Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3807388 A
Publication typeGrant
Publication dateApr 30, 1974
Filing dateAug 16, 1971
Priority dateSep 29, 1970
Also published asDE2142095A1, DE2142095B2, DE2142095C3
Publication numberUS 3807388 A, US 3807388A, US-A-3807388, US3807388 A, US3807388A
InventorsT Orr, R Ogden
Original AssigneeT Orr, R Ogden
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Heartbeat rate monitors
US 3807388 A
Abstract
A heartbeat rate monitor or personal pulse indicator comprises a transducer for detecting heartbeats and supplying an electric signal corresponding to the heartbeat rate, and a display for indicating the heratbeat rate. The display is incorporated in a watch casing which also incorporates means to display the time of day, the watch casing preferably being mounted on a wrist-strap which carries the transducer.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 Orr et a1.

[ Apr. 30, 1974 1 HEARTBEAT RATE MONITORS [75] Inventors: Thomas Orr, Flat 14, Sandringham Ct., 18 Winn Rd., Southampton; Roland Ogden, Portsmouth, both of England [73] Assignee: said Orr, by said Ogden [22] Filed: Aug. 16, 1971 [21] Appl. No.: 172,149

[30] Foreign Application Priority Data Sept. 29, 1970 Great Britain 46151/70 [52] U.S. Cl 128/205 R, 128/205 P, 128/205 T [51] Int. Cl A6lb 5/02 [58] Field ofSearch 128/ 2.05 P, 2.05 T, 2.06 F, 128/205 R, 2.06 A, 2 R; 58/28 A, 28 B, 28 D, 26 R, 23 TF; 307/208 Primary Examiner-Richard A. Gaudet Assistant Examiner-43cc S. Cohen Attorney, Agent, or Firm-John E. Becker [5 7] ABSTRACT A heartbeat rate monitor or personal pulse indicator comprises a transducer for detecting heartbeats and supplying an electric signal corresponding IO the heartbeat rate, and a displayfor indicating the heratbeat rate. The display is incorporated in a watch casing which also incorporates means to display the time of day, the watch casing preferably being mounted on [56] References Cited a wrist-strap which carries the transducer.

UNITED STATES PATENTS 3,294,988 12/1966 Packard 128/2 R UX 12 Claims, 8 Drawing Figures 33 36 36 1 2 OSCILLATOR DlVlDER DIVlDER DECODER D 35 DECODER P TRANSDUCER'E? 32\ l [38 DECODER Y SHAPER '41 39 6O 62 DlVlDER. 2 2

AND COUNTER MEMORY RESET 1 LL\READ OUT PATENTEnAPRw I974 SHEET 1 [1F 3 LAMPLIFIER 1 15 I i :AMPLIFIERI FIG. 2.

PATENTEDAPR 30 I974 SHEET 3 OF 3 PENDULUM r i WAT'CH' MECHANISM 72 73 I TUNING DIVIDER W FIG. 7.

TRANSDUCER i ,/38 w 1 S2 'SHAPER MONOSTABLE T r I DIVIDER AND COUNTER MEMORY i I -REsET r T CONVERTER MET R /3I7- TRANSDUCER I 38 SHAPER 7 MONO STA'BLE SMOOTHING ME'TER F/GB.

/A4 E7Vra/5 HEARTBEAT RATE MONITORS BACKGROUND OF THE INVENTION The usual method of ascertaining a persons heartbeat rate is by counting heartbeats which are detected manually, usually at the wrist, over a short period timed by a watch or clock. This method is generally somewhat unsatisfactory, because the short period chosen is usually less than one minute and so errors may occur in the necessary mental arithmetic. Moreover, this methodonly provides a measurement of the heartbeat rate during the actual period of counting, and this somewhat time-consuming operation has to be repeated every time a fresh measurement is required. This is particularly inconvenient in the case of certain heart conditions where quick and possibly frequent measurements are required.

SUMMARY OF THE INVENTION One object of the present invention is to provide a heartbeat rate monitor. I

Another object of the present invention is to provide a heartbeat rate monitor which is incorporated into, or is made in the general form of a wrist-watch.

