Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3808868 A
Publication typeGrant
Publication dateMay 7, 1974
Filing dateJan 4, 1973
Priority dateJan 4, 1973
Also published asDE2400222A1, DE2400222B2
Publication numberUS 3808868 A, US 3808868A, US-A-3808868, US3808868 A, US3808868A
InventorsW Wolfe
Original AssigneeUnited Can Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Pilot construction for necking die assembly
US 3808868 A
Abstract
An annular die member and internal pilot for forming a reduced-diameter cylindrical neck on the end of a cylindrical can body having a side lap, wherein no orientation of the lap relative to the die assembly is required. The pilot is longitudinally segmented and the segments are each resiliently biased outwardly so that the segment or segments adjacent the lap may yield inwardly to accommodate the lap while the other segments provide a full circumferential support to the can body end. The pilot is axially movable relative to the annular die member as a can body end is inserted into the die assembly so that there is no relative movement between the pilot segments and can body as would otherwise cause scratching of the interior of the can body.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Wolfe PILOT CONSTRUCTION FOR NECKING D-IE ASSEMBLY [75] Inventor: Wayne F. Wolfe, Belmont, Calif.

[73] Assignee: United Can Company, Haywood,

Calif.

[22] Filed: Jan. 4, 1973 [21] Appl. No.: 320,895

[451 May 7,1974

3,468,153 9/1969 Patarini et al. 72/370 Primary ExaminerRichard J. Herbst Attorney, Agent, or Firm-Carlisle M. Moore [5 7] ABSTRACT An annular die member and internal pilot for forming a reduced-diameter cylindrical neck on the end of a cylindrical can body having a side lap, wherein no orientation of the lap relative to the die assembly is required. The pilot is longitudinally segmented and the segments are each resiliently biased outwardly so that the segment or segments adjacent the lap may yield inwardly to accommodate the lap while the other segments provide a full circumferential support to the can 7 body end. The pilot is axially movable relative to the annular die member as a can body end is inserted into the die assembly so that there is no relative movement between the pilot segments andcan body as would otherwise cause scratching of the interior of the can body.

6 Claims, 5 Drawing Figures PILOT CONSTRUCTION FOR NECKING me ASSEMBLY BACKGROUND OF THE INVENTION This invention relates to the formation of a reduceddiameter neck on-a three-piece metal can, i.e., cans having a can body made from a rectangular piece of metal rolled into a cylinder with the edges being joined at a soldered lap extending the length of the cylinder, the two end pieces being therafter secured to the can body by rolling operations.

It is well known that the end of a cylindrical body can be reduced in diameter by forcing the can end into a die set comprising a ring die having an annular inwardly facing die surface of a diameter to produce the desired size neck, and an inner cylindrical pilot, and an inner pilot, there being a clearance between the ring and pilot toenable the can end to be received therebetween. It is also known that the amount of clearance between the ring and pilot is quite critical. Obviously, the clearance must be sufficient to allow the can body to be inserted therebetween. However, if the clearance is too great, then the can body end will not be properly supported during the neckingoperation and undesirable wrinkling of the necked portion will occur.

With deep drawn aluminum cans having no side laps, Le, a uniform wall thickness at all points around the can end, a ring die and pilot assembly can be made easily with proper clearance. With lapped can bodies, the problem is considerably greater. A fixed ring die and pilot assembly could be made with a uniform spacing therebetween equal to the wall thickness of the can and with'a large clearance at one point therebetween to accommodate the thicker can lap. However, such a die assembly would require orientation of the can body to the die assembly before the can'body is inserted thereinto. Such orientation is slow and expensive and unsuitable for commercial operations.

One approach to the problem of providing a can necking die assembly for lapped cans lsthat shown in U. S. Pat. No. 3,600,927 wherein a floating pilot is disposed within the ring die,'with the clearance therebetween averaging half the combined thickness of the can wall and the can lap. With this arrangement, no orientation of the lap of the can body is required. This ap-- proach, however, requires that the can bodies operated thereon by made to very close tolerances. If the lap thickness is greater than that for which the ring and pilot are designed, the can body cannot be inserted into the die set. If the lap thickness is appreciably less, then the can body end may not be suitably supported during the necking operation, and wrinkling of the can end may result.

