly and to the surface facility.

A variety of proposals have been set forth in the past in connection with thecontrol over the flow of fluid during such testing operations. Both manual and remotely operable control valve concepts have been proposed.

However, such concepts have often been characterized by a degree of inaccessibility of operating components or by a degree of structural and operational complexity.

Accordingly, where conduit strings associated with swivel assemblies have been involved, a need has persisted for an improved control mechanism which would be reliable and accessible, not involve excessive structural and/or operational complexity, not complicate normal operations, and not provide structural encumbrances in the working area of a wellhead.

In particular, during the testing of oil and gas wells, a dangerous condition sometimes develops at the wellhead as a result of the presence of high pressure hydrogen sulfide gas. Natural gas, which is produced in both oil and gas wells, sometimes contains hydrogen sulfide. When the hydrogen sulfide laden natural gas, or sour gas as it is sometimes known, reaches the wellhead, a dangerous condition may be created if for some reason the gas is allowed to escape. This is so not only because of the high pressure involved, but also because hydrogen sulfide is a highly flammable gas which can deaden the sense of smell and which is dangerously poisonous.

It thus may become necessary, in order to protect property and insure the safety of working personnel, to devise means for cutting off the well flow when the presence of the hydrogen sulfide gas was detected.

In particular, it would be desirable to provide a remote control valve to cutoff the well flow when the hydrogen sulfide gas is detected.

OBJECTS AND SUMMARY OF THE INVENTION The present invention involves the provisions of a remote control safety valve, embodied as part of a swivel unit. This safety valve rapidly and reliably responds, when actuated, and the overall unit allows rotation of a conduit string extending from the swivel control unit and into the well.

It is a particular object of the invention to provide a swivel control unit for a wellhead including a safety valve in which the safety valve is controlled from a point remote from the wellhead.

A further object of the invention is to provide a valve mechanism, as heretofore noted, which may be opened in response to the generation of pump pressure at the wellhead so as to permit the valve to be forced to an open position and enable fluid to pass through the swivel assembly, or a conduit means, and into another portion of a well conduit string.

Another object of the invention is to provide a valve mechanism of the type heretofore noted which may be opened in response to the imposition of relatively low pressure actuating fluid and be held open by the contin.- ued application of even lower pressure actuating fluid.

It is another object of the invention to provide a swivel control unit for a wellhead including a safety valve in which the well fluid is utilized to tend to pressure balance the valve in an open position.

It is still another object of the invention to provide a swivel control unit for a wellhead including a safety valve in which an actuating fluid is utilized to open the safety valve and position the safety valve so that it may be pressure balanced by the well fluid.

It is a related object of the inventionto provide a method of controlling the flow of well fluid from a wellhead from a remote area. f

It is another related object of the invention to provide a method of balancing a valve at a wellhead in an open position, utilizing the well fluid and an externally applied actuating fluid.

In accomplishing at least some of the foregoing objectives, there is presented through this invention. a method of performing well operations wherein swivel means is connected with a well conduit 'string. The

swivel means is supported above well conduit means. This arrangement permits the conduit string to undergo longitudinal as well as rotary movement relative to the A valve means carried by the swivel means is operable to control fluid flow between at least a portion of the longitudinally extending passage means and at least a portion of the branch passage means. This valve means is maintained operable to control flow between the general longitudinally extending passage means and the branch passage means while the conduit string is stationary relative to well conduit means and while the conduit string is undergoing rotational movement relative to the well conduit means.

An independently significant method aspect of the invention, in the context of the foregoing basic method, entails the remote actuation of the valve means. In this additional method aspect of the invention, a valve biasing means is operable in response to the opening of the valve means to cause the pressure of fluid in the longitudinally extending passage means of the. swivel means to exert a valve opening biasing force on the valve means, so long as the valve means remains in an open position. Additionally, a valve isolating means remains operable to substantially prevent the pressure of fluid in the generally longitudinally extending passage means from exerting a valve opening biasing force on the valve means is disposed in a closed position.

A third, independently significant method aspect of the invention involves the utilization of a pressure responsive surface means which is operable in response to an increase of pressure in the branch conduit means to exert a valve opening force on the valve means.

