Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3807892 A
Publication typeGrant
Publication dateApr 30, 1974
Filing dateJan 18, 1973
Priority dateJan 18, 1972
Also published asCA967095A1, DE2202858B1, DE2202858C2
Publication numberUS 3807892 A, US 3807892A, US-A-3807892, US3807892 A, US3807892A
InventorsO Frei, O Iten
Original AssigneeBbc Sulzer Turbomaschinen
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cooled guide blade for a gas turbine
US 3807892 A
Abstract
The body of the blade is provided with a first coolant flow path at the front of the blade and a second tortuous coolant flow path behind the first flow path. Both flow paths terminate at the trailing edge of the blade. The first path is subjected to a low pressure drop and with a narrow cross-section allows the collant to flow through at high velocity to obtain a rapid heat transfer. The second path is also subjected to a low pressure drop, but with a larger cross-section in the middle part of the blade body and restrictors at the trailing edge, also allows discharge at high velocity.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 191 Frei et al.

[ Apr. 30, 1974 1 1 COOLED GUIDE BLADE FOR A GAS TURBINE [75] Inventors: Oskar Frei, Winterthur; Oskar lten,

Bulach, both of Switzerland [22'] Filed: Jan. 18, 1973 [21] App]. No.: 324,779

[56] References Cited UNITED STATES PATENTS I ll/197l Schneider 416/97 10/1970 Kercher 416/97 3,017,159 1/1962 Foster et al 416/90 Primary ExaminerCarlton R. Croyle Assistant Examiner L0uis J. Casaregola Attorney, Agent, or FirmKenyon & Kenyon Reilly Carr & Chapin [57] ABSTRACT The body of the blade is provided with a first coolant flow path at the front of the blade and a second tortuous coolant flow path behind the first flow path. Both flow paths terminate at the trailing edge of the blade. The first path is subjected to a low pressuredrop and with a narrow cross-section allows the collant to flow through atvhigh velocity to obtain a rapid heat transfer. The second path is also subjected to a low pressure drop, but with a larger cross-section in the middle part of the blade body and restrictors at the trailing edge, also allows discharge at high velocity.

8 Claims, 4 Drawing Figures COOLED GUIDE BLADE FOR A GAS TURBINE This invention relates to a cooled guide blade for a gas turbine.

Generally, in order to achieve cooling of the gas blades, both guide blades and rotor blades, in an operating turbine, two contradictory conditions must be basically satisfied. First, good cooling requires high coefficients of heat transmission which, in turn, involve high flow velocities and relatively high pressure losses. Second, the amount of cooling air required by each blade should be as small as possible because the cooling air branched off, for example, from a compressor represents a loss in a certain sense and results in a deterioration of the efficiency of the entire process. Moreover, in practice it frequently occurs that the pressure gradient available between the cooling air entry into the blade and the cooling air exit from the blade is relatively low. Thus, the required velocities cannot be obtained or, if obtained because a high consumption of cooling air can be tolerated, is done only with difficulty.

In order to overcome these basic problems, it has been known to provide constructions in which the cooling air is passed once through the blade through a plurality of ducts radially of the machine from the interior to the exterior. The required velocities can be easily obtained with this system but require relatively large quantities of air. Moreover, the cooling capacity of the air in this system is only very incompletely utilized.

In other systems, one or more streams of cooling air are blown into the blade, generally through the blade root. The flows have then been branched and/or are repeatedly reversed before emerging from' the blade through air exits which may be disposed in the blade front or tip and/or the blade root or in the trailing edge. If the flow ducts in these constructions are relatively narrow to achieve the necessary velocities, this will necessarily result in high pressure losses. This applies particularly to constructions in which the cooling air in the zone of the blade front or in the middle of the blade is fed into the blade root and is guided to the trailing edge after repeated reversals. ln constructions in which the cooling air streams in the blade are branched through a perforated bulkhead, any defined distribution of branch flows can hardly be achieved, for example, because of uneven bulkhead perforations. Thus, in some circumstances, either specific parts receive only insufficient cooling or unnecessarily large quantities of cooling air are required.

Accordingly, it is an object of the invention to achieve optimum cooling of guide blades with a relatively low consumption of cooling air and a relatively low available pressure gradient.

It is another object of the invention to obtain high coefficients of heat transfer and intensive cooling actions in a guide blade of a gas turbine.

