Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3808090 A
Publication typeGrant
Publication dateApr 30, 1974
Filing dateMar 3, 1972
Priority dateOct 1, 1970
Publication numberUS 3808090 A, US 3808090A, US-A-3808090, US3808090 A, US3808090A
InventorsLogan K, Luhde F
Original AssigneeLogan K, Luhde F
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Mechanical abrasion of wood particles in the presence of water and in an inert gaseous atmosphere
US 3808090 A
Wood particles are fed into a substantially closed chamber where they are mechanically abraded in the presence of water in an inert gaseous atmosphere under an environmental pressure of 10 to 60 psig, a temperature of 160 DEG -300 DEG F and under a power consumption of 50 to 150 horsepower days per ton.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Logan et al.

[ MECHANICAL ABRASION OF WOOD PARTICLES IN THE PRESENCE OF WATER AND IN AN INERT GASEOUS ATMOSPHERE [76] Inventors: Kenneth C. Logan, PO. Box 1456, Quebec, 2 P.Q., Canada; Friedrich O. B. Luhde, 8226 Lilly Stone Dr.,

Bethesda, Md. 20034 [22] Filed: Mar. 3, 1972 [21] Appl. No.: 231,694

Related US. Application Data 52 u.s.c1 ..162/23,162/26,162/28, 241/15, 241/28 511 mm D21b 1/30 [58] Field of Search 162/23, 17, 26, 27, 28, 162/65, 68, 15, 18, 20, 21, 28

1451 Apr. 30, 1974 [56] References Cited UNITED STATES PATENTS 2,454,532 11/1948 Walter 162/23 2,008,892 7/1935 Asplund 3,597,310 8/1971 Sumi et a1 162/26 X FOREIGN PATENTS OR APPLICATIONS 567,103 12/1958 Canada 162/26 OTHER PUBLICATIONS Schafer et al., Efi'ect of Temperature and Consistency in Mechanical Pulping, Paper Trade Journal, pp. 71-76, 9-261935.

Casey, Pulp and Paper, p. 303, Vol. I, 1960.

Primary Examiner-S. Leon Bashore Assistant ExaminerArthur L. Corbin Attorney, Agent, or Firm-Sughrue, Rothwell, Mion, Zinn & Macpeak [57] ABSTRACT Wood particles are fed into a substantially closed chamber where they are mechanically abraded in the presence of water in an inert gaseous atmosphere under an environmental pressure of 10 to 60 psig, a temperature of l60-300 F and under a power consumption of 50 to 150 horsepower days per ton.

7 Claims, 9 Drawing Figures PATENTEHAPR 30 m4 sum 1 BF 5 INVENTOR ATTORNEY PATENTEDAPR 30 1914 SHEET 3 BF 5 3 TEAR o C.5.F.

3 zaz.


mm u or 5 I WT OTIZEN g TlNbl g INVENTOR ATTORNEY mnmgmmso I974 mm 5 [IF 5 D156 REFININEI UNDER PRESSURE AT 50 PSIO 005 kmuna RANGE or- TEAm F02 CONVENTIONAL DISC REFINER mu +4.01 r OF TEAR m2 sTowe ozouuwooo" uDU/m damp too 120 Dowaz INPU h DAYS/TON INVENTOR MECHANICAL ABRASION OF WOOD PARTICLES IN THE PRESENCE OF WATER AND IN AN INERT GASEOUS ATMOSPHERE RELATED APPLICATIONS This application is a continuation-in-part of application Ser. No. 77,374, filed Oct. 1, 1970, now abandoned, which is a continuation-in-part of application Ser. No. 888,728 filed Dec. 29, 1969 and now abancloned and which, in turn, was a continuation-in-part of Ser. No. 704,497, filed Dec. 14, 1967,.now abandoned and which was a continuation-in-part of Ser. No. 569,351, filed Aug. 1, 1966, now abandoned and which was a continuation-in-part of Ser. No. 357,008, filed on Mar. 25, 1964, now abandoned and which in turn, was a continuation-in-part of Ser. No. 159,329 filed Dec. 14, 1961 and now abandoned.

BACKGROUND OF THE INVENTION In the manufacture of mechanical wood pulps, two basic procedures have heretofore been followed. In one case, wood logs are abraded to a pulp by pressing against a rotating abrasive wheel formed, for instance, of silicon carbide, in the presence of sufficient moisture to prevent decomposition by excessive temperatures. In the other case, which is becoming of growing significance in the industry, there is employed a mechanicalrefining treatment wherein wood logs are first reduced to small chips which are subsequently fed between rotating discs set at small clearance and provided with abrading surfaces of suitable design to promote the refining action desired.

In this abrading process there is an input of power of about 75 to 130 HP. days per ton and sufficient water is added to encase the wood particles and prevent discoloration which would result from dry abrading. The water also seems to act as a vehicle to dissipate local heat and to lubricate the mass so it flows and gives relative unifonn treatment in the abrading or refining action. All such installations have sufficient water added so that the consistency is below about 30% (230% water on dry basis of wood).