Other independently significant facets of the invention relate to the aforesaid valve mechanism itself and its mode of operation and to synergistically interacting combinations of apparatus elements or means which cooperate to perform the method steps heretofore set forth.

A preferred embodiment of the invention, intended to accomplish at least some of the foregoing objects, includes a swivel control unit engaged with a conduit string extending up from a well casing. The swivel control unit utilizes both the pressure of the well fluid and the pressure of an externally applied actuating fluid to control the actuation of a valve contained therein.

The swivel control unit includes a generally cylindrical swivel body which may be generally secured against rotation and a generally. tubular body or mandrel threadedly engaged with the conduit string and extending through and disposed in coaxial relationship with the swivelbody. The tubular body or mandrel is rotatable along with the conduit string, relative to the swivel body. This relative rotation, as well as the axial movement of the control unit and conduit string assembly, permits the setting and releasing and actuation of downhole test tools. Thus, there is assured a control unit which will permit controlled flow from the well, if

4. desired, while downhole testing tools are being manipulated.

The rotatable, generally tubular body includes: a central bore aligned with the central bore through the conduit string, and through which well fluid is conveyed to the wellhead; discharge port means through which the well fluid is removed outwardly from the tubular body; and pressure port means through which a portion of the well fluid is directed for communicating the pressure of the fluid in the central bore to one end of a valve so as to bias the valve to a closed position.

Between the mandrel and swivel body is an annular, axially extending chamber. This chamber communicates with an exit port means in the swivel body as well as with the discharge port means and the pressure port means.

Supportably received within the chamber are the valve and a spring. This spring exerts a pressure tending to bias the valve toward a closed position. In the closed position, the valve is adapted to interrupt the flow of well fluid from the discharge port means through the chamber, to the exit port means.

The valve is retained in its closed position by the spring and by the fluid pressure in the central bore communicated through the pressure port means and acting against one end of the valve. To open thevalve, actuating fluid is delivered through an inlet port in the swivel body, from a remote source, into a chamber portion communicating with another end of the valve. The actuating fluid exerts a pressure against this other end of the valve, acting in a direction opposite to the aforesaid communicated pressure 'of the well fluid and the spring pressure.

Upon application of the actuating fluid pressure the valve will open and establish a flow' of well fluid from the discharge port means, through a portion of the chamber, and out the exit port means. This flow gives rise to a discharge pressure which is exerted on the same end of the valve as that upon which the actuating fluid pressure is exerted. 1

The pressures exerted by the well fluid on the different ends of the open valve are such that the open valve tends to become pressure balanced. Thus, the pressure of the actuating fluid may be reduced, when the valve is open, to a value sufficient to overcome only the spring pressure. If, for any reason, the actuating fluid pressure is reduced or removed, or the pressure balance condition is disturbed, the valve will tend to close.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2 is a vertical cross-sectional view illustrating structural details of the swivel control unit of the ent invention; I

FIG. 3 is an enlarged, fragmentary, vertical crosspres sectional view illustrating the inlet port'of the swivelbody, shown in FIG. 1, through which actuating fluid is delivered to the second annular axially extending variable volume chamber portion;

FIG. 4 provides a somewhat further enlarged view of a portion of FIG. 2 illustrating the valve in its closed position; and

FIG. 5 provides another somewhat further enlarged view of a portion of FIG. 2, illustrating the valve in its open position, while under the influence of full actuating fluid pressure.

DESCRIPTION OF THE PREFERRED EMBODIMENT In describing a preferred embodiment of the invention reference will be made to a swivel assembly intended to be associated with and support a well testing string.

Exemplary of well testing strings with which such an assembly may be incorporated are testing strings or well tool assemblies featured on pages 140-160 of the Halliburton Sales and Service Catalog (1968), available from Halliburton Services, Duncan, Oklahoma.

In arrangements of this nature, the swivel assembly mandrel and/or the testing string would be supported by wellhead support means whil e thc swivel assembly body would be connected with stationary well fluid receiving means located at or near the wellhead.

The general purpose of this arrangement is to provide manipulative control over the testing string, while also providing control over the flow of formation fluid upwardly through the testing string and through the swivel assembly to the well fluid receiving means.

While the invention will be described in this general context, it will be recognized that its utility is of a broader nature and that the concepts may be employed, for example, during operations where fluid is being injected into a well.