According to the present invention a heartbeat rate monitor comprises a transducer to detect heartbeats and provide an electric signal corresponding to the heartbeat rate, and display means operated in dependence on said signal to display the heartbeat rate digitally or on a dial.

The invention can be embodied in various different forms. A particularly convenient form isto incorporate the heartbeat rate monitor in a wrist-watch and mount the necessary transducer in the wrist strap so as continually to be actuated by heartbeats detected in the wrist. The signal supplied by the transducer is supplied to an electronic circuit within the watch casing. The circuit also derives a timing signal from the watch mechanism for comparison with the signal supplied by the transducer, and the output is displayed on the watch face either by a pointer moving over a scale or by a digital display which may comprise light emitting diodes. Alternatively, the heartbeat rate monitor can be made in the general form of a wrist-watch for wearing on the wrist, but without being incorporated into an actual wristwatch.

BRIEF DESCRIPTION OF THE DRAWINGS.

Four heartbeat rate monitors in accordance with the present invention will now be described by way of example with reference to the accompanying drawings, in which:

FIG. 1 shows diagrammatically a first transducer,

FIG. 2 shows diagrammatically a second transducer,

FIG. 3 shows diagrammatically the mounting of a transducer on a wrist strap,

FIG. 4 is a section on the line 4-4 of FIG. 3, and

FIGS. 5 to 8 show diagrammatically the electric circuits of the four heartbeat rate monitors respectively.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Each of the embodiments to be described comprises a transducer to detect heartbeats and to provide an electric signal corresponding to the heartbeat rate. Al-

though specific transducers will be described, other suitable transducers can of course be used, the essential feature being that an electric signal corresponding to the heartbeat rate is produced. In the description which follows it will be assumed that the transducer is to be placed or worn in contact with a persons wrist, although the invention is not limited to this arrangement, because the signal can be derived from any other suitable place on the body.

Referring to FIG. 1, the transducer shown therein comprises a pressure sensitive resistor pad I, mounted so as to project from the inner surface of a wrist strap (not shown) and electrically connected so as to be part of a resistive chain 2 connected across an electric power supply derived from a battery. In use, arterial pulses in the wrist will cause variations in the resistance of the resistor 1 and hence variations in the voltage at a terminal 3. A signal derived from the terminal 3 is supplied to an amplifier 4 which, like the remainder of the electrical circuitry, is preferably in the form of an integrated circuit, the output of the amplifier 4 being used in producing the required display.

FIG. 2 shows an alternative form of transducer making use of a pressure sensitive transistor 10. The base is connected to the junction of resistors 11 and 12 connected across the power supply, the collector is connected by way of a resistor 13 to one pole of the power supply, and the emitter is connected directly to the other pole of the power supply. This results in a constant bias on the base of the transistor 10, and as the applied pressure varies due to the pulse in the wrist, the collector current will vary, so that a signal corresponding toheartbeat rate can be derived from a terminal 14 and supplied to an amplifier 15.

Referring now to FIGS. 3 and 4, in both the cases described above, the pressure sensitive element 1 or 10 of the transducer is mounted in a Wrist strap 20 and surrounded by a stabilizing frame 21 to reduce the effect of random strap movements relative to the wrist 22. The frame 21 is preferably made of a resilient material and in order to ensure that the pressure sensitive element is pressed against the wrist 22 it projects somewhat more from the'strap 20 than does the frame 21.

In alternative arrangements the transducer is mounted so that it can be worn permanently or semipermanently on some other part of the body, or alternatively is mounted in a small pad or strap which can be placed against or round an appropriate part of the body when a measurement is to be made.

Referring now to FIG. 5, this shows the electric circuit of a heartbeat rate monitor incorporated into and forming part of an electronic wrist-watch, preferably with time and heartbeat rate display by light emitting diodes.

The circuit comprises a crystal controlled oscillator 30 operating at 16.384 kHz., the output signal of which is supplied to a l5-stage divider circuit 31 which supplies an output signal of 0.5 Hz. which is suitable for deriving the time indication. This signal is supplied directly to a binary coded decimal to decimal decoder 32 to provide an output for display of seconds, and by way of a further divider circuit 33 to decoders 34 and 35 for the display of minutes and hours respectively. The outputs of the decoders 32, 34 and 35 are supplied to an array 36 of light emitting diodes so that the time is displayed digitally.