In the existing systems for the production of papermaking mechanical pulp, it is the practice to employ atmospheric pressure in the abrading operation. The feed of raw material and the recovery of the product is accomplished without provision for isolating the system or for controlling the system pressure during the abrading treatment.

In the Asplund process, well known in the industry for the manufacture of low grade pulps for employment in the manufacture of roofing and flooring felts the system involves generally a presteaming of wood chips followed by refining under high pressure. The products are not suitable for papermaking pulps because of their inherent low strength and other poor paper-making qualities. In the Asplund process, conditions are selected to provide a mechanical reduction of wood into fibers with least possible energy input. To this end, high pressures of the order of 1 -150 psig and low energy input'of the order of 7-12 horsepower days per ton are employed to attain best results. Asplund process plants have been in existence throughout the world for over twenty years. However, as previously indicated, these plants have not successfully produced paper grades.

In papermaking grades of'mechanical pulp, the most widespread in use is stone groundwood which is produced by abrading logs with an abrasive stone, as previously indicated. Almost the entire world production of newsprint, for example, is manufactured from pulp in which stone groundwood is the principal component.

However, efforts have constantly been made to improve the strength of paper obtained from stone groundwood since it has always been necessary to include some chemical pulpswith the groundwood in order to achieve adequate strength for most requirements. Chemical pulps are much more expensive than mechanical pulps because they are obtained in low yields (40-50%) from wood and involve extensive, costly processing techniques; Their production causes pollution of the environment. Consequently, it has been a logical objective of research in the paper industry to develop a mechanical wood pulp with sufficient strength and toughness to permit its use as the only fibrous raw material for paper manufacture. However, prior to the present invention, no economically feasible procedure for the production of such a pulp has thus far been developed. A

One step towards achieving improved strength properties has been the development of disc refiners for processing wood chips into mechanical pulp. The equipment currently in use comprises conventional disc refiners operating at atmospheric pressure with unrestricted feed and discharge ports. Generally, the tear resistance (TAPPI method) of disc refiner pulps is about 50% greater than that of corresponding stone groundwood made from the same wood species. These disc refiner mechanical pulps are currently considered to be the strongest available for papermaking purposes.

SUMMARY OF THE INVENTION The present invention seeks to provide a wholly mechanical wood pulp with sufficient strength to render it quite satisfactory for the manufacture of paper of acceptable quality.

In accordance with the invention, the lignocellulosic material is fiberized by mechanically abrading it in a closed chamber under a power input of at least 15 horsepower days per ton in the presence of a suitable quantity of water. During the entire abrading step, the material is maintained in an inert gaseous atmosphere of a pressure of 10 to 80 psig, preferably 20 to 40 psig.

In the accompanying drawing: FIG. 1 is an end elevation, partly in section, of. a

grinder which may be employed to carry out the method of the invention,

FIG. 2, is a graph showing the dependence of tear on pressure at different water temperatures,

FIG. 3 is a graph showing the dependence of burst on pressure at different water temperatures,

FIGS. 4, 5, 6 and 7 are graphs showing pulp and paper properties versus water temperatures and freeness,

FIG. 8 is a side elevation, partly in section, of a disc refiner apparatus which may be employed to carry out the method of the invention, and

FIG. 9 is a graph illustrating the significance of power input in relation to pulp properties.

Referring to FIG. 1, 1 is a closed vessel enclosing grinding or abrasive wheel 2 mounted on a driven shaft 3. A magazine or feeding device 4 is adapted to feed the wood onto the surface of the wheel 2. Shower water is applied to the wood constantly .during the treatment by means of pipes 5. An inlet for air, steam or other gas under pressure is indicated at 6. Stock is discharged from the pit to a collecting container 7 and thence through a pipe 8 having a valve 8a therein.

The grinder is operated in a pressurized atmosphere or environment by supplying a pressure medium through inlet 6. Steam, air or other inert gas, such as argon or nitrogen, may be employed as the pressure medium.

Referring to FIG. 8, a refiner of basically conventional type is therein illustrated and comprises a rotat- The wood chips may be subjected to a preliminary heating before being fed to the refiner with beneficial results. Such preliminary heating is conducted at temperatures of 50 to 100 The following Table 1 gives the results of operational tests conducted using a grinder such as illustrated in ing disc 10 mounted on a shaft 11, a stationary disc 12 FIG. 1,

TABLE 1 1. Independent Grinding Conditions (a) Qonstgnt Conditions:

Specific Grinding Pressure psi 40 Shower Water Volume USGPM 2.4 2.7 Wood Moisture 28.4 Wood Density g/cc 0.423

Burst No. l 2. 3 4 5 6. 7 8

(b) V r' 't'ons Shower Water Temperature F 210 210 210 210 260 280 300 315 Pressurizing Medium Atmos. Air Air Air Air Air Air Air System pressure psig 0 4O 60 80 60 85 Travelling rate of wood micron/sec 567 623 903 701 645 945 1030 1050 Specific Power HP day/air Consumption dry ton 72.2 74.6 55.5 51.5 56.6 43.4 49.9 35.8

