Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3807403 A
Publication typeGrant
Publication dateApr 30, 1974
Filing dateJun 14, 1972
Priority dateJun 14, 1972
Publication numberUS 3807403 A, US 3807403A, US-A-3807403, US3807403 A, US3807403A
InventorsJ Andera, J Stumpf
Original AssigneeFrigitronics Of Conn Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cryosurgical apparatus
US 3807403 A
Abstract
There is disclosed a cryosurgical apparatus of the type which operates from a source of compressed gas. It includes an improved nozzle which is substantially less critical tnan prior art nozzles and permits simplified and less expensive construction. A defrost valve in the exhaust conduit permits easy and quiet operation by the surgeon. An insulator tube is resiliently secured to the probe to allow thermal expansion and contraction without stress.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent /1191 Stumpf et a].

l 11] 3,807,403 Apr. 30, 1974 Filed:

CRYOSURGICAL APPARATUS Inventors: Joseph C.,. Stumpf, Fairfield; Joseph FAnderaITrumbull, both of Conn.

Assignee: Frigitronics of Conn. Inc., Skelton,

Conn.

June 14, 1972 Appl. No.: 262,543

US. (:1 1211/3011, 62/293, 62/514 1111. c1. A6lb 17/36, A61f 7/12 Field of Search 62/293, 514; l28/303.1,

References Cited UNITED STATES PATENTS Crump et al l28/303.1

Amoils 128/303.l Crump et al.... l28/303.l Wallach l28/303.l

Primary ExaminerChanning L. Pace Attorney, Agent, or FirmBuckles and Bramblett ABSTRACT There is disclosed a cryosurgical apparatus of the type which operates from a source of compressed gas. It includes an improved nozzle which is substantially less critical tnan prior art nozzles and permits simplified andless expensive construction. A defrost valve in the exhaust conduit permits easy and quiet operation by the surgeon. An insulator tube is resiliently secured to the probe to allow thermal expansion and contraction without stress.

The foregoing abstract is not [to be taken either as a complete exposition or as a limitation of the present invention. In order. to understand the full nature and extent of the technical disclosure of this application, reference must be had to the following detailed description and the accompanying drawings as well as to the claims.

6 Claims, 13 Drawing Figures alamlw fATENTEDAPR 30 can SHEET 1 0F 2 PATENTEBAPR 30 m4 SHEEI E OF 2' iln' VIIIIIIII I'll!!! I CRYOSURGICAL APPARATUS BACKGROUND OF THE INVENTION This invention pertains to cryosurgical instruments of the type which are cooled under. the influence of high pressure gas escaping from an orifice. Instruments of this type are well known in the art and are widely employed for a number of surgical procedures such as the necrosis of diseased tissue. Several gases exhibit the Joule Thomson effect and may be used in the operation of the instrument. The most common, however, are nitrous oxide and carbon dioxide.

In instruments of this type, the gas expansion orifice is of an extremely small size and in all prior art instruments the spacing between the orifice and the inner wall of the cooling tip is extremely critical. For example, with prior art instruments, the orifice is positioned approximately 0.050 inch from the inner wall of the tip and the permitted tolerance is only 0.010 inch. This resultsin such instruments being difficult and costly to manufacture. For example, the parts of such instruments are commonly threaded so that they may be factory adjusted prior to shipment.

Another problem connected with prior art instruments of this type is found in the exhaust valve of intruments which have controlled defrost. For example, one such instrument is normally warm, which means that the exhaust valve is normally closed and the device is filled with compressed gas at bottle pressure As the bottle gas prssure may be commonly as high as 800 psi, it will be quite apparent that this creates an explosion hazard. The exhaust valve used in this prior art device comprises a cylindrical piston which seats against a small exhaust orifice and is retained in the seated position by means of a heavy spring The piston is raised against the force of a spring by means of a finger operated toggle. When the surgeon wishes tocool the probe tip, he must apply substantial force to depress the toggle which is, itself, detrimental, particularly in the case of very delicate surgical procedures. Secondly, as soon as the piston begins to leave the orifice, the full bottle pressure, which was formerly applied only to a small area of the piston, is now applied to the full area of the piston end, slamming the piston open with an explosiveJike report. I

Still another problem with prior art devices arises from the fact that they are subject to considerable thermal stress. For example, it is usually desirable to provide an insulated housing to prevent adherence to healthy tissue. This housing. should preferably remain at room temperature. However, the tip and exhaust conduit may be cooled to temperatures as low as -89C. The resultant contraction may result in substantial stresses at the junctures of the cold and warm parts.