A signal derived from the oscillator 30 is also compared with the signal supplied by the heartbeat rate transducer 37 (which may be as described with reference to FIG. 1 or 2) to provide a digital display of the heartbeat rate. The signal supplied by the transducer 37 is supplied by way of a shaper circuit 38 to an AND gate 39 to which a signal derived from the divider 31 is also supplied. For a lost or gained pulse from the divider 31 to be insignificant, the frequency of the signal supplied by the divider 31 to the gate 39 should be say 100 times the fastest heartbeat rate of say 150 beats per minute, so that the frequency required is about 250 pulses per second. To derive such a signal the divider 31 can be intercepted at the appropriate point to give an output of 256 pulses per second, this signal being supplied to the gate 39. The output of the gate 39 is supplied to an accumulating counter 40; the number of pulses at the minimum heartbeat rate of say 30 pulses per minute determining the capacity of the counter 40, this being 512 in the example given above.

To reduce the possibility of occasional random heartbeat periods being displayed, it is preferable for the output of the shaper circuit 38 to be divided in frequency by a divider 41 before being supplied to the gate 39 so as to average the measurement over several heartbeat periods. This necessitates a corresponding increase in the capacity of the counter 40. Particularly where this form of operation is used, it is desirable that the output of the counter 40 is supplied to a memory 42, so that the measurement obtained during the preceding counting period can be displayed during each current counting period. A further output of the gate 39 is connected to a reset circuit 43 which resets the counter 40 at the end of each counting period and causes the reading then in the counter 40 to be transferred to the memory 42. The number of pulses counted in each counting period varies inversely with the heartbeat rate and hence a suitable readout circuit 44 can be provided to give signals corresponding to ls. lOs and units oriea'fibeat'rateror suppl y to an array 45 of light emitting diodes whereby the heartbeat rate is displayed.

It is not essential that either the time display or the heartbeat rate display should be continuous, and as the electric power consumption of the arrays 36 and 45 is high relative to that of the remainder of the electronics, which is preferably in the form of integrated circuits, it may be preferable in some instances for these displays to be intermittent and to be illuminated on demand for example by operating a press-button.

As an alternative, the arrays 36 and 45 of light emitting diodes can be replaced by some suitable mechanical arrangements whereby the time is displayed in the conventional way by means of hands and a dial, and the heartbeat rate is displayed by means of a pointer and a dial graduated in heartbeats per minute.

Referring now to FIG. 6, this shows a heartbeat rate monitor incorporated in and forming part of an ordinary mechanical watch. In this case an electric signal for timing purposes is derived from the balance wheel 50 of the watch which is oscillating at about Hz. An electric signal is derived by way of an electromagnetic pick-off, wherein the passage of a suitable spoke or protrusion of the balance wheel 50 reduces the reluctance of a magnetic path and triggers a relaxation oscillator 51. The output of the oscillator 51 is applied by way of a monostable circuit 52 to an AND gate 39.

Also supplied to the gate 39 is the output signal from the transducer 37 which is supplied by way of the shaper circuit 38 and dividing circuit 41, the dividing circuit 41 preferably dividing by 5 so as to average the measurement over 5 heartbeats and give acceptable accuracy. The output of the gate 39 is supplied to the counter 40 which incorporates division to bring the measurement to a convenient time period. As in the previous embodiment a further output of the gate 39 is connected to a resetting circuit 43 whereby the counter 40 is reset at the end of each counting period, the count then accumulated in the counter 40 being transferred to a memory 42. The output of the memory 42 is connected to a suitable display arrangement which comprises a binary coded decimal to analog converter 60 and a moving coil meter 61 whereby the heartbeat rate is displayed by a pointer movable over a suitably graduated scale. The meter 61 is conventional in form and employs a taut-wire suspension, but is of suitable size for incorporation into the watch.

