Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3806028 A
Publication typeGrant
Publication dateApr 23, 1974
Filing dateOct 2, 1972
Priority dateMar 2, 1971
Publication numberUS 3806028 A, US 3806028A, US-A-3806028, US3806028 A, US3806028A
InventorsCoffey C
Original AssigneeHarris Paint Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Spray head
US 3806028 A
Abstract
A sprayhead for a pressurized aerosol dispenser includes an elongated expansion and mixing chamber upstream of the spray-forming nozzle orifice. Controlled expansion of the dispensed product and propellant mixture within the chamber enhances vaporization of the propellant, promotes uniform mixing of the vaporized propellant with the product prior to passage through the spray nozzle, and produces increased flow rates for a given nozzle orifice diameter.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 i I [111 3,806,028

Coffey Apr. 23, 1974 [54] SPRAY HEAD 2,913,154 11/1959 Kuffer ..239/573 UX 1,892,750 1/1933 Rotheim 239/573 X [751 Inventor! Charles Coll, Pmenas Park 2,697,635 12/1954, lvinset a1. 239/337 3,567,081 3/1971 Meshberg ZZZ/402.17 [73] Assignee: Harris Paint Company, Tampa, Fla.

Primary Examiner--M.. Henson Wood, Jr. [22] F'led: 1972 Assistant Examiner-John J. Love [21] App1.No.:294,093" Attorney, Agent, or Firm--Kenyon & Kenyon Reilly Carr & Chapin Related US. Application Data [62] ggvisgczngsogfser. No. 120,169, March 2, 1971, Pat. [57] ABSTRACT A sprayhead for a pressurized aerosol dispenser in- 52 US. Cl. 239/1 dudes an elongated expansion and mixing Chamber 51 Int. Cl B05b 17/04 upstream of the spray-forming nozzle orifice- [58] Field of Search 239/1, 1 1, 468, 337, 573, trolled expansionof the dispensed product and P p 2 9 579; 2 2 2 7 lant mixture within the chamber enhances vaporization of the propellant, promotes uniform mixing of the 5 References Cited vaporized propellant with the product prior to passage UNITED STATES PATENTS through the spray nozzle, and produces increased flow rates for a given nozzle orifice diameter. 2,621,014 12/1952 Efford 239/573 X 3,669,359 6/1972 Focht. 239/579 3 Claims, 3 DrawingFigures 6 ZZ l SPRAY HEAD This invention relates to sprayheads for use with pressurized aerosol dispensers for liquid products such as paint, and particularly for glitter paints having intermixed solid particles or flakes.

A conventional sprayhead of the pushbotton type generally has a central passageway in a stem leading from the outlet of a spring-loaded valve mounted in the top of an aerosol dispenser. The passageway connects with a cylindrical recess in the side wall of the pushbutton into which a nozzle insert press fits, with the downstream face of the nozzle orifice substantially flush with the exterior surface of the sprayhead. The diameter of the sprayhead passageway and the inside diameter of the nozzle insert upstream of the orifice section are generally of the same order of magnitude, about onesixteenth inch. The throat diameter at the orifice may range from'0.0l6 inch to larger than 0.040 inch, depending on the characteristics of the product dispensed. For relatively viscous liquids such as paint, a common orifice diameter is 0.032 inch, for example.

In operation, axial movement of the sprayhead toward the valve causes it to open and allows a mixture of product and propellent to flow through the passageway and out the nozzle orifice in the form of an atomized spray. The pressure and velocity of the outflowing stream are substantially constant from the valve outlet to the nozzle orifice, where the reduced throat diameter causes the velocity to sharply increase and the pressure to correspondingly decrease. Because the flow area of the passageway from valve outlet to nozzle ori fice is relatively small as well assubstantially uniform, propellant vaporization and product atomization apparently occur primarily in the reduced pressure region of the nozzle orifice, although some initial vaporization and mixing action does occur during flow through the relatively restricted valve port.