SUMMARY OF THE INVENTION The invention comprises a gas operated cryosurgical instrument including a tubular exhaust conduit terminating at one end in a hollow probe tip of high thermal conductivity. A high pressure gas delivery conduit extends through the exhaust conduit and terminates at a nozzle within the probe tip. Thenozzle has a cylindrical gas discharge passage of smaller diameter than the delivery conduit and a smoothly curved reduction passage therebetween. A normally open valve is connected in fluid flow relationship with the exhaust conduit. An insulator tube surrounds but is spaced from the exhaust conduit and is connected thereto by-a resilient connection.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a cryosurgical instrument in accordance with the present invention shown connected to a source of bottled gas;

FIG. 2 is an enlarged cross section taken through the instrument of FIG. 1;

FIG. 3 is an enlarged cross section of the exhaust valve of FIG. 2;

FIG. 4 is a greatly enlarged cross section of the nozzle portion of the apparatus;

FIG. 5 is an illustration of the gas jet obtained with the nozzle of FIG/4;

FIG. 6 is a cross section taken substantially along the line 6-6 of FIG. 5; g

FIG. 7 is an illustration of one type nozzle used in the .prior art;

FIG. 8 is a cross section taken substantially along the line 88 of FIG. 7;

FIG. 9 is an illustration of another type of nozzle used in the prior art;

FIG. 10 is an enlarged cross section showing the orifice of the FIG. 9 nozzle;

FIG. 11 shows still another type of nozzle used in the prior art;

FIG. 12 illustrates the resilient connection between the warm insulator tube and the cold portions of the probe; and g FIG. 13 is an illustration similar to FIG. 12 showing the manner in which the resilient connection operates.

DESCRIPTION OF THE PREFERRED EMBODIMENT With particular reference to FIG. 1, there is disclosed an instrument of the type utilized in treating cervicitis. It comprises an elongated probe 10 mounted in a handle 12 and terminating in a substantially conical applicator tip 14. The other end of the probe extends from the handle and is connected to a line 16 which, in turn, is connected to a suitable source 18 of pressurized gas. Atrigger 20 extends from the handle for selective defrosting as will be explained.

Turning now'to FIG. 2, the handle 12 will be seen to support the rear portion 22a of a stainless steel insulator tube 22. ,The rear portion 220 and a forward portion 22b are each welded to the circumferential flange 24 of an internally threaded sleeve 26. Threaded into sleeve 26 is a bushing 28 which is welded to the end of an exhaust tube 30. The end of exhaust tube 30 has a bevelled valve seat 32 as shown in FIG. 3. The other end of exhaust tube 30 is welded to a bushing 34 which, in turn, is welded to the cylindrical stem 36 of the hollow copper tip 14. The forward end of the insulator tube 22 extends over the surface of stem 36 but is not secured thereto. Instead, a resilient bushing 38 frictionally engages both the exhaust tube 30 and the insulator tube 32.

The line 16 is a coaxial conduit comprising a silicon coated fiberglass exhaust line 40 secured by a spring 42 to the end of insulator tube 22. Carried within the exhaust line is a high pressure delivery line 44 secured by means of a high pressure connector 46 to the threaded end 48 of a steel valve member 50 which is illustrated in more detail in FIG. 3.