The floating pilot approach also has an inherent drawback resulting from the fact that the ring and pilot members are both circular in cross section. At the point wherein the can lap is between the members the gap therebetween must obviously be at least equal to the thickness of the lap. The gap between the members gradually diminishes around the die, in either direction from the lap, with the least amount of gap, approximately the thickness of the can body wall, being at the point diametrically opposite to the can lap. As a result the gap on either side of the can lap and for a substantial distance therefrom will be only slightly less than the thickness of the lap. If the can lap is made by a process wherein the lap thickness is substantially less than twice the thickness of the can wall, the gap between the ring and pilot created by the lap will not be too detrimental.

However, if the can lap is formed in a conventional manner, wherein the edges of the can body are simply lapped one over the other and soldered together, the

' finished lap will be as much as four'times the thickness of the can wall. As a consequence, if this type can body is necked with a floating pilot, the gap between the die members for a substantial distance on either side of the lap will be four times the thickness of the can wall therebetween, and the can wall will not be properly supported so as to prevent wrinkling thereof during the necking process.

The floating pilot approach also has an inherent drawback in that as the can body end is forced into the. die assembly the can body end will slide along the surface of the pilot. If the can body has a protective inner coating, such relative movement of the pilot and can body can often cause detrimental scratching of this coating.

SUMMARY OF THE INVENTION The present invention utilizes an annular die member to reduce the diameter of a can body pushed thereinto.

In place of a solid internal pilot, a segmented pilot is ments, all of which are resiliently biased outwardly, and

each of which is capable of inward yielding relative to In addition, the pilot is axially yieldable so that as the can body end is inserted into the annular die member and engages the pilot, the pilot will then move axially with the can body end during the remainder of the necking operation. This movement together of the pilot and can body end eliminates the scratching of the inner surface of the can body as it is being necked.

BRIEF DESCRIPTION OF THE DRAWINGS In the drawings forming a part of this application and in which like parts are designated by like reference numerals throughout the same,

FIG. 1 is a sectional view taken along the axis of the die assembly, illustrating the position of the ring die and pilot members prior to the insertion of a can body end thereinto;

FIG. 2 is a view similar to FIG. 1, illustrating the position of the die members upon full insertion of a can body end thereinto; 8

FIG. 3 is an enlarged sectional view, taken along the axis thereof, of the pilot member;

FIG. 4 is a transverse sectional view of the pilot member, taken along line 44 of FIG. 3;

FIG. 5 is a transverse sectional detail, on an enlarged scale, illustrating the manner in which the pilotsegments yield inwardly to accommodate the can body DESCRIPTION OF THE PREFERRED EMBODIMENT The can necking machine, generally indicated by the reference numeral 10, comprises a base plate 11 to which the cup-shaped adapter plate 12 is secured by mounting screw 13. Locking nut 14 is threaded into the adapter plate 12, nut 14 having an inwardly projecting flange 15 to engage ring die member 16 and hold the die member and annular die shoe l7 securely in place against the end of adapter plate 12.

The ring die member 16 has a die surface facing inwardly towards the axis of the die member, the die surface comprising an annular cylindrical portion 18 substantially equal to the normal outside diameter of the can body to be necked, an inwardly tapered surface 19 and an annular cylindrical portion 20 of reduced diameter substantially equal to the desired outer diameter of the neck to be formed on the can body.

The pilotmember 21, axially disposed within the ring die 16, includes a cylindrical guide 22 disposed within adapter plate 12 for axial movement, between a first position (FIG. 1) wherein one end of guide 22 engages shoulder 23 of die shoe 17 and a second position (FIG. 2) wherein the other end of guide 22 engages shoulder 24 of adapter plate 12. Compression spring 25 resiliently biases guide 22 to its first position.