Referring now to FIG. 7, this shows the electric circuit of a heartbeat rate monitor incorporated into and forming part of an electric wrist-watch in which the balance wheel of the conventional mechanism is replaced by an electrically impulsed pendulum operating at the same frequency, or a tuning fork oscillator operating at a higher frequency. Both these cases are indicated in FIG. 7, in the case of the pendulum system, a pendulum supplying a signal to a mechanism 71 for driving the hands of the watch, whilst in the tuning fork system the tuning fork 72 supplies a signal by way of a divider 73 to the mechanism 71.

In either case a signal is derived and supplied to a monostable circuit 52 the output of which is supplied to the gate 39, this part of the circuit being similar to that described above with reference to FIG. 6.

The tuning fork system allows a higher measurement accuracy because a high frequency signal can be derived from the dividing circuit 73 and this permits more pulses to be counted during each period defined by the dividing circuit 41. Indeed this makes it possible in certain instances to dispense with the dividing circuit 41. Apart from the points mentioned the operation is similar to that of the embodiments described with reference to FIGS. 5 and 6.

Referring now to FIG. 8, this shows the electric circuit of a heartbeat rate monitor which is independent of any watch mechanism. In this case a signal derived from the transducer 37 is supplied by way of the shaping circuit 38 to a monostable circuit which incorporates a timing reference which it compares with the heartbeat period. The output of the monostable circuit 80 is a signal representing the instantaneous heartbeat period, and this is fed by way of a smoothing circuit 81 to a moving coil meter 62 the pointer of which moves over a suitable scale to indicate the average heartbeat rate. The circuit parameters are selected to avoid rapid fluctuations in the reading whilst at the same time giving an acceptable speed of response.

It will be apparent that many modifications additional to those referred to above can be made without departing from the scope of the invention as defined by the appended claims. In particular, and as mentioned above, the transducer can be incorporated into a pad which can be placed on some suitable part of the body other than the wrist. It is notnecessary that the transducer is continuously connected to the display means,

a transducer to detect heartbeats and provide an electric signal the frequency of which corresponds to the heartbeat rate;

compact timing means to produce an electric timing signal;

comparison means connected in circuit with said transducer and timing means so as to compare the transducer signal with said timing signal to produce a heartbeat rate signal which represents the heartbeat rate per unit time;

a wrist watch type casing within which said compact timing means and said comparison means are incorporated; and

first and second display means operably connected with said circuit and mounted in said watch casing so as to be visible to a user;

the first display means being operable in dependence on said timing signal to display the time of day, and the second display means being operable in dependence on said heartbeat rate signal to directly display the heartbeat rate.

2. A heartbeat rate monitor according to claim 1 wherein said timing signal is derived from a crystal controlled oscillator incorporated in said watch casing.

3. A heartbeat rate monitor according to claim 1 wherein said timing signal is derived from a conventional watch mechanism by means of an electromagnetic pick-off, said watch mechanism being incorporated in said watch casing.

4. A heartbeat rate monitor according to claim 1 wherein said timing signal is derived from a tuning fork incorporated in said watch casing.

5. A heartbeat rate monitor according to claim 1 wherein said timing signal is derived from an electrically impulsed pendulum incorporated in said watch casing.

6. A heartbeat rate monitor according to claim 1 wherein the transducer comprises a pressure sensitive resistor.

7. A heartbeat rate monitor according to claim 1 wherein the transducer comprises a pressure sensitive transistor.

8. A heartbeat rate monitor according to claim 1 wherein the second display means comprises a moving coil meter.

9. A heartbeat rate monitor according to claim 1 wherein the second display means comprises a pointer movable over a scale graduated in heartbeats per minute.

10. A heartbeat rate monitor according to claim 1 .wherein the first and second display means each comprise light emitting diodes.

11. A heartbeat rate monitor according to claim I further comprising a wrist-strap on which said watch casing and said transducer are mounted.