The valve member 50, in addition to the threaded end 48, has an unthreaded forward portion 52 and a central circumferential flange 54. The forward surface of flange 54 carries a circular knife edge 56. A Teflon valve member 58 is press fitted over the forward portion 52 and has a flat rear surface which engages the knife edge 56. The forward surface of valve seat 58 is tapered to engage the valve seat 32 on exhaust tube 30. The upper end of trigger 20 defines a drilled opening 60 through which the threaded end 48 of valve member 50 extends. It is held in place by a nut 62. The trigger 20 is mounted on a pivot 64 positioned approximately one inch below its upper end. The length of trigger 20 below the pivot 64 is approximately 4 inches in the described embodiment. Welded to the unthreaded forward portion 52 of valve member 50 is the end of a delivery tube 66 which in one embodiment is a 15 gauge stainless steel hypodermic tube having an internal diameter of 0.059 inch. The forward end of delivery tube 66 has a reduced diameter portion forming a nozzle 68 positioned within the hollow probe tip 14.

The construction of nozzle 68 will be best understood by reference to FIG. 4. As will be seen therein, the internal diameter of the delivery tube.66 is reduced via a smooth wall reduction passage 70 to a cylindrical gas discharge passage 72. This configuration is achieved by inserting into the end of the hypodermic tube a hardened wire having an external diameter equal to the desired diameter of the gas discharge passage. The end of the tube is then swaged onto the wire and the wire is removed. In one actual embodiment, the tube 66 has an internal diameter of 0.059 inch and the internal diameter of the gas discharge passage 72 is 0.01065 inch. The distance from the nozzle to the beginning of reduction (A FIG. 4) is 0.20 inch and the distance between the nozzle tip and the end of reduction (B) is 0.12 inch.

The performance of the nozzle 68 is strikingly superior to those of the prior art. The reason for this is not fully understood but is believed to be due to the smooth continuous inner surface formed by the reduction passage 70 and the gas discharge passage 72. This is believed to prevent gas turbulence and permit laminar fiow out of nozzle 68.

FIG. illustrates the gas flow from the nozzle 68 as actually observed in practice. As will be seen, it presents an elongated flame like" appearance and shape. FIGS. 7-11 illustrate three prior art nozzle constructions and the jets obtained thereby. FIGS. 7 and 8 illustrate a pinched tube configuration. FIGS. 9 and illustrate a rolled end construction and FIG. 11 illustrates a type of orifice known as a double reduction orifice which comprises a series of tubes of reduced diameter. The jets from these prior art nozzles appear as indicated. In these prior art nozzles the distance from the orifice to the wall of the applicator tip is very critical and the spacing must be quite close. As an example, this distance may be 0.050 inch with a tolerance of or 0.0l0 inch. In contrast, when utilizing the nozzle of this invention, the distance from the nozzle tip to the wall may be 0.250 inch with a tolerance of or -0.060 inch. Accordingly, by means of this invention, manufacture and assembly are greatly simplified, resulting in a highly effective instrument at a much lower cost.

The resilient tip construction is illustrated in detail in FIGS. 12 and 13. As seen in FIG. 12, the insulator tube 22 is spaced from exhaust tube 30, providing an insulating air space therebetween. The end of the insulator tube 22 slidingly encircles the stem 36 of tip 14. A resilient bushing 38 engages both the insulator tube and the exhaust tube. As the probe tip is cooled, the tip 14 and the exhaust line 30 will both cool and contract. This is shown in an exaggerated manner in FIG. 13 wherein it will be seen that the normal resilience of bushing 38 compensates for expansion and contraction and prevents stresses from building up in the instrument.