E3412 Properties Bulk cc/g 2.15 2.17 2.31 2.39 2.34 2.43 2.48 2.50 Brightness 0.13. 54.3 53.9 52.6 54.1 54.0 52.1 51.7 47.6 Smoothness cc/min 84 69 117 116 158 136 159 208 Porosity sec/ cc. 42.4 76.9 32.0 33.0 38.4 24.3 22.8 16.2 Freeness ml. 48 139 130 156 174 167 225 Burst 15.6 23.0 20.7 23.0 15.8 19.6 19.6 20.1 Tensile m 3450 4400 4050 4250 3350 3950 3700 3250 Tear gcm/cm/n 31 47 59 61 50 58 62 54 Fold 1458 1310 1795 .141 777 801 772 Wet Web Strength W20 g/3cm 103 198 158 197 142 169 183 186 Initial Solid Content 100 156 104 148 109 1 18 126 133 Initial Wet Web g/3cm 19.2 16.3 15.3 15.8 17.0 15.3 15.5 14.7

Ret. 14 mesh 0.1 0.2 1.1 0.5 0.5 0.4 0.9 1.8 Ret. 30 Mesh 6.5 16.3 24.8 23.9 16.1 24.7 26.5 32.4 Ret. 50 Mesh 9.2 13.8 17.3 16.4 14.4 15.3 16.0 16.0 Rel. 100 Mesh 14.4 15.0 14.4 14.7 15.8 13.6 13.8 12.8 Fines (passing 100 Mesh) 69.8 54.7 42.4 45.5 53.2 46.0 42.8 37.0 Rejects 0.8 2.9 2.3 3.0 2.1 6.5 7.2 5.5 11,0 Sol. 3.4 2.5 3.2 2.8 3.7 3.8 4.7 6.3

Total Yield carried by shaft 13, mating plates 14 and 15 carried by the discs, a chip feeding passage 16 for delivering chips between the plates 14 and 15, a chip feeding device 17 in passage 16, a chip receiving hopper-18 leading to the passage, and a conveyer 19 for supplying chips to the hopper.

In accordance with the invention, the refiner is fully enclosed in a casing 20, suitable seals as indicated at 21 and 22 being provided to make the casing substantially pressure tight.

The casing 20 and the enclosed refining elements are subjected to pressure of steam, air or other gas, through a connection 23 communicating with passage 16. A

suitable quantity of water is fed into the casing with the chips. Stock is discharged from the casing through a conduit 24 provided with a valve 25.

The advantages of operating a grinder at the elevated pressures set forth is clearly shown in the table. It will be observed that the pulps (2) and (3), for instance, prepared in the pressurized atmosphere required less energy, had higher freeness, and were produced at a greater rate than the pulp (l) which was prepared under conventional atmospheric conditions.

The classfication of fiber sizes reveals that grinding in the pressurized atmosphere defined results in fewer fines and a larger increase in the fraction retained on the 30 mesh screen. Micrographs-show that pulps (2) and (3) contain a predominance of long unbroken fibers such as are found in chemical pulps in contrast with the predominance of short broken fibers in conventional groundwood. As previously indicated, the presence of many long fibers in pulp is desirable because they result in paper with high resistance to tearmg.

The strength properties of handsheets prepared from the pulps described indicate that resistance to tearing is much greater in handsheets produced from pulps (2) and (3) while other properties such as burst, breaking length, folding endurance and initial wet web strength, are at levels which are higher than or only with very low freeness achieved by using conventional groundwood.

During grinding in the pressurized atmosphere described, it isdesirable to supply the shower water at increased temperatures. It has .been found that this temperature has relation to the properties of the resulting pulp and may be chosen in accordance with such properties.

FIGS. 2 and 3 illustrate the dependence of tear and burst on pressure at two shower water temperatures, namely; 210 F. and saturation temperature for the particular pressure employed.

Table 11 gives the results of tests conducted at a pressure of 60 psig and shower water temperatures of 160 F., 210 F., 260 F,'and 300 F., all other conditions, including the wood samples, being identical. Properties of a conventional .groundwood are included for comparison. These results are also plotted on the curves of FIGS. 4 to 7.

The results show:

1. The most desirable practical range of pressure is hence production by 53%. The average production of a Waterous Standard hydraulic magazine grinder is 23.8 air dry tons per day. At 160 F. the production in accordance with the invention is 71% greater than that of the grinder mentioned and at 300 F., it is 162% greater.

4. The tear property increases as the shower water temperature is increased, although other stock properties decrease. However, the pulp quality is best evaluated when compared to the pulp freeness (see FIGS. 6 and 7).

a. The freeness rose sharply from a minimum of 89 C.S.F. to a maximum of 364 C.S.F. This is further reflected in the increase in long fiber content and the decrease in fines content.

b. Bulk increases as the temperature increases. This is to be expected because of the increase in long fibers.

c. Smoothness decreases and porosity increases as the temperature increases. These effects are directly related to freeness increase. It will be observed that smoothness shows a linear increase as freeness increases. l

d. While burst and tensile dropped as the temperature increased, when this is related to freeness, the decrease is found to be practically linear. This implies that the strength drop is only that which corresponds to the higher freeness. It will be noted that the burst and tensile values'are at a very high level for all the pulps to 30 p I 30 tested and these values are and .5. a. .5 M