Pilot 21 further includes a cylindrical core 26 and retainer plate 27, these elements being firmly secured to guide 22 by screw 28. A plurality of longitudinally extending support segments 30 are radially disposed around the core, the segments 30 having outwardly facing shoulders 31 and 32-which engage inwardly facing surfaces on the retainer plate 27 and guide 22 to limit outward movement of the segments;

Each pilot segment 30 has an outwardly extending shoulder 33 thereon and an outwardly facing surface 34 which extends from the inner edge of shoulder 33 to the outer end of'the segment. As seen in FIG. 4, the individual surfaces 34 of the segments form an outwardly facing annular cylindrical surface 34' and the individual shoulders 33 form an annular shoulder33' circumferentially of the pilot. The annular shoulder 33' is adjacent the outer and inner ends of the reduceddiameter die surface 19 when the pilot is in its first and second positions respectively.

A flexible, fluid-impervious sleeve 35 is disposed within the pilot 21, around core 26, and with its outer surface 36 being in engagement with the inner surfaces 37 of all of the pilot segments 30. A fluid path from the interior of the sleeve 35 to the exterior of the assembly is provided by the lateral passages 38 through core 26, the axial passage 39 through screw 28 and the axial pas sage 40 through mounting screw 13 and the axial stub 41 thereof. A conduit 41 extends from passage-39 to two-way valve 43, this valve being operable to supply fluid under pressure from a suitable source S to the interior of sleeve 35, or to exhaust pressure therefrom. Stub 41 of mounting screw 13 is sealed to guide 22 by O-ring 44.

The outer cylindrical surface 45 of retainer plate 27 is slightly less in diameter than the diameter of the surface 34 when the segments 30 are in their farthest radially outward position.

Adapter plate 12 is provided with a passage 46 therethrough so that the interior of the adapter plate is substantially at ambient pressure regardless of the movement of guide 22 therein.

In operation, the interior of the flexible sleeve 35 is pressurized from source S, which may be a source of compressed air. Merely for purposes of illustration, the pressure may be in the order of 300425 p.s.i.g. Asa cylindrical can body 50 is forced axially into the ring die 16, the can body end 51 first slides along the die surface portion 18 without deformation. As the end of the can is forced into engagement with and moves along the tapered die surface 19, the diameter of the can body end will be reduced thereby. Further movement of the can body end will then cause the extreme leading edge of the can to be guided by surface 19 into engagement with shoulder 33' on the pilot. Continued movement of the can body will then force the pilot to move axially against the bias of spring 25. The air pressure within thesleeve acts radially outwardly on all of the pilot segments 30, causing these segments to press outwardly on the can end to form a constant diameter neck on the end of the can as the can end passes along the die surface 20 of the ring die 16.

At the same time, since the pilot segments 30 are each capable of inward translatory movement against the bias of the pressurized sleeve 35, those segments contacted by the thicker lap portion 52 of the can body will yield inwardly so that the lap can be received between the pilot and the die surface portion 20 of the ring die member 16, as seen in FIG. 5. Although the pilot segments 30 are wider at their outer surface than at their inner surface, very little total radial clearance is necessary between the segments to provide forthe relatively small amount of inward movement of the segment or segments engaged by the can body lap. All of the segments are capable of inward radial movement relative to the segments on either side thereof, and thus no orientation of the can body lap to the die assembly is required. Since the segments are mounted on the pilot for individual translatory movement towards the axis of the pilot, the outer surface 34 of the segment or segments engaged by the can lap will remain parallel to the axis of the pilot and parallel to the die surface 20 of the ring die to provide proper support of the can body;

Many can bodies are provided with a very thin pro tective coating on the inner surface thereof to prevent contact of the subsequent can contents with the can body wall. lt will be noted that as the can body end is pushed into the ring die and as it engages and moves the pilot axially, there is no relative movement of the pilot segments 30 longitudinally or circumferentially relative to the interior of the can body end. As a consequence, with no such relative movement, there is an elimination of the scratching of the internal coating on the can body as would otherwise occur if the can body end were forced onto a fixed pilot.