The nozzle and the resilient tip construction may be utilized in connection with either a non-defrostable or a defrostable cryosurgical probe. The probe illustrated herein is of the defrostable type. Defrosting is obtained by means of the valve illustrated in detail in FIG. 3. When the valve is in its normally open position, high pressure gas entering through delivery line 44 passes through the hollow passage in the valve member 50 an through delivery tube 66 to nozzle 68. From the nozzle it expands into tip 14, causing the tip to be cooled by the Joule Thomson effect. The expanded gas then passes rearwardly through exhaust tube 30 and out the exhaust line 40. It may then be exhausted to atmosphere through any suitable opening such as the vent 74 shown in FIG. 1. The high pressure exhaust gas tends to maintain the exhaust valve in its normally open position without the need for springs or similar devices. In order to defrost the instrument, the trigger 20 is depressed by the surgeon, whereupon it assumes the dashed line position illustrated in FIG. 2 and forces the Teflon valve member 58 against the bevelled valve seat 32'of the exhaust tube 30. The circular knife edge 56 forms a gas tight seal with the rear of the valve member. With the exhaust valve closed, the gas pressure within tip 14 rises to bottle pressure and the heat of compression causes rapid defrosting of the probe tip. In one embodiment, the diameter of the valve member 58 which is exposed to gas pressure is approximately 0.187 inch. With a bottle pressure of 800 psi, this results in 27 pounds force tending to drive the valve member to the rear. The 4:1 lever ratio of the trigger 20 results in only 6.8 pounds of force being required to close the valve and maintain it in the closed position. As the valve is normally open, it will be closed only for the period of time during which the surgeon desires to defrost the probe tip. Therefore, the instrument is exposed to full bottle pressure only intermittently and for short periods of time, greatly increasing the safety of the apparatus.

It is believed that the construction and operation of this .invention will now be apparent to those skilled in the art. It will also be apparent that a number of variations and modifications may be made in this invention without departing from its spirit and scope. Accordingly, the foregoing description is to be construed as'illustrative only,'rather than limiting. This invention is limited only by the scope of the following claims.

We claim:

1. A gas operated cryosurgical instrument which comprises: a tubular exhaust conduit terminating at one end in a hollow probe tip of high thermal conductivity; a remote source of high pressure gas; a gas delivery conduit extending through said exhaust conduit in fluid flow communication with said source and terminating at a nozzle within said probe tip; normally open valve means connected in fluid flow relationship between said exhaust conduit and atmosphere; and means for controllably closing and opening said valve means.

2. The instrument of claim 1 wherein said valve means comprises: a stationary valve seat defined by saidexhaust conduit; and a moveable valve member carried by said delivery conduit.

3. The instrument of claim 2 wherein said closing means comprises a manually operable trigger connected to advance both of said delivery conduit and valve member.

' 4. A gas operated cryosurgical instrument which comprises: a tubular exhaust conduit terminating at one end in a hollow probe tip of high thermal conductivity; a gas delivery conduit extending through said exhaust conduit and terminating at a nozzle within said probe tip,-said nozzle including a cylindrical gas discharge passage of smaller diameter than said delivery conduit and a smoothly curved reduction passage therebetween; normally open valve means connected in fluid flow relationship between said exhaust conduit and atmosphere; an insulator tube surrounding, but spaced from, said exhaust conduit; resilient means interconnecting said insulatortube and exhaust conduit; and means for controllably closing and opening said valve means. v

5. The instrument of claim 4 wherein said resilient means comprises an annular bushing encircling said exhaust conduit adjacent said probe tip and frictionally engaging both of said exhaust conduit and insulator tube to permit relative motion therebetween.

6. The instrument of claim 5 wherein said probe tip includes a substantially cylindrical stem and said insulator tube encircles one end of said stem in sliding relationship therewith.

UNITED STATES PATENT OFFICE- CERTIFICATE OF CORRECTION Patent No. v3,807,403 Dated April 30-, 19 74 lnvntofls) Joseph G. Stumpf and Joseph F. Andera It is certified that error appears in the above-identified patent and that said Letters Patentare hereby corrected as shown below: IniTitle Page, Column 1, change inventor's name from "Joseph C. Stumpf" to Joseph G. Stumpf--; change address of iAssignee fromv "Skelton" to Shelton-.. In Abstract, Line 4, change "tnan" to --than--. Column 3, line 49, after "nozzle" insert -tip-. Column 4, line 31, change "an" to a.nd-; Column 5, line 20, after "closing" insert and opening--.

Signed and-sealed this 3rd day of September 1974.