It is another object of the invention to provide a simple technique for cooling gas turbine blades.

It is another object of the invention to provide a guide blade for a gas turbine of relatively precise construction which can be easily and effectively cooled.

Briefly, the invention provides a guide blade for a gas turbine comprising a blade body having a blade front and a trailing edge with two separate flow paths in which a coolant flow is reversed at least once for cooling different portions of the blade. To this end, a first means defines a first flow path in the body immediately downstream of and parallel to the blade front. This first flow path includes at least two parallel portions to reverse the flow of coolant at least once and terminates in a first exit in or near to the trailing edge of the blade. In addition, a second means defines a second flow path in the body which includes at least two parallel portions to reverse a second flow of coolant at least once and also terminates in a second exit in or near to the trailing edge of the blade. Both flow paths emanate from a common pressure chamber in the blade body which is adapted to receive a supply of coolant, such as air while only the first flow path passes through a second pressure chamber on the opposite side of the body.

The respective pressure chambers can be defined in part by blade coverings or boundary jackets which extend outwardly from the blade front.

By contrast to previous constructions, the direct stream flowing in the longitudinal direction of the blade front not only cools the blade front because of its high velocity but is also utilized to absorb a substantial part of the heat on the trailing edge without the pressure losses becoming excessively high. This latter effect is due to the practically loss-free pressure chamber which is disposed between the blade front and air exit. It is also advantageous to proportion the blade height of the two air exits, given an at least approximately constant exit cross-section, so that the ratio of the relative proportions of blade height for the two air exits vary at least approximately relative to each other as the mount of air in the two flow paths.

By completely separating the two flow paths, a defined distribution of the cooling air flow rate over the two part flows is obtainable. This dispenses with the need to make unnecessarily large quantities of cooling air available to compensate for a fluctuating distribution over both flows. ln constructional terms, defined distribution over the part flows may beachieved in known manner by the use of suitable restrictors in the air exits. Such restrictors may be varied to a certain extent and may be individually adjusted on the basis of tests in order to vary the distribution over a small range and, for example, to compensate for manufacturing inaccuracies.

The second flow path may be advantageously constructed to extend parallel to the first flow path with at least two reversals through and to be practically free'sr pressure isss'sas far as the seeoaa'revsrsai; The portions of the body which define this second flow path may also be provided with boundary walls on which fins are provided at least over a portion of the walls to project into the flow path. The purpose of this is to increase the cooled surface in the low-pressure loss zone of low flow velocity and thus to improve cooling thereat.

It is generally known that because of their higher mechanical strength, more particularly of the higher hightemperature strength, their materials and simpler method of production, or in the absence of the need for finish-machining, cast blades are preferred over forged and welded blades. The novel blade is therefore advantageously constructed so that the blade together with the blade coverings or boundary jackets of the pressure chambers is a precision casting. This casting can then be provided with a separating plate, as an insert, which is mounted in the casting in gas-tight manner, for example by welding, to. separate the two flow paths from each other as well as with .two cover plates which enclose the pressure chambers against the ambient zone.

If a plurality of individual blades are combined in known manner into a blade segment, the construction enables the entire blade segments, that is the blades of the segment and the jacket boundaries of the common external and internal pressure chambers to be integrally cast while a separate separating plate is provided for each blade and cover plates are provided which are common to the entire segment.

These and other objects and advantages of the invention will become more apparent from the following detailed description and appended claims taken in conjunction with the accompanying drawings in which:

FIG. 1 illustrates a longitudinal sectional view taken along. line I-I of FIG. 2 of a guide blade according to the invention; 1

FIG. 2 illustrates a sectional view taken on line IIII of FIG. 1; and

FIGS. 3 and 4 each illustrates in the same manner as in FIG. 2 a detail of the trailing edge of a blade according to FIG. 1 but of different construction.