12. A portable, body attached directly readable heartbeat rate monitor comprising in combination:

a transducer to detect heartbeats and to provide an electric signal the frequency of which corresponds to the heartbeat rate;

said transducer being a pressure sensitive device of which the impedance varies in dependence upon applied pressure thereon;

compact timing means to produce first and second electric timing signals;

comparison means connected in circuit with said transducer and timing means so as to compare the tranducer signal with said second timing signal to thereby produce a heartbeat rate signal which represents the heartbeat rate per unit time;

a watch casing within which said timing means and said comparison means are incorporated;

a wrist-strap on which said watch casing and said transducer are mounted, the mounting of the tranducer being such that when the wrist-strap is worn on the wrist of a user the transducer detects arterial heartbeats in the wrist of the user; and

first and second display means including lightemitting diodes mounted in said watch casing so as to be visible to the user; the first display means being operable in dependence on said first timing signal to display the time of day, and the second display means being of a direct reading digital type operable in dependence on said heartbeat rate signal to display the heartbeat rate of the user in pulses per unit time.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3294988 *Sep 24, 1964Dec 27, 1966Hewlett Packard CoTransducers
US3384075 *Oct 1, 1965May 21, 1968Nasa UsaDigital cardiotachometer system
US3535067 *Mar 7, 1967Oct 20, 1970Electro O Mech IncBlood pressure and pulse indicator
US3541779 *Aug 19, 1969Nov 24, 1970Corning Glass WorksElectronic timepiece
US3616638 *Mar 19, 1970Nov 2, 1971Bulova Watch Co IncCrystal-controlled mechanical resonator
US3616639 *Oct 24, 1968Nov 2, 1971Glacier Metal Co LtdPulse generator
US3665697 *Nov 18, 1970May 30, 1972Suisse Pour L Ind Horlogere SaDriving mechanism for electronically controlled timepiece
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4009708 *May 29, 1975Mar 1, 1977Fay Jr John JPulse rate recorder
US4022192 *Aug 4, 1975May 10, 1977Laukien Gunther RApparatus for measuring the frequency of cardiac pulses
US4058118 *Mar 19, 1976Nov 15, 1977Bunker Ramo CorporationPulse counter
US4063410 *Mar 1, 1976Dec 20, 1977Welling Gregory JDigital watch including a signal transmitter
US4068654 *Feb 17, 1976Jan 17, 1978Oiva A. PaavolaBlood pressure measuring apparatus and method
US4086916 *Sep 19, 1975May 2, 1978Joseph J. CayreCardiac monitor wristwatch
US4090504 *Jun 21, 1976May 23, 1978Yehuda NathanPortable temperature and pulse monitor
US4091803 *Feb 9, 1976May 30, 1978Thomas OrrTransducers
US4096854 *Mar 1, 1976Jun 27, 1978Jacob E. PericaCardiac monitor with rate limit means
US4116228 *Jul 12, 1976Sep 26, 1978United States Surgical CorporationRespiration data acquisition, conversion and display system
US4120294 *Aug 26, 1976Oct 17, 1978Wolfe Donna LElectrode system for acquiring electrical signals from the heart
US4120296 *Jun 3, 1976Oct 17, 1978Heuer-Leonidas S.A.Pulsimeter
US4125111 *Jul 12, 1976Nov 14, 1978United States Surgical CorporationHeartbeat data acquisition conversion and display system
US4129124 *Feb 10, 1977Dec 12, 1978Elektro-Apparatebau Olten A.G.Pulse-rate indicator
US4129125 *Dec 27, 1976Dec 12, 1978Camin Research Corp.Patient monitoring system
US4163447 *Jan 31, 1978Aug 7, 1979Thomas OrrHeartbeat rate monitor
US4180062 *Apr 10, 1978Dec 25, 1979James AlbertiPortable childbirth chair with electronic monitoring apparatus