(SEAI-i) Attest:

McCOYf M. GIBSON, JR. 0. MARSHALL DANN Attesting Officer] Commissioner of Patents ORM PC4050 (10-69) uscoMM-oc 60376-P69 I U. 5. GOVIINHINT PRINTING OFFICE 1,. O-JI-IIL

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3393679 *Dec 27, 1965Jul 23, 1968Frigitronics Of Conn IncCryosurgical instrument
US3502081 *Apr 5, 1966Mar 24, 1970Amoils Selig PercyCryosurgical instrument
US3575176 *Oct 21, 1968Apr 20, 1971Frigitronics Of Conn IncRechargeable cryosurgical instrument
US3696813 *Oct 6, 1971Oct 10, 1972CryomedicsCryosurgical instrument
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3886945 *Nov 7, 1973Jun 3, 1975Frigitronics Of Conn IncCryosurgical apparatus
US3933156 *Jan 8, 1975Jan 20, 1976Giovanni RiggiCooling apparatus particularly for medical-surgical use
US4211231 *May 15, 1978Jul 8, 1980Cryomedics, Inc.Cryosurgical instrument
US4236518 *Apr 14, 1978Dec 2, 1980Gyne-Tech Instrument CorporationCryogenic device selectively operable in a continuous freezing mode, a continuous thawing mode or a combination thereof
US4345598 *Mar 27, 1980Aug 24, 1982Vyzkumny Ustav Silnoproude ElektrotechnikyCryogenic apparatus for surgery
US4831846 *Apr 12, 1988May 23, 1989The United States Of America As Represented By The United States Department Of EnergyLow temperature cryoprobe
US5433717 *Mar 23, 1993Jul 18, 1995The Regents Of The University Of CaliforniaMagnetic resonance imaging assisted cryosurgery
US5706810 *Jun 2, 1995Jan 13, 1998The Regents Of The University Of CaliforniaMagnetic resonance imaging assisted cryosurgery
US6161543 *Oct 15, 1997Dec 19, 2000Epicor, Inc.Methods of epicardial ablation for creating a lesion around the pulmonary veins
US7083620Jul 17, 2003Aug 1, 2006Medtronic, Inc.Electrosurgical hemostat
US7094235Jan 13, 2004Aug 22, 2006Medtronic, Inc.Method and apparatus for tissue ablation
US7118566Feb 3, 2003Oct 10, 2006Medtronic, Inc.Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US7128740Apr 2, 2003Oct 31, 2006Jacobs Clemens JMethod for interrupting conduction paths within the heart
US7156845Sep 16, 2005Jan 2, 2007Medtronic, Inc.Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US7166105Sep 20, 2005Jan 23, 2007Medtronic, Inc.Pen-type electrosurgical instrument
US7169144Oct 31, 2003Jan 30, 2007Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US7247155May 18, 2004Jul 24, 2007Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US7250048Aug 20, 2004Jul 31, 2007Medtronic, Inc.Ablation system and method of use
US7250051Apr 26, 2006Jul 31, 2007Medtronic, Inc.Method and apparatus for tissue ablation
US7294143Feb 3, 2003Nov 13, 2007Medtronic, Inc.Device and method for ablation of cardiac tissue
US7309325Jun 28, 2005Dec 18, 2007Medtronic, Inc.Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US7347858Oct 14, 2003Mar 25, 2008Medtronic, Inc.Method and system for treatment of atrial tachyarrhythmias
US7364578Dec 3, 2004Apr 29, 2008Medtronic, Inc.System and method of performing an electrosurgical procedure
US7367972Sep 9, 2003May 6, 2008Medtronic, Inc.Ablation system
US7422588Dec 7, 2006Sep 9, 2008Medtronic, Inc.Pen-type electrosurgical instrument
US7435250Feb 18, 2005Oct 14, 2008Medtronic, Inc.Method and apparatus for tissue ablation
US7470272Jun 30, 2004Dec 30, 2008Medtronic, Inc.Device and method for ablating tissue