Referring to FIG. I, the guide blade to which hot gases flow from the left (arrow A) as viewed, through a flow duct 2 from one or more combustion chambers (not shown) is retained in a guide blade support 3 within a gas turbine (not shown). The hot gas duct 2 is defined in the upstream direction by different parts of a hot gas casing 4 in which flow paths 5, 6 are provided for cooling the blade from the outside. These flow paths are adapted to conduct a coolant such as cooling air from an air receiver (not shown) which surrounds the guide blade support 3 along the inner and outer boundaries of the duct 2. The cooling air flow paths 5, 6 also cool the parts 4a of the hot gas casing 4 of hightemperature resistant materials and separate these parts 4a from another part 4b of the casing 4 which is not directly subjected to the hot gases or from the guide blade support 3. Both of these latter parts 4b, 3 are constructed of ferritic material having a lower hightemperature strength. Downstream of the illustrated guide blade, the guide blade support 3 is also protected against hot gases by a filler ring segment 9 which is also constructed of high-temperature resistant material. The cooling air for the blade first passes from the air receiver (not shown) through an aperture 10 in the blade support 3 into an intermediate chamber 11. The air then flows through an aperture 12 into a pressure chamber 13 which is disposed in an outer blade covering or boundary jacket 14'.

As shown, the blade body has a blade front 8 facing the duct 2 and a trailing edge 19 disposed downstream of the blade front 8. In addition, two flow paths are defined by various means within the blade body. These flow paths serve to pass cooling air through the blade and extend from the pressure chamber 13. The first flow path leads into a second pressure chamber 16 through a relatively narrow duct 15 disposed immediately downstream of the blade front 8. The second pressure chamber 16 is shown disposed in an inner blade covering or boundary jacket 17. Air which passes through the first path leaves the pressure chamber 16, through which the air flows practically without pressure loss, and passes through an air exit 18 which extends over part of the blade height in the zone of the trailing edge 19. This air exit 18 may be disposed in the trailing edge itself as shown in FIG. 2 or may be disposed on the suction side (FIG. 3) or on the delivery side (FIG. 4) of the blade.

The second flow path extends parallel to the first flow path and includes a relatively wide duct 20 in the blade body which is connected via a reversal chamber 21 in which the flow passes through a first reversal of to a duct 22 which is also relatively wide and is disposed in the middle part of the blade. The duct 22 communicates via a reversal chamber 23, of optimum construction for the flow because of the pressure-loss, in which the flow passes through a further reversal of 180 to an air exit 24 which is also disposed in the zone of the trailing edge 19. This exit 24 is separated by a bulkhead 26 from the air exit 18 for the first flow path and fills the height of the blade 1 which is not covered by the exit 18. The air exit 24 may, of course, also be disposed in the trailing edge 19 itself or on the suction side or on the delivery side of the blade. In addition, the duct 22 is provided with fins 25 over the height of the opposed boundary walls to increase the heat dissipating surfaces.

The relatively low available pressure gradient between the pressure chamber l3-and the first duct 2 in the zone of the trailing edge 19 of the blade in the first flow path allows a relatively high velocity to be obtained in the arrow duct 15. This, therefore, allows a large coefficient of heat transfer and intensive cooling of the blade front 8 to be achieved. In a practical embodiment, approximately half the pressure gradient is utilized in this way. After flowing through the pressure chamber 16 practically without loss, the remaining positive pressure relative to the duct 2 results in high velocities in the air exit 18 and therefore in good cooling of part of the blade height in the zone of the trailing edge 19.

In the second flow path, the air enters the reversal chamber 23 with relatively low velocities and practically without pressure losses, that is, with the exception of the two reversals through 180. The entire available pressure gradient is thus utilized to achieve the most uniform possible discharge at high velocities and corresponding good cooling of the trailing edge l9over the remaining blade height in the zone of the air exit 24.

The flow resistances, which may be altered to a certain extent by modification of the fins 30 which act as restrictors and guide surfaces in the air exits 18 and 24, may be experimentally matched to each other in both flow paths so that the available amount of cooling air is distributed over both paths in a ratio which is at least approximately constant. This ratio will then also define the relative height of the bulkhead 26 by means of which the entire blade height is subdivided over the two air exits l8 and 24 approximately in'the ratio of the part quantities, if the exit cross-section is approximately constant over the entire height.

By contrast to known constructions, subdivision of the amount of cooling air in an at least approximately constant ratio ensures reliable cooling of all blade parts in all cases with the lowest consumption of cooling air. Subdivision over two flow paths and loss-free flow over certain sections on these two pathsprovides high velocities in the other parts of the flow path even if the available pressure gradients are low. Accordingly, high coefficients of heat transfer and intensive cooling actions are obtained in these ranges. In terms of manufacture, the blade together with the coverings l4 and 17 can be made as a precision casting of a hightemperature resistant cast alloy. After completion of the casting, a separating plate 27 is welded therein sealtight manner to separate the reversing chamber 21 from the delivery chamber 16. Cover plates 28 and 29 which are also subsequently welded in position in sealtight manner are provided to separate the delivery chambers l3, 16 from the ambient zone.