The necking operation will be completed when the can body end has pushed the pilot to its second position, i.e., when guide 22 bottoms against surface 24 of the adapter plate 12, FIG. 2.

The can body is now pulled axially from the die assembly. During initial withdrawal, spring 25 forces the pilot to return with the can body end until the pilot reaches its first position, again with no relative movement between the pilot and can body taking place during such travel. Shortly in advance of the pilot reaching its initial position, valve 43 is operated to release the pressure from the interior of sleeve 35. With the pressure relieved, there is little outward force on the pilot segments and 'the can body end may then be pulled therefrom without scratching of the inner protective coating of the can body.

After the can body has been stripped from the die assembly, valve 43 is actuated to repressure the sleeve 35 in readiness for the next can body.

As may be seen from the foregoing, the described pilot construction has three significant advantages.

First, no orientation of the can body lap is required. Second, the outer surfaces 34 of all of the pilot segments are in contact with the can body so that a full circumferential support is provided to the interior of the can body end as the cylindrical neck is formed thereon. Third, during the necking operation scratching of the inner surface of the can body is eliminated since there is no relative movement between the pilot segments and the can body.

For atypical can body formed from tin plate having a thickness of .006 inch the pilot segments should be formed to provide a clearance of .007 between the outer cylindrical pil'ot surface 34 and the reduceddiameter die surface 19 on the ring die. The thickness of the can body at the lap 52 will be twice the thickness of the tin plate plus the thickness of the solder 53 between the lapped surfaces. The solder thickness may vary between minimum and maximum acceptable limits of .004 to .013 inch. Thus, with a wall thickness of .006 inch, the lap may vary from .016 to .025 inch in thickness. However, the segmented pilot described herein can easily accommodate such variations and still provide a firm circumferential support to the entire periphery of the can body, including the lap and the portions of the can body'immediately on either side of the lap. The outer surface 45 of the retainer plate 27 on the end of the pilot should have a diameter sufficiently less than the expanded diameter of the pilot surface 34' so that the necked-in lap of the can body can be easily stripped off the pilot.

Although a spring 25 is shown to provide a bias force for the pilot, it is to be appreciated that the guide 22 has a surface equal to the cross-sectional area sealed by the stub O-ring 44 upon which the pressure fluid acts in a direction to return the pilot to its first position of FIG. 1. As a consequence, with a proper sizingof this area, the fluid pressure alone may provide sufficient bias force so that spring' 25 can be eliminated if desired.

In the apparatus described above, the necking operation has been performed by moving a can body axially into and out of a stationary annular die member. If desired, the very same results would be obtained by holding a can body against axial movement and by forcing the die assembly axially onto and off the can body end.

Having thus described my invention, I claim: 1. Can necking apparatus comprising: a ring die having a die surface facing inwardly towards the axis of said die, said die surface including an annular portion of a diameter substantially equal to the diameter of the can body to be necked, an inwardly tapered surface and an annular portion of reduced diameter, a pilot disposed within and coaxial to said ring die, said pilot having an outwardly facing surface thereon extending longitudinally therealong opposite to said annular portion of reduced diameter of said ring die and having a clearance therewith to receive a can body therebetween,

said pilot including a plurality of longitudinally extending segments radially disposed around said pilot, the outer surfaces of said segments together forming said outwardly facing surface of said pilot,

means mounting said segments on said pilot for individual translatory movement of said segments towards and away from the axis of said pilot to enable any of said segments to be moved towards the axis of said pilot by the lap of a can body inserted into said clearance,

means yieldably biasing each of said segments away from the axis of said pilot and exerting a substantially equal outward force on each segment even though a segment has been moved towards the axis of said pilot by the lap of a can body inserted into said clearance.