EFFECT OF TEMPERATURE 0N PRESSU RIZED CONVENTIONAL GRINDING GROUNDWOOD Shower Temperature 160F 210F 260F v 300F C.S.F. ml 89 132 208 364 115 Burst 24.5 23.4 22.2 17.6 13.3 Tensile m 4550 4250 4200 3600 3200 Tear cm.g/cm. 55 66 67 72 Folds (using 0.3 kg. load) 1463 865 1065 193 115 Wet strength g 200 210 176 175 108 Bulk CC/g 2.24 2.37 2.45 2.69 2.56 Brightness G.E. 56.4 52.7 53.1 50.3 57.5 Smoothness ml/sec. 97 129 156 274 152 Porosity Sec./ m1 63.3 38.8 20.2 8.6 20.8 Wood Solubles on o.d. wood 1.6 2.8 3.0 3.9 Screen Rejects 1.8 3.3 3.4 5.5 0 Classification 14 0.3 0.7 1.6 2.9 0.4 30 18.9 25.8 29.7 31.7 10.8 50 16.1 16.1 18.3 17.5 23.7 +100 17.1 14.3 13.6 12.6 10.4 Fines 47.6 43.4 36.8 35.3 54.9

Wood Travel micro/sec. 792 885 1105 1210 461 Production Rate (Relative Value) 40.7 45.7 57.0 62.6 23.8 Power Consumption HPD/ADT 56.2 50.2 36.1 27.7 70.8

Constant Test Conditions psig (Air) System pressure 40 psi Specific grinding pressure 2.5 USGPM Shower water flow Spruce Wood 0.396 g/cc Wood density 33.6% Wood moisture 2. The power input is desirably not substantiallylss than 20 HP days/ton. A practical operating range is 15 to HP days/ton but a range of 15 to HP days/ton may be employed.-

3. Increasing the shower water temperature from 160 F. to 300 F. increased the rate of wood travel and considerably higher than those of conventional am freeness. Thus,

Burst= maximum 24.5 minimum 17.6 Tensile maximum 4450, minimum 3600. e. The tear value increased from 55 to 72 with the sharp rise at 210 F. This sharp rise becomes even more significant when related to freeness. The effect of temperature on tear is thus quite positive and most evident between 160. to 210 F.

1'. Fold value decreases somewhat with the temperature rise.

g. The wet strength is high in all cases as shown by the properties of the conventional groundwood. The change with temperature is believed to be related to the freeness of the stock.

h. The pulp brightness decreases as the shower temperature increases. The drop was 6.1% G.E. from 56.4% G.E.

5. The wood soluble portion increases from 1.6% at 160 F. to 3.9% at 300 F. and is lost from the process. The rejects increase from 1.8% at 160 F. to 5.5% at 300 F. These rejects consist of bundles of long fibers partially separated into individual fibers and consequently they could be readily recovered by a light refinmg.

Resistance to tear is particularly improved but other strength properties are also superior to those of conventional groundwood. Because of the large influence of freeness upon all properties, it is essential to take this factor into account when making comparisons.

Increasing shower water temperature generally enhances the effects of increased pressure and there is, therefore, the additional advantage that hotter shower water can be used at temperatures as high as correspond to saturation at the pressure employed.

In order further to demonstrate the advantages of the present invention, tests were conducted using a conventional two stage refining procedure with two Bauer 480 refiners (3,000 H.P. each) operating in series and a single stage pressurized refiner of the type described herein of 3,000 H.P. Spruce and balsam chips (50/50) were the feed material and the power consumption in It will be observed that the treatment in accordance with the invention produced a marked improvement in all strength properties as well as an increase in freeness. Normally, a higher freeness is associated with weaker pulp strength, but in the treatment in accordance with the invention, both strength and drainage characteristics are substantially and unexpectedly improved.

It has also been found that the addition of certain chemicals, as with the shower water, produces desirable results when used in conjunction with the process described. Useful chemicals in this regard may be generally defined as inorganic salts of sodium, calcium and magnesium. Examples of suitable compounds are, sodium bisulphite, sodium carbonate, sodium chloride, sodium sulphate, sodium sulphite, sodium hydrosulphite, sodium tetrapyrophate, sodium hexametaphosphate, sodium tri-polyphosphate, sodium hydroxide,

zinc hydrosulphate, calcium chloride, magnesium TKBLE 111 THE EFFECT OF CHEMICAL ADDITIONS ON PRESSURIZED GROUNDWOOD V M Wood Density 0.411 g/cc Wood Moisture 23.6 Shower Water Temperature 295 F System Pressure V 60 p.s.i.g. Spec. Grinding Presure p.s.i.