Overall Structure Referring now more particularly to the drawings in which like numerals are used to indicate like parts throughout the various views thereof, FIG. 1 schematically illustrates the swivel control unit 2 in a wellhead installation.

At its lower end, the swivel unit 2 is threadedly connected to a well conduit or testing string 8, either directly or through an adaptor 10. The adaptor may include a manual plug valve 12.

Extending outwardly from a general cylindrical swivel body 16 of the control unit 2 is an actuating fluid conduit 14. The conduit 14 is indicated as extending to a remote control source (not shown), from which opening and closing of asafety valve 82 is controlled, in a manner to be described hereinafter.

As shown in FIGS. 1 and 2, a swivel mandrel l8,journalled within swivel body 16, is connected at its lower end with conduit string 8 via valve assembly 12 and adaptor 10. The upper end of mandrel 18 is connected with a threaded adaptor 64.

Adaptor 64 may. in turn, be threadably connected with a handling or support head 4 as generally and schematically shown in FIG. 1. This support head 4 may include a portion 6 which would be supported by conventional elevators associated with wellhead hoisting and lowering gear.

Exemplary of a support head which might be employed is a rig elevator supported, bail assembly normally used to support an L-T control head, available from Halliburton Services, Duncan, Oklahoma. A swivel and handling subassembly shown on page 63 of the 1968 Halliburton Sales and Service Catalog and available from Halliburton Services, Dunacan, Oklahoma, might also be employed for this purpose.

With the general swivel arrangement heretofore described, the entire axial load of the testing string 8 is carried by the support head means 4 and mandrel 18. In this manner, the axial weight of the testing string 8 is not transmitted to the swivel body means 16 or its associated bearing means. Thus, the swivel means 2 will permit rotary movement of the swivel mandrel l8 and test string 8 relative to the swivel body 16, regardless of the axial load or weight imposed on swivel mandrel 18.

Swivel Structure Referring now to FIGS. 2-5, the swivel control unit 2 is shown to include the generally cylindrical swivel body 16, a generally tubular body or mandrel l8, andthe adaptor 10. The generally tubular body 18 extends through, is journalled within, and is coaxial with the generally cylindrical body 16.

Relative rotation of the swivel body 16 and the tubular mandrel 18 is achieved by the rotation of the conduit string 8 which rotates the tubular mandrel l8. During this rotation, the swivel body 16 is held relatively stationary by virtue of its connection to conduit means extending to a stationary, well fluid receiving site, not shown.

The swivel body 16 includes: an upper section 20 from which a pair of bosses 22 and 24 radially extend; a cylindrical skirt 26, which extends axially from' the upper section 20; and a swivel nut 28, which is engageable with the open end of the skirt 26.

The boss 24 includes an internally threaded socket 36 into which a nipple 38 is threadedly engaged. This nipple connects to conduit means leading to the well fluid receiving means. The nipple 38 has a bore 42 which is coaxial with an exit port 44 of the swivel body 16.

Outlet conduit or nipple 38 may be connected with a manifold control head assembly, not shown. This assembly may comprise components peripherally encircling swivel body means 16, with the control head assembly being connected through conduit means to the stationary well fluid receiving means in the vicinity of the wellhead. A control head which may be employed for this purpose comprises an L-T 20 control head described on page 143 of the 1968 Halliburton Sales and Service Catalog, available from Halliburton Services, Duncan, Oklahoma. The support of this control head may be facilitated by a control head supporting socket 30 formed in boss 22.

In this arrangement, the conduit connection between the well fluid receiving site and conduit means 38, or its associated control head, will tend to prevent rotation of swivel body 16 and its associated components even through the conduit string 8 and swivel mandrel 18 are being rotated to effect certain operational manipulations of the testing string 8.

Such rotational manipulations may be effected, for example, by drivingly engaging a portion of the conduit string 8 with a rotary table at the wellhead, possibly providing vertical support for the conduit string with rotary table slips, and operating the rotary table to effect rotation of the conduit string 8.

Alternatively, full or partial vertical support may be provided by the adaptor 4 and elevators, with rotation being imparted to the conduit string 8 by manual manipulation of tongs or wrenches. In some instances, ro

tation of string 8 may be effected with all of the weight of the testing string being supported within the well casmg.