Where the guide blades are constructed as blade segments in a guide blade ring with the blade segments comprising a plurality of blades, such can also be produced as a casting by the precision casting method. In this case, the separating plates 27 are then co-ordinated to the individual blades but the cover plates 28 and 29 are common to the entire segment.

What is claimed is:

l. A cooled guide blade for a gas turbine comprising a blade body having a blade front and a trailing edge;

a first pressure chamber in said body for receiving a supply of coolant;

means defining a first flow path in said body immediately downstream of and parallel to said blade front, said flow path being in communication with said pressure chamber and including at least two parallel portions to reverse a flow of coolant therethrough at least once;

a second pressure chamber in said body in communication with said flow path between said parallel portions on an opposite side of said blade body from said first pressure chamber;

a first exit in said trailing edge communicating with said flow path for passage of a first coolant flow therethrough, said exit extending along a part of the length of said trailing edge;

means defining a second flow path independent of said first flow path in said body extending from said first chamber, said second flow path having at least two parallel portions to reverse a second flow of coolant therethrough at least once; and

a second exit at said trailing edge communicating with said second flow path for passage of the see- 0nd coolant flow therethrough.

2. A cooled guide blade as set forth in claim 1 which further comprises an outer cover plate over said first pressure chamber and an inner cover plate over said second pressure chamber. v

3. A cooled guide blade as set forth in claim 1 wherein said second flow path is parallel to said first flow path and wherein said second flow path includes at least three parallel portions and a pair of reversal portions interconnecting said parallel portions in series to deflect the second flow of coolant through consecutive parallel portions by 4. A cooled guide blade as set forth in claim 3 wherein the last of said parallel portions of said second flow path includes means for creatinga pressure loss in the flow of coolant passing therethrough.

5. A cooled guide blade as set forth in claim 1 wherein said means defining said second flow path includes boundary walls and fins on at least a portion of said walls projecting into said second flow path.

6. A cooled guide blade as set forth in claim 1 wherein said exits each have a constant cross-sectional exit opening and wherein said exits are of a length relative to each other in a ratio proportional to the amount of coolant flowing through each exit.

7. A cooled guide blade as set forth in claim 1 wherein said body further includes a first covering adjacent said blade front disposed to define a portion of said first pressure chamber and a second covering adjacent said blade front disposed to define a portion of said second pressure chamber.

8. A cooled guide blade as set forth in claim 7 wherein said body and said coverings form an integral one-piece precision casting and which further comprises a separating plate disposed in said body in sealtight manner between said flow paths, an outer cover plate disposed in said body in seal-tight manner over said first chamber and an inner cover plate disposed in said body in seal-tight manner over said second chamber and opposite to said separating plate relative to said second chamber.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION 9 Dated Ap 3 -97 Oskar Frei et a1 Patent No.

Inventor(s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

In the title p ag e o the patent insert the following:

-- Switzerland 699/72 filed January 18, 1972 to which the right of priority is claimed.--

Column 2, line 30, "mount" should be -'-amount--.

Signed and sealed this 1st day of October 1974.

(SEAL) Attest:

C. MARSHALL DANN McCOY M. GIBSON JR. Attesting Officer Commissioner of Patents USCOMM'DC 60376-P69 U.S. GOVERNMENT PRINTING OFFICE ISIQ 0-356-335,

FORM PO-IOSO (10-69)