Na,SO, Na,SO, NaHSO, Na,S,0, Na,CO, NaJ O on o.d. wood 5 12 20 9 8 10 Travelling rate micron/sec. 1000 1025 911 936 1090 980 1020 Production (relative) 100 103 91 94 109 98 102 Spec. Power Cons. HP/day a.d.t. 38.1 37.0 37.7 35.3 37.7 33.3 34.0 Bulk CC/g 2.28 2.25 2.03 2.38 2.33 1.82 2.04 Brightness (3.13. 51.0 50.5 49.8 53.4 55.0 38.3 46.6 Smoothness eclmin. 121 88 56 103 114 47 53 Porosity sl c.c. 32.8 39.2 104.6 35.6 27.6 183.2 127.1 Freeness ml. 151 139 98 127 218 85 77 Burst 22.1 22.5 28.3 19.3 25.5 33.5 27.3 Tensile m 4200 4600 5350 3850 4750 5800 5200 Tear A gem/cm 58 59 54 60 64 54 51 Folds n 1183 905 4429 835 2266 2573 2637 Wet Web W20 g/s cm 190 183 224 250 231 255 244 Rejects 12.1 8.6 9.1 6.3 7.3 9.9 5.9 Ret. 14 mesh 0.7 1.6 0.8 1.1 2.6 0.9 0.8 Ret. 30 mesh 28.4 26.8 25.8 26.8 34.9 28.2 24.5 Rel. 50 mesh 91: 16.0 14.6 17.2 14.9 19.5 15.0 14.4 Ret. 100 mesh 14.0 13.7 11.9 13.6 17.7 13.0 13.5 Fines (Pass. 100 mesh) 40.9 43.3 44.1 43.6 25.3 42.9 46.8 grinding Variables Wood Density 0.418 g/cc Wood Moisture 35.9 Shower Water Temperature 320 F. System Pressure 90 p.s.i.g. Spec. Grinding Pressure 40 p.s.i.

QEEMIQAL CaCl, MgCl, Na,SO, Na,S,O, V 15% Na,S,O 2% V80 on o.d. wood 12 6 13 15 1.8 Travelling rate micron/sec. 910 1320 852 1410 1340 1505 1385 THE EFFECT OF CHEMICAL ADDITIONS ON PRESSURIZED GROUNDWOOD Production (relative) Sped. Power Cons. HP/day a.d.t. 42.0 30.9 50.7 Bulk cc/g 2.32 2.38 2.14 Brightness G.E. 45.6 47.6 52.9 Smoothness cc/min. 127 172 98 Porosity s/50 c.c. 29.4 14.6 61.2 Freeness ml. 167 280 119 Burst 22.1 19.4 21.9 Tensile m 4000 3900 4850 Tear gem/cm. 63 64 56 Fold n 923 370 1541 Wet Web W g/s cm. 180 171 230 Rejects 4.6 5.6 1.8

Ret. 14 mesh 1.7 2.6 1.2

Ret. 30 mesh 29.4 31.3 26.4 Ret. 50 mesh 18.0 17.4 18.6 Ret. 100 mesh 12.3 13.6 15.2 Fines (Pass. 100 mesh) 38.6 34.8 38.6

Trial performed at 180F. shower water temperature "V80 means Versenex 80 (chelating agent).

It will be observed that strength properties ar e improved by addition of sodium sulphite, sodium hydrosulphite, sodium carbonate or sodium 'tetrapyrophosphate. Calcium chloride gives improved tear resistance as well as reduced screening rejects. The use of magnesium chloride resulted in a pulp of very high freeness and yet strength was retained. Sodium bisulphite gives some improvement in wet strength and also reduces screening rejects. The results shown in Table III also demonstrate that chelating agents, such as that known under the trade name Versenex 80 (aqueous solution of the pentasodium salt of diethylene-triaminepentaacetic acid) are useful for enhancing the improve-' ment in brightness achieved with sodium hydrosulphite.

Further to illustrate the improvement achieved in pulp physical characteristics, tests were carried out by standard TAPPI methods used in the industry and the pulps were manufactured specifically for use in newsprint furnish. The results are shown in the following Table,

cept t hat rniiracfieing'ihe present invention the refiner was modified by providing a suitable enclosure and feeding devices to permit operation under positive pressure in the manner heretofore described.

The limits of spacing between the discs is between 0.001 and 0.025 inch with a preferred spacing of about 0.007i0.003 inch. At greater spacing the chips will pass through too quickly so that they are insufficiently abraded and the energy input to the refiners falls off since there is not the work performed in abrading the wood to a fine pulp suitable for newsprint. As an extreme when the disc spacing exceeds the dimension of the chip practically no work is performed on the wood. The only load on the motor is the idling loa which in the case of the 3,000 I-I.P. unit specified amounted to approximately 100 HP. This ratio of idling load to full refining load is substantially constant for commercial refiners. Thus, total power consumption as used in the present invention, refers to that horsepower actually applied to the wood chips. In performing the work in producing the paperrnaking pulp from wood in the refiner over of the energy is converted into heat. In the Asplund and related processes a high temperature of about 170 C is obtained. This is substantially above the melting point of the lignin which flows and coats the fibers which are formed so that further refining is difficult and that at this temperature pulps of low brightness result which are unsuited for newsprint and other papers. Because of the low energy consumption relatively little heat is generated. It is therefore necessary for Asplund to have a very low content of water in his process or these high tempera- TABLE IV Pulp Properties Conventional Conventional Disc Refiner Obtained from Stone Disc Refiner of present Spruce/Balsam wood Groundwood Mechanical Pulp Invention ,Frecness (Canadian Standard) -1 10 -200 150-200 Tear Resistance 40-45 55-70 80-95 Burst Factor 10-14 9-15 18-25 Breaking length, km. 3.5-4.5 2.0-3.5 4.0-5.0 System Pressure Atmospheric Atmospheric 30 psig The disc refiners used in carryingoiffthe methodfor the present invention were the same as those used in the conventional disc refining (Bauer 480 Refiners) extures waaiaiioi be achieved. This 'is'ni'eiea'airar him providing in his process a press for squeezing out water from the naturally occurring water in wet chips.