The skirt 26 includes, in addition to a threaded portion at its open lower end for receiving in threaded engagement therewith the swivel nut 28, four indicator slots 29 through which the position of the valve 82 can be observed, as described hereinafter.

The tubular body 18 defines a central bore 46 through which a well fluid flows.

As the tubular body 18 emerges from the lower end of the swivel body 16, it flares out to form a shoulder 48 and a skirt section 50 extending therefrom. The shoulder 48 seats a thrust bearing 52 and an annular sealing ring 54. The bearing 52 fits within a cavity 56 defined by the tubular body 18 and shoulder 48 along with the swivel nut 28. The sealing ring 54 is provided to confine bearing lubricant within the cavity 56.

The skirt 50 receives -therein an adaptor in threaded engagement therewith. The adaptor 10 has a skirt section 58 which is internally threaded for receiving the conduit string 8 in threaded engagement therewith. The adaptor 10 defines a central bore 60 there through which is coaxial with the central bore 46 of the tubular body 18. The central bore 60 forms a continuation of the central bore 46 for the flow therethrough of the well fluid.

The adaptor 10 also includes a plug valve 12 which can be actuated by the rotation of handle 62. The valve 12 provides, therefore, a means for manually controlling the flow of well fluid through the central bore 60 and into the central bore 46. Desirably, valve 12 may comprise a LoTorc plug valve available from Halliburton Services, Duncan, Oklahoma, and described on pages 68-69 of the 1968 Halliburton Sales and Service Catalog.

A plug 66 is threadedly engaged within the top part of the tubular body 18. This plug 66 prevents outward axial flow of the well fluid from the central bore 46.

The top part of the tubular body 18 may also threadedly engage the flange portion 70 of a tubular wear sleeve 68. The tubular sleeve 68, if used, extends through the swivel body 16 to a shoulder 72 which borders the cavity 56. The tubular sleeve 68 and the boss section define an annular cavity 74 within which a thrust bearing 76 is located. An annular sealing ring 78 is provided to confine the bearing lubricant within the cavity 74.

Safety Valve The swivel body 16 and the mandrel l8 define therebetween an annular axially extending chamber 80. Within the chamber 80 a valve 82, a compression type coil spring 84 and a valve positioning sleeve 86 are located. Both the positioning sleeve 86 and the spring 84 rest against a surface 88 of the swivel nut 28. The upper end of sleeve 86provides a stop operable to engage valve 82, when it moves down, and determine the open valve position.

The valve 82 comprises a piston including an annular head portion 90 and two annular axially extending sleeve portions 92 and 94, directed oppositely away from the head portion 90.

The annular axially extending chamber 80 provides three annular, axially extending, variable volume chamber, portions.

The first chamber portion 96 is defined by the positioning sleeve 86, the head portion 90, the axially extending sleeve portion 92 and the tubular sleeve 68. The second chamber portion 98 is defined by the head portion 90, the axially extending sleeve portion 94 and the swivel body 16. The third chamber portion 10 is defined by the axially extending sleeve portion 94, the tubular sleeve 68 and the swivel body 16.

The tubular body 18 is provided with one or a plurality of equally spaced pressure ports 102 and one or a plurality of equally spaced discharge ports 104. The tubular sleeve 68 is provided with openings 106 and 108 which are radially aligned with the pressure ports 102 and the discharge ports 104, respectively.

In order to ensure that the openings 106 of the wear bushing remain aligned with the mandrel openings 102, pin means 110, shown in'FIG. 2, may intersect certain of the aligned openings 102 and 106 of the sleeve 68 and the body of mandrel 18 so as to maintain the ports or openings 102 and 106 in radial alignment.

As will be recognized, sleeve 68, in essence, comprises a wear bushing and thus may be considered as a mere external portion of mandrel 18. Thus, a mandrel wear surface may be provided by means other than the separate wear sleeve 68'. For example, a ceramic coating on the exterior of the mandrel 18 might be employed.

The third chamber portion 100 establishes a passage between the discharge ports 104 and the exit port 44 through which the well fluid flows when the valve 82 is open.

. The actuating fluid which, for example, may be nitrogen, is directed from a remote source in the vicinity of the wellhead through the conduit 14. This conduit'is threadably engageable with an inlet port 112 of the swivel body 16. Port 112 communicates with an annular chamber 114. The annular chamber 114 leads the actuating fluid into a second chamber portion 98, to thereby enable the fluid to exert pressure against the upper side of the head portion 90.