US4185621 *Oct 28, 1977Jan 29, 1980Triad, Inc.Body parameter display incorporating a battery charger
US4224948 *Nov 24, 1978Sep 30, 1980Cramer Frank BWrist borne pulse meter/chronometer
US4256117 *Jun 26, 1978Mar 17, 1981Jacob E. PericaCardiac monitor with stop watch means
US4270547 *Oct 3, 1978Jun 2, 1981University Patents, Inc.Vital signs monitoring system
US4331154 *Oct 15, 1979May 25, 1982Tech Engineering & DesignBlood pressure and heart rate measuring watch
US4353375 *Apr 26, 1977Oct 12, 1982The United States Of America As Represented By The Department Of Health & Human ServicesActivity monitor for ambulatory subjects
US4375219 *Apr 22, 1980Mar 1, 1983Walter SchmidElectrode for detecting bioelectrical signals
US4469107 *Jun 1, 1981Sep 4, 1984Asmar Raymond AAutomatic blood pressure measurement device with threshold compensation circuitry and method for performing the same
US4830014 *Jul 7, 1987May 16, 1989Nellcor IncorporatedSensor having cutaneous conformance
US5197489 *Jun 17, 1991Mar 30, 1993Precision Control Design, Inc.Activity monitoring apparatus with configurable filters
US5573013 *Jun 7, 1995Nov 12, 1996Precision Control Design, Inc.Method of monitoring body movements using activity monitoring apparatus
US5738104 *Nov 8, 1995Apr 14, 1998Salutron, Inc.EKG based heart rate monitor
US5817008 *Oct 31, 1996Oct 6, 1998Spacelabs Medical, Inc.Conformal pulse oximetry sensor and monitor
US5876350 *Nov 7, 1996Mar 2, 1999Salutron, Inc.EKG based heart rate monitor with digital filter and enhancement signal processor
US5891021 *Jun 3, 1998Apr 6, 1999Perdue Holdings, Inc.Partially rigid-partially flexible electro-optical sensor for fingertip transillumination
US6160480 *Sep 24, 1999Dec 12, 2000Su-Yueh; Hsien HuangWireless inline-skate and skate board pulse watch with speed and heart rate monitoring
US6491647Sep 23, 1999Dec 10, 2002Active Signal Technologies, Inc.Physiological sensing device
US6622034Sep 8, 2000Sep 16, 2003Imagenix, Inc.Oximeter sensor with functional liner
US7174277Jun 20, 2003Feb 6, 2007Phatrat Technology LlcProduct integrity systems and associated methods
US7354383Dec 5, 2006Apr 8, 2008Ilir BardhaJump rope with physiological monitor
US7451056May 15, 2006Nov 11, 2008Phatrat Technology, LlcActivity monitoring systems and methods
US7512515May 10, 2007Mar 31, 2009Apple Inc.Activity monitoring systems and methods
US7552031Dec 28, 2006Jun 23, 2009Apple Inc.Personal items network, and associated methods
US7627451May 10, 2007Dec 1, 2009Apple Inc.Movement and event systems and associated methods
US7640135Sep 28, 2007Dec 29, 2009Phatrat Technology, LlcSystem and method for determining airtime using free fall
US7643895May 22, 2006Jan 5, 2010Apple Inc.Portable media device with workout support
US7693668Jun 9, 2008Apr 6, 2010Phatrat Technology, LlcImpact reporting head gear system and method
US7698101Mar 7, 2007Apr 13, 2010Apple Inc.Smart garment
US7813715Aug 30, 2006Oct 12, 2010Apple Inc.Automated pairing of wireless accessories with host devices
US7856339Oct 2, 2007Dec 21, 2010Phatrat Technology, LlcProduct integrity tracking shipping label, system and associated method
US7857768Oct 10, 2008Dec 28, 2010Starr Life Sciences CorporationIntegrated tail mounted blood pressure monitor and pulse oximeter system for animal research
US7860666Apr 2, 2010Dec 28, 2010Phatrat Technology, LlcSystems and methods for determining drop distance and speed of moving sportsmen involved in board sports
US7911339Oct 18, 2006Mar 22, 2011Apple Inc.Shoe wear-out sensor, body-bar sensing system, unitless activity assessment and associated methods
US7913297Aug 30, 2006Mar 22, 2011Apple Inc.Pairing of wireless devices using a wired medium