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3017159 *Nov 23, 1956Jan 16, 1962Curtiss Wright CorpHollow blade construction
US3533711 *Feb 26, 1966Oct 13, 1970Gen ElectricCooled vane structure for high temperature turbines
US3623825 *Nov 13, 1969Nov 30, 1971Avco CorpLiquid-metal-filled rotor blade
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3989412 *Jun 17, 1975Nov 2, 1976Brown Boveri-Sulzer Turbomachinery, Ltd.Cooled rotor blade for a gas turbine
US4019831 *Aug 28, 1975Apr 26, 1977Brown Boveri Sulzer Turbomachinery Ltd.Cooled rotor blade for a gas turbine
US4025226 *Oct 3, 1975May 24, 1977United Technologies CorporationAir cooled turbine vane
US4236870 *Dec 27, 1977Dec 2, 1980United Technologies CorporationTurbine blade
US4278400 *Sep 5, 1978Jul 14, 1981United Technologies CorporationCoolable rotor blade
US4293275 *Sep 14, 1979Oct 6, 1981Hitachi, Ltd.Gas turbine blade cooling structure
US4303374 *Dec 15, 1978Dec 1, 1981General Electric CompanyFilm cooled airfoil body
US4330235 *Feb 27, 1980May 18, 1982Tokyo Shibaura Denki Kabushiki KaishaCooling apparatus for gas turbine blades
US4462754 *Jun 22, 1982Jul 31, 1984Rolls Royce LimitedTurbine blade for gas turbine engine
US4474532 *Dec 28, 1981Oct 2, 1984United Technologies CorporationCoolable airfoil for a rotary machine
US4753575 *Aug 6, 1987Jun 28, 1988United Technologies CorporationTurbine blade
US4767268 *Aug 6, 1987Aug 30, 1988United Technologies CorporationTriple pass cooled airfoil
US5030060 *Oct 20, 1988Jul 9, 1991The United States Of America As Represented By The Secretary Of The Air ForceMethod and apparatus for cooling high temperature ceramic turbine blade portions
US5217347 *Sep 3, 1992Jun 8, 1993Societe Nationale D'etude Et De Construction De Moteurs D'aviation (S.N.E.C.M.A.)Mounting system for a stator vane
US5503529 *Dec 8, 1994Apr 2, 1996General Electric CompanyTurbine blade having angled ejection slot
US5536143 *Mar 31, 1995Jul 16, 1996General Electric Co.Closed circuit steam cooled bucket
US5591002 *Aug 1, 1995Jan 7, 1997General Electric Co.Closed or open air cooling circuits for nozzle segments with wheelspace purge
US5634766 *Mar 31, 1995Jun 3, 1997General Electric Co.Turbine stator vane segments having combined air and steam cooling circuits
US5741117 *Oct 22, 1996Apr 21, 1998United Technologies CorporationMethod for cooling a gas turbine stator vane
US5743708 *Jul 2, 1996Apr 28, 1998General Electric Co.Turbine stator vane segments having combined air and steam cooling circuits
US5902093 *Aug 22, 1997May 11, 1999General Electric CompanyCrack arresting rotor blade
US6343911 *Apr 5, 2000Feb 5, 2002General Electric CompanySide wall cooling for nozzle segments for a gas turbine
US6375415 *Apr 25, 2000Apr 23, 2002General Electric CompanyHook support for a closed circuit fluid cooled gas turbine nozzle stage segment
US6386825 *Apr 11, 2000May 14, 2002General Electric CompanyApparatus and methods for impingement cooling of a side wall of a turbine nozzle segment
US6419445 *Apr 11, 2000Jul 16, 2002General Electric CompanyApparatus for impingement cooling a side wall adjacent an undercut region of a turbine nozzle segment
US6454526 *Sep 28, 2000Sep 24, 2002Siemens Westinghouse Power CorporationCooled turbine vane with endcaps
US6508620 *May 17, 2001Jan 21, 2003Pratt & Whitney Canada Corp.Inner platform impingement cooling by supply air from outside
US6527514Jun 11, 2001Mar 4, 2003Alstom (Switzerland) LtdTurbine blade with rub tolerant cooling construction
US6533544Apr 14, 1999Mar 18, 2003Siemens AktiengesellschaftTurbine blade
US6631561 *Oct 30, 2000Oct 14, 2003Siemens AktiengesellschaftTurbine blade and method for producing a turbine blade
US6830431Nov 25, 2002Dec 14, 2004Snecma MoteursHigh-temperature behavior of the trailing edge of a high pressure turbine blade