Mode of Operation The mode of operation will be described with reference to FIGS. 35.

With the valve 82 closed (FIGS. 3 and 4), and well fluid present in central bore 46, the first chamber portion 96 fills with well fluid which is bled from the central bore 46 through the pressure ports 102 and the aligned holes 106. Thus, the pressure of the fluid in the central bore 46 is communicated to the lower side b of the head portion 90 of the valve 82. The pressure exerted thereby biases the valve in a closed position and augments the valve closing bias of spring means 84.

To open the valve, and thereby establish the outward flow of the well fluid from the central bore 46,'an operator located at a remote source causes an actuating fluid (possibly nitrogen) to be delivered throughthe conduit 14, inlet port 1 12 and annular passage 1 14 into the second'chamber portion 98 (FIG. 3). The actuating fluid exerts a pressure against the upper side 90a of the head portion 90 of the valve member 82.

Because of the relative dimensionsof the surface areas 90a and 90b of the head portion 90- (area 90a being significantly larger) being acted upon by the communicated pressure and the actuating pressure, the actuating fluid pressure required to open valve 82 need' only be a fraction of the pressure communicated frompassage 46 to cavity 96. That is, the actuating pressure acting on large surface 90a need only exert a force on piston'82 sufficient to overcome the force exerted by the communicated pressure acting on small surface 90b and the spring pressure, to thereby cause the valve 82 to open and assume the position as shown approximately in FIG. 5.

With the valve 82 open, the well fluid establishes a flow through the exit ports 104 and their aligned openings 108 through the passage defined by the chamber portion 100 and out the exit port 44. During this outward flow, the well fluid fills the chamber portion 100, As a result, the pressure of the discharging fluid is exerted against surface 94a of the outwardly extending sleeve portion 94 of the valve 82.

The communicated pressure and the discharging pressure now pressure balance the valve 82 in the open position since area 94a is equal to area 90b. When the open position of the valve is achieved, which the operator can determine by looking through the indicator slots 29 to sight the relative location of the sleeve portion 92, the actuating fluid pressure may be reduced to a point sufficient only to balance the biasing force exerted by the spring 84. The result is a balanced valve held in the open position with relatively low pressure actuating fluid.

An additional operative feature of the valve arrangement is that it can be pumped open by applying a pressure through the exit port 44 into the third chamber portion 100 (FIG. 4) against the outwardly extending sleeve portion 94. When sufficient pressure is applied to area 94a, as permitted by clearance zone 100a shown in FIG. 4, to overcome the communicated pressure exerted against the lower end 90b of the piston head portion 90 in the first chamber portion 96, in addition to the spring biasing force, valve opening will occur. This will allow fluids to be forced back down the well for well killing operations.

Should the pressure in conduit 14 fall, the valve 82 would automatically close, due to a reduction in pressure in chamber portion 98.

It is also believed that if the conduit or control head means connected with passage 42 should rupture or break away from the swivel assembly 2, a flow of well fluid from passage 46, through the open conduit means 38 into the atmosphere, would tend to produce automatic valve closing action even if some spring force balancing, actuating fluid pressure should exit in cavity 98.

It is believed that the closing phenomena would tend to occur as a result of a reduction in pressure in well fluid in passage 42 which would result from the flow of such fluid through the pressure drop inducing orifice means asdefined by exit port 104. Once such a closing of the valve means 82 occurred, the pressure balancing valve end 94 would be isolated from the pressure of fluid in passage 46 such that the valve 82 would tend to stay closed.

Overall Summary of Principal Method and Apparatus Aspects From the foregoing discussion it will be recognized that the swivel means 2 is arranged so as to be connected with the well conduit or testing string 8 and be supported at a wellhead, above the well casing or conduit means.

The central passage means 46 of the swivel means 2 extends generally longitudinally of this swivel means and is disposed in fluidcommunicating relation with the interior of the conduit string 8.

The swivel body means 16 is operable to permit rotation of the conduit string 8. The branch passage means 42 of the swivel body means 16 is operable to communicate with the longitudinally extending swivel passage means 46 under the control of valve means 82.