US7991565Nov 9, 2010Aug 2, 2011Phatrat Technology, LlcSystem and method for non-wirelessly determining free-fall of a moving sportsman
US8005624Apr 26, 2005Aug 23, 2011Starr Life Sciences Corp.Medical devices and techniques for rodent and small mammalian based research
US8036851Feb 13, 2009Oct 11, 2011Apple Inc.Activity monitoring systems and methods
US8060229Dec 11, 2009Nov 15, 2011Apple Inc.Portable media device with workout support
US8073984May 22, 2006Dec 6, 2011Apple Inc.Communication protocol for use with portable electronic devices
US8099258Feb 25, 2010Jan 17, 2012Apple Inc.Smart garment
US8126675Dec 14, 2010Feb 28, 2012Phatrat Technology, LlcProduct integrity tracking shipping label, and associated method
US8181233Mar 18, 2011May 15, 2012Apple Inc.Pairing of wireless devices using a wired medium
US8217788Feb 24, 2011Jul 10, 2012Vock Curtis AShoe wear-out sensor, body-bar sensing system, unitless activity assessment and associated methods
US8239146Jul 25, 2011Aug 7, 2012PhatRat Technology, LLPBoard sports sensing devices, and associated methods
US8280681Nov 23, 2009Oct 2, 2012Phatrat Technology, LlcPressure-based weight monitoring system for determining improper walking or running
US8280682Dec 17, 2001Oct 2, 2012Tvipr, LlcDevice for monitoring movement of shipped goods
US8298154Jan 10, 2008Oct 30, 2012Starr Life Sciences CorporationTechniques for accurately deriving physiologic parameters of a subject from photoplethysmographic measurements
US8346987Oct 13, 2011Jan 1, 2013Apple Inc.Communication protocol for use with portable electronic devices
US8352211Sep 13, 2011Jan 8, 2013Apple Inc.Activity monitoring systems and methods
US8374825Apr 22, 2009Feb 12, 2013Apple Inc.Personal items network, and associated methods
US8396687Feb 13, 2012Mar 12, 2013Phatrat Technology, LlcMachine logic airtime sensor for board sports
US8428904Jan 23, 2012Apr 23, 2013Tvipr, LlcProduct integrity tracking system, shipping label, and associated method
US8620600Aug 6, 2012Dec 31, 2013Phatrat Technology, LlcSystem for assessing and displaying activity of a sportsman
US8660814Apr 19, 2013Feb 25, 2014Tvipr, LlcPackage management system for tracking shipment and product integrity
US8688406Feb 7, 2013Apr 1, 2014Apple Inc.Personal items network, and associated methods
US8749380Jul 9, 2012Jun 10, 2014Apple Inc.Shoe wear-out sensor, body-bar sensing system, unitless activity assessment and associated methods
USRE36000 *May 10, 1995Dec 22, 1998Nellcor Puritan Bennett IncorporatedAdhesive pulse oximeter sensor with reusable portion
DE4139709A1 *Dec 2, 1991Oct 22, 1992Colin ElectronicsPulswellenfuehler
EP0165505A1 *May 24, 1985Dec 27, 1985Walter A. MaierDevice for the continuous measurement of the human heart pulse
EP0209351A1 *Jul 14, 1986Jan 21, 1987Progress Equities IncorporatedElectronic timepiece having a radiation dose rate meter
EP1328852A1 *Sep 19, 2001Jul 23, 2003Sardool Singh LallTime keeping system and watch
EP2361550A2Dec 10, 2002Aug 31, 2011Medic4all AGMethod and device for measuring physiological parameters at the wrist
EP2361555A2Dec 10, 2002Aug 31, 2011Medic4all AGMethod and device for measuring physiological parameters at the wrist
WO1980000655A1 *Apr 9, 1979Apr 17, 1980J AlbertiPortable childbirth chair
WO1980000912A1 *Nov 9, 1979May 15, 1980Sigalos JWrist-type pulse monitor
WO2003050643A2Dec 10, 2002Jun 19, 2003Medic4All AgMethod and device for measuring physiological parameters at the wrist
Classifications
U.S. Classification600/503, 968/886
International ClassificationG04G21/02, A61B5/024
Cooperative ClassificationA61B5/02438, G04G21/025, A61B5/024
European ClassificationA61B5/024F, A61B5/024, G04G21/02B