US6860108Jan 22, 2003Mar 1, 2005Mitsubishi Heavy Industries, Ltd.Gas turbine tail tube seal and gas turbine using the same
US6887040Jan 17, 2003May 3, 2005Siemens AktiengesellschaftTurbine blade/vane
US6929445Oct 22, 2003Aug 16, 2005General Electric CompanySplit flow turbine nozzle
US6984101Jul 14, 2003Jan 10, 2006Siemens Westinghouse Power CorporationTurbine vane plate assembly
US7029228Dec 4, 2003Apr 18, 2006General Electric CompanyMethod and apparatus for convective cooling of side-walls of turbine nozzle segments
US7189060 *Jan 7, 2005Mar 13, 2007Siemens Power Generation, Inc.Cooling system including mini channels within a turbine blade of a turbine engine
US7210906Aug 10, 2004May 1, 2007Pratt & Whitney Canada Corp.Internally cooled gas turbine airfoil and method
US7238003Aug 24, 2004Jul 3, 2007Pratt & Whitney Canada Corp.Vane attachment arrangement
US7766619Oct 12, 2007Aug 3, 2010Alstom Technology LtdConvectively cooled gas turbine blade
US8500392 *Oct 1, 2009Aug 6, 2013Pratt & Whitney Canada Corp.Sealing for vane segments
US8616834 *Apr 30, 2010Dec 31, 2013General Electric CompanyGas turbine engine airfoil integrated heat exchanger
US20110081237 *Oct 1, 2009Apr 7, 2011Pratt & Whitney Canada Corp.Sealing for vane segments
US20110268562 *Apr 30, 2010Nov 3, 2011General Electric CompanyGas turbine engine airfoil integrated heat exchanger
US20120082548 *Sep 30, 2010Apr 5, 2012General Electric CompanyApparatus and methods for cooling platform regions of turbine rotor blades
US20120082549 *Sep 30, 2010Apr 5, 2012General Electric CompanyApparatus and methods for cooling platform regions of turbine rotor blades
DE19810339C2 *Mar 10, 1998Jul 13, 2000Mitsubishi Heavy Ind LtdGekühlte stationäre Gasturbinenschaufel
DE102004002888A1 *Jan 20, 2004Aug 12, 2004Mitsubishi Heavy Industries, Ltd.Gasturbinen-Endrohrdichtung und diese verwendende Gasturbine
DE102004002888B4 *Jan 20, 2004Mar 2, 2006Mitsubishi Heavy Industries, Ltd.Gasturbinen-Endrohrdichtungsanordnung
EP1099825A1 *Nov 12, 1999May 16, 2001Siemens AktiengesellschaftTurbine blade and production method therefor
EP1149982A2 *Dec 8, 2000Oct 31, 2001General Electric CompanyA method of joining a vane cavity insert to a nozzle segment of a gas turbine
EP1267040A2 *May 21, 2002Dec 18, 2002ALSTOM (Switzerland) LtdGas turbine blade
EP1318274A1 *Dec 3, 2002Jun 11, 2003Snecma MoteursHigh-pressure turbine blade with cooled trailing edge
EP1571295A1 *Mar 1, 2004Sep 7, 2005ALSTOM Technology LtdCooled blade of a turbomachine and method of cooling
EP2628903A2 *Dec 14, 2012Aug 21, 2013United Technologies CorporationGas Turbine Engine Airfoil Cooling Circuit
WO1989001564A1 *Aug 4, 1988Feb 23, 1989United Technologies CorpAirfoil with nested cooling channels
WO1999054597A1 *Apr 14, 1999Oct 28, 1999Siemens AgTurbine blade
WO2001036790A1 *Oct 30, 2000May 25, 2001Dirk AndingTurbine blade and method for producing a turbine blade
WO2006108764A1 *Mar 30, 2006Oct 19, 2006Alstom Technology LtdConvectively cooled gas turbine blade
WO2014009074A1 *Jun 11, 2013Jan 16, 2014Siemens AktiengesellschaftTurbine blade for a gas turbine
Classifications
U.S. Classification415/116, 416/97.00R, 416/96.00R, 415/178
International ClassificationF01D9/04, F01D9/02, F01D5/18, F01D25/12
Cooperative ClassificationF05D2260/22141, F01D9/041, F01D5/187, F05D2260/221
European ClassificationF01D5/18G, F01D9/04B
Legal Events
DateCodeEventDescription
Oct 23, 1989ASAssignment
Owner name: ABB STAL AB, FINSPANG, SWEDEN, A CORP. OF SWEDEN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BROWN BOVERI-SULZER TURBOMACHINERY LTD., A CORP. OF SWITZERLAND;REEL/FRAME:005186/0295
Effective date: 19890913
Oct 23, 1989AS02Assignment of assignor's interest
Owner name: ABB STAL AB, FINSPANG, SWEDEN, A CORP. OF SWEDEN
Effective date: 19890913
Owner name: BROWN BOVERI-SULZER TURBOMACHINERY LTD., A CORP. O