Valve means 82 is carried by swivel means 2 and is operable to prevent fluid flow between at least a portion of the passage means 46 and at least a portion of the passage means 42. Valve means 82 remains operable to effect this flow control while the conduit string 8 is stationary relative to the well casing, as well as while the string 8 is undergoing either rotational and/or longitudinal movement relative to the well casing.

The remote actuating means provided by conduit means 14, passages 112 and 1 14, and chamber 98 is operable to effect selective actuation of the valve means 82 from a location remote from the swivel means 2 and the testing string 8.

The existence of this remote actuating means notwithstanding, the valve means 82 is continuously biased to a closed position by spring means 84 so as to provide a fail-safe mode of operation. In other words, should the pressure of actuating fluid transmitted through conduit means 14 fail, the spring 84 would ensure automatic closing of the valve means 82.

Additional manual control is provided by the manually operable plug valve means 12. This plug valve means 12 is interposed between the swivel body means 16 and the conduit string 8.

The valve sleeve portion 94, when disposed in the FIG. 5 open valve position provides a valve biasing means operable to cause the pressure of fluid in the passage means 46 to exert a valve opening biasing force on the valve means 82, tending to provide a pressure balancing phenomena acting on the open valve means; With the existence of such pressure balancing, i.e., equal pressure of fluid in passage means 46 acting on opposite axial ends of the valve means 82, the condition of valve means 82 will be determined by whether or not the pressure in actuating chamber 98 is sufficient to balance or overcome the valve closing, biasing-influence of spring means 84.

While the valve means is disposed in the closed disposition illustrated in FIG. 4, the sleeve means 68 is disposed in substantially telescoping engagement with portion 94 of valve means 82 so as to function as valve isolating means, i.e., provide a seal between the extremity 94a of valve means 82 and the pressure of fluid in passage means 46. This mode of operation of the valve isolating means 68 will tend to substantially prevent the pressure of fluid in the passage means 46 from exerting a valve opening biasing force on the valve means 82, so long as the valve means 82 remains closed. As a result, the pressure of fluid in passage means 46 will augment the valve closing bias of spring means 84 so long as the valve means 82 remains closed.

an open position.

Under these circumstances, once the valve means 82 has moved to an open position, it will tend to stabilize in an at least partially open condition so as to permit a substantially continuous injection of fluid into the conduit string 8.

The pressure balancing tendency relating to the open condition of valve means 82, acting either alone or augmented by the differential piston area phenomena resulting from the fact that the reaction surface 90a of FIG. 3 (exposed to nitrogen) exceeds the area of reaction surface 90b (exposed to pressure of fluid in passage 46), enables the valve means 82 to be maintained in an open condition with relatively low pressure nitrogen. The differential area phenomena, i.e., the fact that the area of reaction surface 90a exceeds the area of reaction surface 90b, serves to enable relatively intermediate, but still low, pressure nitrogen to effect the initial opening of the valve means 82.

Of course, once the valve menans 82 is open, the nitrogen pressure may be reduced and still hold the valve means open because of the previously discussed pressure balance phenomena resulting from the exposure of each axial end of the valve means 86 to the pressure of fluid in central passage 46.

SUMMARY OF ADVANTAGES AND SCOPE OF THE INVENTION In describing method and apparatus aspects of the invention, certain advantages have been made apparent. v

A principal advantage resides in the provision of a swivel assembly including a simple but reliable control valve mechanism which may be operated from a remote location and which is possessed of fail-safe characteristics.

Another principal advantage of the invention relates to the manner in which the pressure balancing phenomena, in the open condition of the swivel valve means, enables the valve means to be maintained in an open condition with relatively low pressure actuating fluid.

Another significant advantage of the invention entails the manner in which the pressure of fluid in branch conduit means 42 may be substantially increased so as to cause the valve means 82 to open and enable fluid to be forced downwardly through the testing or conduit string.

The differential area aspects of the valve enable it to be initially opened with relatively low pressure in the actuating fluid.

Other significant advantages also result from the structure and operational characteristics heretofore noted.

The longitudinal passage 46 is characterized bya substantially unobstructed, relatively large internal diameter which enables large flow volumes to be safely and effectively handled.

The nature of this remote operating mechanism is such as to permit a variety of liquid or gaseous actuating fluids to be employed.