As a consequence of confining mixing and atomization to such a localized region adjacent the nozzle outlet, these conventionalsprayheads often produce unsatisfactory spray patterns, particularly when used with liquid products having dispersed solid particles or flakes, such as specialty paints containing flakesof metallic, plastic or glass glitter. The smallparticles this type of product apparently serve as nuclei for agglomerations of liquid in relatively large droplets that tendto spatter and collect inside the rim of the dispenser can and to produce an uneven coating on the object being sprayed. These undesirable results intensify as the size of the suspended particles is increased.

Objects of the present invention are to eliminate the spattering problem when spraying liquids having intermixed solid particles, to increase the average particle size that can be sprayed with a nozzle orifice of given diameter, and to increase flow rates for given dispenser pressures and nozzle orifice diameters.

These and other objects are obtained by incorporating an elongated expansion chamber upstream-of the nozzle orifice. Dimensions of the expansion chamber are not critical; however, its diameter should be significantly greater than that of the passageway leading from the valve.

The chamber length should be preferably several times its diameter. It has been found that increasing the chamber length, for example, to at least five times its diameter not only improves uniformity of the spray pattern but also, surprisingly, increases the product flow rate for a given nozzle orifice diameter and propellant pressure.

In the drawings, FIG. 1 is a perspective view of an aerosol dispenser incorporating the sprayhead of the invention.

FIG. 2 is a section view of an embodiment of the invention.

FIG. 3 is a section perpendicular to the view of FIG. 1.

Referring to the figures, sprayhead 10 comprises an approximately cylindrical body 12 having an axial passageway 14 with an inlet 16 through a slot 18 at the end of a stem 20. The outside surface 22 of stem 20 is sized to fit snugly in the outlet of a conventional springloaded valve 21 in the top of a pressurized aerosol dispenser 23. I

At its downstream end, passageway 14 opens through slot 24 into expansion chamber 26 in tube 28. Tube 28 is made of a deformable plastic material, and its outside diameter is chosen to make an interference fit with the bore 30 of cylindrical recess 32 in the side wall of sprayhead body 12. Aconventional flanged nozzle insert 34 having an orifice 36 at its downstream face 38 force fits into the outer end of tube 28 to form the downstream end of expansion chamber 26.

Although sprayhead body 12 and tube 2 8 are shown as a two-piece assembly in the drawing, the assembly could be molded as a single piece, if desired. The important consideration is that the cross-sectional area of expansion chamber 26 be significantly greater than the cross-sectional areas of both passageway 14 and orifice 36. Furthermore, the length of expansion chamber 26 should be several times its diameter; preferably the length-diameter ratio should be at least five. When the sprayhead is used with a typical domed-top aerosol dispenser of the type shown in FIG. 1, the length of chamber 26 should also be preferably at least enough to insure that the spray is delivered beyond the valve mounting cup 25.

In operation, sprayhead 10 is displaced axially by finger pressure on surface 40, the spring-loaded valve 21 opens, and a mixture of liquid product and propellant flows through inlet 18, along passageway 14, and through slot 24 into expansion chamber 26. The abrupt increase in flow area in expansion chamber 26 reduces the flow velocity, and the abrupt change in flow direction inducesa swirling flow that promotes intimate mixing of the product and the vaporizing propellant prior to discharge as a fine spray through orifice 36.

Tests have been run to compare the performance of the above-described sprayhead embodiment with an expansion chamber with that of a conventional sprayhead without an expansion chamber and also to determine the effect of chamber length. Product used in the tests was glitter" paint having intermixed solid particles with maximum dimensions of about 0.008 inch.

Pertinent dimensions of sprayhead 10 were:

slot 18 l- 9323! u i J59-12iins 91 s Chamber 26 0.112 inch diameter Orifice 36 0.032 inch diameter For comparison, tests were run with two different expansion chambers 26 having effective lengths of fiveeighths and five-sixteenths inch, respectively. In addition, the sprayhead was tested without an expansion chamber but withnozzle insert 36 pressed directly into recess 32.

By way of illustration, typical test results for the three sprayhead variations described above used with 16- ounce capacity aerosol dispensers taken from a production line are listed below. Spray time in each case was seconds.

Product Substantial variations from test to test preclude a quantitative correlation between chamber length and flow rate, but in every case the amount of product expended was greater with the long chamber than with the short chamber and was greater with the short chamber than with no chamber.