In our process we add substantial quantities of water and also relieve the pressure so as to keep the temperature down. We provide no chamber to extend the retention time. This lower temperature and short retention time prevent the discoloration of the fibers and also permits the absorption of high quantities of energy in the refining step in order to produce a fine thoroughly defibered strong pulp suitable for newsprint and some other printing papers. It will be noted that in our experiments we added water to minimum of 2.4 U.S.G./min. This gave a quantity of water suitable to prevent the burning or loss of brightness which is a well recognized feature of the conventional grinding and also conventional refining process when consistencies rise too high. There is no known successful installation in the world in either conventional grinding or conventional refining to produce the groundwood type of fiber suitable for newsprint which does not add sufficient water to prevent this discoloration which occurs at low moisture content and high temperature. In every case there is sufficient water added to lower the consistency to 33% or in most cases below. In our experiments we always used enough energy in the refining to raise the temperature of the water (and thus pressure) to the required level when this suitable quantity of water was added. At these levels of energy consumption and with pressures relieved to levels specified the refiners produced pulp suitable for newsprint manufacture.

As in conventional processes the pulp is screened with the screened rejects being further refined. The screenings produced however, are much less than in conventional processes.

An earlier paragraph states that the only modification of the conventional groundwood refiners needed to practise this invention was their operation under pressure. There was about the same amount of water added as is required in operating conventional unpressurized refiners which produce paper grade mechanical pulp. The consistency of the conventional refiner pulp is in the range from 33% down to possibly 3% when producing acceptable pulp. The present invention uti- Table I shows that when operating the small pilot unit under pressure a minimum of 2.4 U.S.G.P.M. of water was added to the abrading system. This was sufficient to guarantee the wood and fiber always had free water to encase the fiber and prevent discoloration or burning of the fibers by overheating. The data in Table I (and FIG. 4) show that under conditions of the invention the brightness was maintained over 50 G.E. and when conditions were outside our specified range (85 lbs/sq. in and 315 F.) the brightness was unsatisfactory. In this case the high pressure prevented cooling of the mass by flashing to steam.

A further test was conducted using the large commercial refiners described above (3,000 H.P.). In this case the refining was performed on two refiners in series using the same total horsepower per ton range as previously. The chips and water were both fed at predetermined rates Data was as follows:

H.P. on pressurized refiner 2800 H.P. H.P. on second refiner 2600 H.P. Feed Rate of woods chips (dry) 55 tlday Water added to chips fed to pressurized refiner l8 U.S.G.P.M. Moisture in Wood Chips 45-55% Calculated water to dry wood chip ratio 2.95:1 or consistency of 25% A number of trial runs were made producing about '3065GB"zfefififir 'brssuriia refine'r' 'riiechar'iical pulp was run without addition of chemical pulp on a 238 inches wide paper machine running in excess of 2,000 ft. per min. with an open draw. The newsprint produced was printed in a commercial newspaper pressroom. The newsprint was evaluated by both the letterpress and offset printing processes. It was satisfactory.

Tests on the pulp used in the newsprint trials were compared with a conventional furnish to the machine which was made up of a mixture of 72% conventional groundwood and 28% sulphite pulp of 47% yield The high tear was carried over into the finished newsprint. This is the most important physical test in determining runnability. Most of the increased opacity also was retained in the finished newsprint. These two favorable features will no doubt be employed to make a lighter weight newsprint sheet feasible with attendant ecological benefits in addition to those obtained from eliminating the use of chemical pulp.

The results shown in Table IV indicate a significant improvement in strength properties and particularly a marked increase in tear resistance which is of much importance in most paperrnaking and converting operations. Furthermore, these improvements were obtained at high freeness values which is an added advantage from the point of view of enhancing drainage on the paper machine with consequent better performance.

The significant effect of power input on properties is illustrated in FIG. 9, which shows the results of tests conducted on pulps produced in disc refining equipment in accordance with the invention.

These results demonstrate two significant features:

Firstly, a remarkable improvement in pulp strength, and particularly in tear resistance, is achieved over the entire range of power input. The strength properties not only approach those of chemical pulps but are superior in some cases. Thus, they represent a significant advance in the technology of manufacture of mechanical pulps.

Secondly, useful pulps were obtained over the entire range of power inputs, although for different purposes. The coarser pulps produced at low energy input were of a type very suitable for the manufacture of paperboard of excellent strength. The intermediate pulps were especially suited for newsprint while those produced with high energy were of a kind suited for finer groundwood grades such as newsprint for rotogravure printingfln all cases, strength properties appear to surpass those of any mechanical pulps currently known in the field.