The load supporting swivel mandrel and the thrust bearing arrangement incorporated in the swivel mechanism enable heavy string loads to be supported and ensure easy swivel rotation, concurrent with the provision of prolonged operating life and minimum maintenance requirements.

The utilization of the remotely actuated safety valve and the manually controlled plug valve enhance the safety aspects of the tool in providing alternately operable control techniques.

The slot arrangement in the periphery of the swivel body enable an operator to determine positively the condition of the safety valve.

The overall arrangement is such as to virtually eliminate externally protruding parts which would impede operations or be vulnerable to damage.

The overall structure of the swivel assembly is such as to enable it to be safely utilized with relatively high well pressures.

The three separate pressurizing zones operable to act on the valve means provide predictable and selectively variable control criteria. The changes of volume of these zones is such as to enable the valve piston sleeve 94 to be operable to produce the pressure balancing phenomena under control conditions, after the inertia problems associated with initiating valve movement have been overcome.

Although the control unit is particularly useful in connection with sour gas well operations, the remote control safety valve feature makes it particularly'suitable for offshore operations. In general, offshore vessels float up and down because of wave motion and in such cases the control head is normally secured high in the rig. Manual operation of the control head is hazardous under these circumstances; however, the remote control feature of the present invention would eliminate this difficulty.

When the invention is to be utilized in connection with well fluids having a hydrogen sulfide content, improved resistance to hydrogen sulfide induced embrittlement may be provided by heat treating components so as to reduce their hardness.

Although the invention has been described in connection with one preferred and illustrated embodiment, it will be appreciated by those skilled in the art that additions, modifications, substitutions and deletions not specifically described may be made without departing from the spirit and scope of the invention as defined in the appended claims.

What is claimed is:

1. A method for use in connection with well operations, said method comprising:

connecting swivel means with a well conduit string and supporting said swivel means above well conduit means;

providing passage means extending-generally longitudinally of said swivel means and disposed in fluid communication with the interior'of said conduit string;

supporting body means of said swivel means so as to permit rotation of said conduit string;

providing branch passage means in said body means operable to communicate with said longitudinally extending passage means;

providing valve means carried within said supporting body means of said swivel means and operable to prevent fluid flow between at least a portion of said longitudinally extending passage means and at least a portion of said branch passage means; maintaining said valve means operable to control flow between said generally longitudinally extending passage means and said branch passage means while said conduit string is stationary relative to said well conduit means, and while said well eonduit string is undergoing rotational movement relative to said well conduit means; and

selectively actuating said valve means within said supporting body means from a location remote from said swivel means and said conduit string to selectively control flow between said generally longitudinally extending passage means and said branch passage means from a location remote from said swivel means.

2. A method for use in connection with well operations, said method comprising:

connecting swivel means for a well conduit string and supporting said swivel means above well conduit means;

providing passage means extending generally longitudinally of said swivel means and disposed in fluid communication with the interior of said conduit string;

supporting body means of said swivel means so as to permit rotation of said conduit string;

providing branch passage means in said body means operable to communicate with said longitudinally extending passage means;

providing valve means carried by said swivel means and operable to prevent fluid flow between at least a portion of said longitudinally extending passage means and at least a portion of said branch passage means;

maintaining said valve means operable to control flow between said generally longitudinally extending passag means and said branch passage means while said conduit string is stationary relative to said well conduit means, and while said conduit string is undergoing rotational movement relative to said well conduit means;

remotely actuating said valve means in said swivel means from a location remote from said swivel means and said conduit string;

in response to opening of said valve means, causing the pressure of fluid in said longitudinally extending passage to exert a valve opening biasing force on said valve means so long as said valve means remains in an open position; and

substantially preventing the pressure of fluid in said generally longitudinally extending passage means from exerting a valve opening biasing force on said valve means when said valve means is disposed in a closed position.

3. A method as described in claim 2 further comprising:

increasing fluid pressure in said branch conduit means and in response to this increase exerting a valve opening force on said valve means and causing said valve means to move to an open position.