US7497857Apr 29, 2003Mar 3, 2009Medtronic, Inc.Endocardial dispersive electrode for use with a monopolar RF ablation pen
US7507235May 28, 2002Mar 24, 2009Medtronic, Inc.Method and system for organ positioning and stabilization
US7566334Jun 2, 2005Jul 28, 2009Medtronic, Inc.Ablation device with jaws
US7615015Jun 20, 2003Nov 10, 2009Medtronic, Inc.Focused ultrasound ablation devices having selectively actuatable emitting elements and methods of using the same
US7628780Nov 30, 2004Dec 8, 2009Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US7678108Jun 2, 2005Mar 16, 2010Medtronic, Inc.Loop ablation apparatus and method
US7678111Nov 29, 2005Mar 16, 2010Medtronic, Inc.Device and method for ablating tissue
US7699805Nov 30, 2007Apr 20, 2010Medtronic, Inc.Helical coil apparatus for ablation of tissue
US7706882May 13, 2005Apr 27, 2010Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area
US7706894Apr 26, 2005Apr 27, 2010Medtronic, Inc.Heart wall ablation/mapping catheter and method
US7740623Jun 23, 2005Jun 22, 2010Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US7744562Oct 10, 2006Jun 29, 2010Medtronics, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US7758576Jun 2, 2005Jul 20, 2010Medtronic, Inc.Clamping ablation tool and method
US7758580Jun 2, 2005Jul 20, 2010Medtronic, Inc.Compound bipolar ablation device and method
US7794460Aug 11, 2008Sep 14, 2010Medtronic, Inc.Method of ablating tissue
US7818039Jul 15, 2005Oct 19, 2010Medtronic, Inc.Suction stabilized epicardial ablation devices
US7824399Feb 16, 2006Nov 2, 2010Medtronic, Inc.Ablation system and method of use
US7871409Feb 2, 2009Jan 18, 2011Medtronic, Inc.Endocardial dispersive electrode for use with a monopolar RF ablation pen
US7875028Jul 8, 2009Jan 25, 2011Medtronic, Inc.Ablation device with jaws
US7959626Jul 20, 2007Jun 14, 2011Medtronic, Inc.Transmural ablation systems and methods
US7963963Jan 21, 2005Jun 21, 2011Medtronic, Inc.Electrosurgical hemostat
US7967816Jan 25, 2002Jun 28, 2011Medtronic, Inc.Fluid-assisted electrosurgical instrument with shapeable electrode
US7975703Aug 31, 2006Jul 12, 2011Medtronic, Inc.Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US8162933Mar 3, 2004Apr 24, 2012Medtronic, Inc.Vibration sensitive ablation device and method
US8162941Dec 20, 2010Apr 24, 2012Medtronic, Inc.Ablation device with jaws
US8172837Jun 14, 2010May 8, 2012Medtronic, Inc.Clamping ablation tool and method
US8221402Dec 9, 2005Jul 17, 2012Medtronic, Inc.Method for guiding a medical device
US8221415Jul 27, 2007Jul 17, 2012Medtronic, Inc.Method and apparatus for tissue ablation
US8262649Jul 27, 2007Sep 11, 2012Medtronic, Inc.Method and apparatus for tissue ablation
US8273072Nov 18, 2009Sep 25, 2012Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US8333764May 12, 2004Dec 18, 2012Medtronic, Inc.Device and method for determining tissue thickness and creating cardiac ablation lesions
US8409219Sep 30, 2009Apr 2, 2013Medtronic, Inc.Method and system for placement of electrical lead inside heart
US8414573Oct 11, 2006Apr 9, 2013Medtronic, Inc.Device and method for ablation of cardiac tissue
US8512337Aug 20, 2004Aug 20, 2013Medtronic, Inc.Method and system for treatment of atrial tachyarrhythmias
US8568409Oct 31, 2007Oct 29, 2013Medtronic Advanced Energy LlcFluid-assisted medical devices, systems and methods