As previously indicated, a preferable positive pressure under which the disc refining operation of the present invention is carried out is about 30 psig. It appears that the beneficial effect arises from the higher temperatures attainable under pressure but it is not clear precisely what the reasons are. The exact pressure may, of course, be varied within the limits of the invention as indicated in Table V, which illustrates the results of tests conducted in accordance with the disc refiner treatment of the present invention.

TABLE V Pulp Strength Data With Disc Refining Under Positive Pressure System pressure, psig I6 30 50 Power input, hp days/ton 60 60 60 Pulp Properties 1 Freeness Canadian Standard 410 566 650 Tear Factor 90 I38 105 Burst Factor I l 1 l 6 Breaking Length, km 2.8 3.4 1.9

These results show that a system pressure of 30 psig gave the best pulp strength and that at psig'and 50 psig there was some deterioration of'quality. However, all results are superior to conventional pulps so that the entire pressure range may be considered useful.

As previously indicated, the optimum conditions for practice of the well known Asplund system are a pressure of above 100 psig and a power input of 7-12 hp days/ton. It has been found that these conditions are quite unsuitable for producing papermaking pulps because of inadequate pulp strength and severe discoloration of the product. The results herein set forth demonstrate that, for the production of papermaking pulps,

it is necessary to provide sufficient energy (at least 15 1. A method of producing a papermaking wood pulp which comprises feeding a body of wood particles and a substantial quantity of water to wood-abrading equipment in an amount sufficient to provide enough free water to encase the fibers in the pulp and prevent discoloration of the fibers by overheating said substantial quantity of water being separate from the moisture naturally present in the wood particles so that it together with the moisture in the particles amounts to at least 200 percent of the weight of the dry wood particles, mechanically abrading said wood particles in said equipment to produce a final product consisting of papermaking wood pulp, conducting said abrasion process resulting in said final product under a total power consumption of 50 to horsepower days per ton of said final product, and including the steps of subjecting said wood particles during said abrasion process in said equipment to an environmental pressure of 10 to 60 psig and a temperature of 300 F. in an inert gaseous atmosphere.

2. A method as set forth in claim 1 wherein the total amount of water is less than 3,200% of the weight of the dry wood particles.

3. A method of producing a papermaking wood pulp as defined in claim 1, wherein said pressure is about 30 psig.

4. A method of producing a papermaking wood pulp as defined in claim 1, wherein said mechanical abrading process comprises a disc refining treatment.

5. A method of producing a papermaking wood pulp as defined in claim 1 but with the feeding of oxidation prevention reducing chemicals such as hydrosulphite, sodium sulphite and the like together with said substantial quantity of water.

6. A method as set forth in claim 1 wherein the total amount of water exceeds 300% of the weight of the dry wood particles.