4. A method of balancing a valve, located at a wellhead, in an open position, said method utilizing an apparatus including:

a generally cylindrical swivel body, a rotatable generally tubular body extending through said swivel body in generally coaxial relationship therewith, said tubular body including a central bore through which a well fluid flows, pressure port means and discharge port means carried by said tubular body and communicating with said central bore, said swivel body including exit port means, said discharge port means and said exit port means including passage means therebetween, an annular, axially extending chamber, said chamber including said passage means, said valve, and a spring biasing said valve toward a closed position, the method comprising:

communicating the pressure of the fluid flow in said central bore through said pressure, port means into said annular chamber to one end of said valve, to bias said valve closed; delivering an actuating fluid into said annular chamber from a remote source to another end of said valve at a pressure less than and in a direction opposed to said communicated pressure, to thereby open said valve so that fluid will flow from said central bore through said passage means; and causing said fluid flow in said passage means to exert a pressure against said valve on said another end of said valve, with said communicated pressure and said pressure of said fluid flow in said passage means coacting to tend to balance said' valve in an open position. 5. A method for use in connection with well operations, said method comprising:

connecting control means with a well conduit string;

providing passage means extending generally cenpassage means, and operable to control fluid flow communicating with at least a portion of said longitudinally extending passage means;

remotely actuating said valve means in said control means to effect the positioning of said valve means in one of a closed and an open position;

continuously urging said valve means to one of said positions;

in response to the positioning of said valve means in one of saidpositions, causing the pressure of fluid in said longitudinally extending passage means to exert a valve opening biasing force on said valve means so long as said valve means remains in said one position; and

substantially preventing the pressure of fluid in said generally longitudinally extending passage means from exerting a valve opening biasing force on said valve means when said valve means is dispo'se'din the other of said positions.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1662984 *Mar 18, 1926Mar 20, 1928Scott Ross And CompanyRotary casing head
US2788073 *Sep 12, 1952Apr 9, 1957Brown Cicero CWell head apparatus
US2804293 *Oct 22, 1956Aug 27, 1957Exxon Research Engineering CoApparatus for completing and operating sulfur wells
US3303897 *Aug 21, 1963Feb 14, 1967Longyear E J CoUnderground water swivel apparatus
US3441097 *Nov 29, 1966Apr 29, 1969Stabilator AbDevice in drills
US3478822 *May 15, 1968Nov 18, 1969Gray Tool CoWellhead and seal arrangement
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4058165 *Oct 24, 1975Nov 15, 1977Halliburton CompanyWellbore circulating valve
US4832126 *Jul 24, 1986May 23, 1989Hydril CompanyDiverter system and blowout preventer
US4903764 *Jul 18, 1988Feb 27, 1990Svein GleditschSwivelsub
US5048619 *Jun 13, 1990Sep 17, 1991Baroid Technology, Inc.Down-hole bearing assemblies
US5429188 *Dec 29, 1993Jul 4, 1995Jorvik Machine Tool & Welding Inc.Tubing rotator for a well
US7296628Nov 18, 2005Nov 20, 2007Mako Rentals, Inc.Downhole swivel apparatus and method
US7299866Jun 27, 2005Nov 27, 2007Shawn Arthur JacklinApparatus and method for cleaning out sand from an underbalanced hydrocarbon producing well
US7828064May 8, 2007Nov 9, 2010Mako Rentals, Inc.Downhole swivel apparatus and method
US8118102Nov 9, 2010Feb 21, 2012Mako Rentals, Inc.Downhole swivel apparatus and method
US8316945Nov 20, 2007Nov 27, 2012Mako Rentals, Inc.Downhole swivel apparatus and method
US8567507Aug 6, 2008Oct 29, 2013Mako Rentals, Inc.Rotating and reciprocating swivel apparatus and method
US8579033Apr 14, 2011Nov 12, 2013Mako Rentals, Inc.Rotating and reciprocating swivel apparatus and method with threaded end caps
US8720577 *Nov 27, 2012May 13, 2014Mako Rentals, Inc.Downhole swivel apparatus and method
US20130175043 *Nov 27, 2012Jul 11, 2013Mako Rentals, Inc.Downhole swivel apparatus and method
EP1779022A2 *Jun 30, 2005May 2, 2007M-I L.L.C.Replaceable sleeve insert for a choke assembly
Classifications
U.S. Classification166/369, 175/214
International ClassificationE21B34/00, E21B34/02
Cooperative ClassificationE21B34/02
European ClassificationE21B34/02