As mentioned above, the size of inlet slot 18 in each of the three test sprayheads was 0.060 inch wide by 0.125 inch long. For comparison, a sprayhead having no expansion chamber and an inlet slot size of 0.060 inch wide by 0.055 inch long expended 21.3 grams in 5' seconds. It is thus clear that the size of inlet slot 18,

as would be expected, has a significant effect on flow rate. With respect to uniformity of spray pattern and absence from splatter, however, the incorporation of the expansion chamber of the present invention produced much greater improvement than did changes in size of inlet slot l8.

In both tests with expansion chambers, the spray pattern was more uniform and the glitter" particles more randomly distributed on thesprayed surface than in the test without an expansion chamber. Moreover, the flow rates as determined by container weighings before and after equal duration spray bursts were greater in the tests with an expansion chamber than those without, the difference being especially marked in the tests with the longer chamber. Greater flow rates, of course, permit the operator to obtain desired coverage in a shorter time.

Other embodiments and dimensions will occur to those skilledin the art. For example, thelength of tube 28 could be extended to the edgeof container 23 or even beyond, if desired. For liquids of different viscosities and having different sized particles intermixed therein, the dimensions of slots 18 and 24 and the size of orifice 36 can be-varied accordingly for optimum results.

Although the utility of the sprayhead of the present invention has been described specifically in regard to spraying liquids having intermixed solids, the invention is not limited to such application. Increased flow rates also result when spraying other fluids or fluid mixtures such as immiscible liquids as well as liquids or solids in a gas. For example, the sprayhead produces superior results with enamels and works well. even when spraying cosmetic aerosol formulations such as talcum powder. In short, the sprayhead of this invention is applicable to all types of fluids or dry mixes which are capable of being expended from a pressurized aerosol dispenser.

What is claimed, is:

1. The method of spraying a mixture of pressurized aerosol propellant and a fluent material comprising the steps of:

flowing the mixture inward through an opening in a side wall of an upward-extending straight passageway near the lower end of thepassageway. flowing the mixture upward through the passageway,

expanding abruptly the flowing mixture through an opening in the' side wall of the passageway near the upper end of the passageway into an elongated expansion chamber having a length at least five times its diameter and a cross section substantially larger than that of the opening into the expansion chamber and that of the upward-extending passageway,

the expansion chamber extending laterally in a direction-transverse to the upwardextending passageway whereby a swirling motion is imparted to the comprises dry solid particles.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1892750 *Nov 12, 1928Jan 3, 1933Rotheim ErikMethod and apparatus for atomizing materials
US2621014 *Jan 25, 1949Dec 9, 1952Bridgeport Brass CoValve for the distribution or dispersion of fluids in small particles
US2697635 *Apr 26, 1950Dec 21, 1954Engine Parts Mfg CompanyAerosol valve and resilient operating cap and nozzle
US2913154 *Nov 7, 1955Nov 17, 1959Aerosol Res CompanyAerosol valve assembly
US3567081 *Jan 30, 1969Mar 2, 1971Philip MeshbergMultidirectional aerosol dispenser
US3669359 *Sep 18, 1970Jun 13, 1972Precision Valve CorpAerosol mechanical break-up nozzle insert
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6345775May 31, 2000Feb 12, 2002Wilsoart International, Inc.Very high solid content aerosol delivery system
US6433051Feb 3, 2000Aug 13, 2002Wilsonart InternationalVery high solid content aerosol delivery system
US6635703Jul 30, 1998Oct 21, 2003Premark Rwp Holdings, Inc.Very high solids adhesive
US6896205Feb 3, 2000May 24, 2005Premark Rwp Holdings, Inc.Very high solid content aerosol delivery system
US8414290 *Apr 3, 2006Apr 9, 2013Jonathan GdyniaDevice for igniting and kindling a fireplace
EP1160179A1 *May 11, 2001Dec 5, 2001Premark RWP Holdings, Inc.Very high solid content aerosol delivery system
WO2002098762A1 *Jun 4, 2002Dec 12, 2002De Schrijver AsterImprovements to a device delivering foams, in particular a polyurethane foam
Classifications
U.S. Classification239/1
International ClassificationB65D83/14
Cooperative ClassificationB65D83/303
European ClassificationB65D83/30B