US8623010Jun 9, 2009Jan 7, 2014Medtronic, Inc.Cardiac mapping instrument with shapeable electrode
US8632533Feb 23, 2010Jan 21, 2014Medtronic Advanced Energy LlcFluid-assisted electrosurgical device
US8663245Apr 19, 2007Mar 4, 2014Medtronic, Inc.Device for occlusion of a left atrial appendage
US8706260Oct 27, 2011Apr 22, 2014Medtronic, Inc.Heart wall ablation/mapping catheter and method
US8801707Aug 14, 2012Aug 12, 2014Medtronic, Inc.Method and devices for treating atrial fibrillation by mass ablation
US8821488May 13, 2009Sep 2, 2014Medtronic, Inc.Tissue lesion evaluation
EP1102666A1 *Aug 5, 1999May 30, 2001Aga AktiebolagPoint cooling
Classifications
U.S. Classification606/26, 62/51.1, 62/293
International ClassificationA61F7/12, A61B18/02
Cooperative ClassificationF25B2309/021, A61F7/12, A61B18/02, F25B2309/022
European ClassificationA61F7/12, A61B18/02
Legal Events
DateCodeEventDescription
Mar 11, 1992AS27Nunc pro tunc assignment
Free format text: FRIGI ACQUISITION, INC. A DE CORP. 770 RIVER ROAD SHELTON, CONNECTICUT 06484 * COOPERVISION, INC. ACORP. OF NEW YORK : 19911004
Mar 11, 1992ASAssignment
Owner name: COOPERVISION, INC. A NY CORPORATION, NEW YORK
Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:FRIGI ACQUISITION, INC., A CORPORATION OF DE;REEL/FRAME:006047/0568
Effective date: 19911004
Owner name: FRIGI ACQUISITION, INC., CONNECTICUT
Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:COOPERVISION, INC. A CORP. OF NEW YORK;REEL/FRAME:006047/0578
Jul 16, 1990ASAssignment
Owner name: FRIGITRONICS OF CONN., INC.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK COMMERCIAL CORPORATION, THE;REEL/FRAME:005395/0050
Effective date: 19900612
Jul 16, 1990AS17Release by secured party
Owner name: BANK OF NEW YORK COMMERCIAL CORPORATION, THE
Effective date: 19900612
Owner name: FRIGITRONICS OF CONN., INC.
Mar 28, 1990ASAssignment
Owner name: FRIGI ACQUISITION, INC., 3145 PORTER DRIVE, PALO A
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FRIGITRONICS OF CONN., INC.;REEL/FRAME:005262/0818
Effective date: 19900316
Owner name: FRIGI ACQUISITION, INC., A CORP. OF DE, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FRIGITRONICS OF CONN., INC.;REEL/FRAME:005262/0818
May 20, 1988AS02Assignment of assignor's interest
Owner name: FRIGITRONICS INC., A DE CORPORATION
Owner name: FRIGITRONICS OF CONN., INC.
Effective date: 19870724
May 20, 1988AS06Security interest
Owner name: BANK OF NEW YORK COMMERCIAL CORPORATION, THE, 530
Owner name: FRIGITRONICS OF CONNECTICUT, INC.,
Effective date: 19870724
May 20, 1988ASAssignment
Owner name: BANK OF NEW YORK COMMERCIAL CORPORATION, THE, 530
Free format text: SECURITY INTEREST;ASSIGNOR:FRIGITRONICS OF CONNECTICUT, INC.,;REEL/FRAME:004935/0800
Owner name: FRIGITRONICS INC., A DE CORPORATION
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FRIGITRONICS OF CONN., INC.;REEL/FRAME:004935/0794
Effective date: 19870724
Oct 26, 1987ASAssignment
Owner name: FRIGITRONICS OF CONN., INC.
Free format text: MERGER;ASSIGNORS:FRG TWENTY-NINE CORPORATION (MERGED INTO);FRG TWENTY-EIGHT CORPORATION (CHANGED TO);REEL/FRAME:004858/0786
Effective date: 19870126
Owner name: FRIGITRONICS, INC., A CORP. OF DE
Free format text: MERGER;ASSIGNORS:FRIGITRONICS, INC., A CORP. OF CT.;FRIGITRONICS OF CONN., INC., A CORP. OF CT;REEL/FRAME:004858/0780;SIGNING DATES FROM 19680314 TO 19861208