7. A method as set forth in claim 1 further comprising pretreating said wood particles by heating to temperatures of 50 C. to 100 C. prior to said mechanical abrading.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2008892 *Sep 19, 1934Jul 23, 1935Defibrator AbMethod of manufacture of pulp
US2454532 *Aug 3, 1940Nov 23, 1948Wood Conversion CoProcess for defibering lignocellulose while subjected to steam and a digestive chemical
US3597310 *Mar 26, 1970Aug 3, 1971Kokusaku Pulp Ind Co LtdMethod of producing high yield pulp by disc refining at ph of 12 to 14
CA567103A *Dec 9, 1958Powell River Company LtdMechanical pulping process
Non-Patent Citations
1 *Casey, Pulp and Paper, p. 303, Vol. I, 1960.
2 *Schafer et al., Effect of Temperature and Consistency in Mechanical Pulping, Paper Trade Journal, pp. 71 76, 9 26 1935.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3915959 *Mar 15, 1974Oct 28, 1975Crown Zellerbach CorpActivated alkali cellulose and derivatives formed therefrom and a process for making the same
US3948449 *Apr 29, 1974Apr 6, 1976Logan Kenneth CApparatus for the treatment of lignocellulosic material
US4145246 *Jul 19, 1976Mar 20, 1979Crown Zellerbach CorporationProcess for making high-strength, high-yield sulfite-modified thermomechanical pulp and a linerboard composition produced therefrom
US4187141 *Jun 19, 1978Feb 5, 1980Alf Societe AnonymeMethod of producing bleached mechanical pulp
US4207139 *Oct 25, 1978Jun 10, 1980Mo Och Domsjo AktiebolagMethod for producing groundwood pulp
US4207140 *Oct 25, 1978Jun 10, 1980Mo Och Domsjo AktiebolagMethod of producing groundwood pulp
US4236959 *Aug 21, 1978Dec 2, 1980Reinhall Rolf BertilMethod of producing fiber pulp by grinding fibrous material in a steam environment
US4253822 *Sep 28, 1978Mar 3, 1981Courtaulds LimitedDrying wood pulp
US4270703 *Jan 24, 1979Jun 2, 1981Oy Tampella AbMethod of and a grinder for discharging groundwood stock when grinding wood under pressure
US4274600 *Jan 24, 1979Jun 23, 1981Oy. Tampella AbMethod of and a grinder for grinding wood under pressure
US4324612 *Nov 26, 1979Apr 13, 1982Mo Och Domsjo AktiebolagProcess for the preparation of groundwood pulp
US4327870 *Sep 11, 1980May 4, 1982Oy. Tampella AbApparatus for continuously grinding wood under pressure and continuously discharging groundwood
US4333613 *Dec 1, 1980Jun 8, 1982Oy. Tampella AbApparatus for continuously grinding wood under pressure and continuously discharging groundwood
US4372810 *Oct 9, 1980Feb 8, 1983Sunds Defibrator AbMethod and device for manufacturing mechanical pulp
US4388148 *Jun 23, 1981Jun 14, 1983Nalco Chemical CompanyProcess for producing pulp
US4406734 *Oct 9, 1980Sep 27, 1983Sunds Defibrator AbMethod for the manufacture of mechanical pulp
US4431482 *Nov 2, 1981Feb 14, 1984Escher Wyss GmbhDispersion apparatus for the preparation of waste paper
US4455195 *Jan 5, 1982Jun 19, 1984James River CorporationFibrous filter media and process for producing same
US4455237 *Oct 14, 1982Jun 19, 1984James River CorporationHigh bulk pulp, filter media utilizing such pulp, related processes
US5036900 *Oct 17, 1990Aug 6, 1991Courtaulds PlcMethod for acetylating shredded cellulosic
US5385640 *Jul 9, 1993Jan 31, 1995Microcell, Inc.Process for making microdenominated cellulose
US5507104 *Aug 2, 1993Apr 16, 1996Beloit Technologies, Inc.Web drying apparatus
US5636448 *Apr 12, 1996Jun 10, 1997Beloit Technologies, Inc.Web drying apparatus
US5832625 *Sep 5, 1996Nov 10, 1998Beloit Technologies, Inc.Apparatus for drying a web
US6049999 *Jun 9, 1997Apr 18, 2000Beloit Technologies, Inc.Machine and process for the restrained drying of a paper web
US6627041Feb 27, 2001Sep 30, 2003Georgia-Pacific CorporationMethod of bleaching and providing papermaking fibers with durable curl
US6899790Feb 27, 2001May 31, 2005Georgia-Pacific CorporationMethod of providing papermaking fibers with durable curl
US7291247Jul 23, 2003Nov 6, 2007Georgia-Pacific Consumer Operations LlcAbsorbent sheet made with papermaking fibers with durable curl
US7726592Dec 2, 2004Jun 1, 2010Hercules IncorporatedProcess for increasing the refiner production rate and/or decreasing the specific energy of pulping wood
US8277606Oct 2, 2012Georgia-Pacific Consumer Products LpMethod of providing paper-making fibers with durable curl and absorbent products incorporating same
US8815561Aug 23, 2011Aug 26, 2014Wisconsin Alumni Research FoundationMetal compounds to eliminate nonproductive enzyme adsorption and enhance enzymatic saccharification of lignocellulose
US9090915Apr 17, 2009Jul 28, 2015Wisconsin Alumni Research FoundationSulfite pretreatment for biorefining biomass
US20040016524 *Jul 23, 2003Jan 29, 2004Lee Jeffrey A.Method of bleaching and providing papermaking fibers with durable curl
US20050133643 *Dec 2, 2004Jun 23, 2005Fernandez Eric O.Process for increasing the refiner production rate and/or decreasing the specific energy of pulping wood
US20050145348 *Feb 7, 2005Jul 7, 2005Lee Jeffrey A.Method of providing paper-making fibers with durable curl and absorbent products incorporating same
US20090298149 *Apr 17, 2009Dec 3, 2009Gaosheng WangSulfite Pretreatment For Biorefining Biomass
USRE31862 *Mar 22, 1983Apr 9, 1985Sunds Defibrator, Inc.Apparatus for the treatment of lignocellulosic material
DE2827038A1 *Jun 20, 1978Aug 23, 1979Tampella Oy AbVerfahren und schleifmaschine zum entfernen von holzschliff beim schleifen von holz unter druck
DE2827039A1 *Jun 20, 1978Aug 23, 1979Tampella Oy AbVerfahren und schleifmaschine zum schleifen von holz unter druck
DE3111517A1 *Mar 24, 1981Jan 7, 1982Mo Och Domsjoe AbProcess for producing wood pulp
WO1988003581A1 *Oct 27, 1987May 19, 1988Sunds Defibrator AktiebolagMethod of making mechanical pulp
U.S. Classification162/23, 241/28, 162/26, 162/28, 241/15
International ClassificationD21D1/20, D21D1/30, D21D1/00
Cooperative ClassificationD21D1/20, D21D1/30
European ClassificationD21D1/30, D21D1/20
Legal Events
Mar 22, 1983AS03Merger
Effective date: 19801009
Owner name: REED-ANGLO LTD.
Mar 22, 1983AS01Change of name
Owner name: REED INC.
Effective date: 19810227
Mar 22, 1983AS02Assignment of assignor's interest
Effective date: 19830311
Mar 22, 1983ASAssignment
Owner name: REED INC.
Effective date: 19810227
Effective date: 19801009
Effective date: 19830311