2. Can necking apparatus comprising:

a ring die having a die' surface facing inwardly towards the axis of said die, said die surface including an annular portion of .a diameter substantially equal to the diameter of the can body to be necked,

an inwardly tapered surface and an annular portion of reduced diameter,

pilot disposed within and coaxial to said ring die,

said pilot having an outwardly facing surface thereon extending longitudinally therealong opposite to said annular portion of reduced diameter of said ring die and having a clearance therewith to receive a can body therebetween,

said pilot including a plurality of longitudinally extending segments radially disposed around said pilot, the outer surfaces of said segments together forming said outwardly facing surface of said pilot,

means mounting said segments on said pilot for individual translatory movement of said segments towards and away from the axis of said pilot,

a sleeve inside said pilot, said sleeve having the outer surface thereof engaging the inner surface of all of said segments, said sleeve being filled with a pressure-transmitting fluid.

3. Can necking apparatus as set forth in claim 2, and further including means for pressurizing the fluid in the interior of said sleeve andfor relieving pressure from the interior of said sleeve, and means on said pilot for positively limiting movement of said segments away from the axis of said pilot.

4. Can necking apparatus as set forth in claim 3 and further including means for moving said pilot axially between first and second positions relative to said ring die, said pilot having an outwardly extending shoulder thereon at one end of said outwardly facing pilot surface, said shoulder being adjacent one end of said annular portion of reduced diameter when said pilot is in its first position and said shoulder being adjacent the other end of said annular portion of reduced diameter when said pilot is in its second position.

5. Can necking apparatus comprising:

a ring die having a die surface facing inwardly towards the axis of said die, said die surface includ ing an annular portion of a diameter substantially equal to the diameter of the can body to be necked,

means mounting said segments on said pilot for individual translatory movement of said segments towards and away from the axis of said pilot,

means for yieldably biasing each of said segments away from the axis of said pilot and for releasing said bias to allow-a necked can body to be stripped from said pilot.

6. Can necking apparatus as set forth in claim 5 and further including means for moving said pilot axially between first and second positions relative to said ring die, said pilot having an outwardly extending shoulder thereon at one end of said outwardly facing pilot surface, said shoulder being adjacent one end of said annular portion of reduced diameter when said pilot is in its first position and said shoulder being adjacent the other end of said annular portion of reduced diameter when said pilot is in its second position.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2013654 *Apr 9, 1931Sep 10, 1935American Can CoApparatus for necking-in and flanging tubular bodies
US3468153 *Nov 20, 1967Sep 23, 1969Nat Can CorpDie set unit and method for can manufacture
US3581542 *Feb 3, 1969Jun 1, 1971Continental Can CoApparatus for and method of necking in end portions of tubular members
US3680350 *Apr 5, 1971Aug 1, 1972American Can CoNecking-in die pilot
US3687098 *Mar 19, 1971Aug 29, 1972Coors Porcelain CoContainer necking mechanism and method
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4043160 *Dec 18, 1975Aug 23, 1977The Boeing CompanyInternal tooling for swaging apparatus
US4446714 *Feb 8, 1982May 8, 1984Cvacho Daniel SMethods of necking-in and flanging tubular can bodies
US4693108 *Apr 22, 1985Sep 15, 1987National Can CorporationMethod and apparatus for necking and flanging containers
US4723430 *Feb 18, 1986Feb 9, 1988Adolph Coors CompanyApparatus and method for forming a surface configuration on a can body
US4953376 *May 9, 1989Sep 4, 1990Merlone John CMetal spinning process and apparatus and product made thereby
US5355709 *Nov 10, 1992Oct 18, 1994Crown Cork & Seal CompanyMethods and apparatus for expansion reforming the bottom profile of a drawn and ironed container
US5533373 *Sep 21, 1994Jul 9, 1996The Coca-Cola CompanyMethod and apparatus for making shaped cans
US5755130 *Mar 7, 1997May 26, 1998American National Can Co.Method and punch for necking cans
US6484550Jan 31, 2001Nov 26, 2002Rexam Beverage Can CompanyMethod and apparatus for necking the open end of a container
US6616393Feb 7, 2000Sep 9, 2003Ball CorporationLink coupling apparatus and method for container bottom reformer
CN102847831A *Jul 30, 2012Jan 2, 2013苏州戴尔菲精密机械科技有限公司Binding jig
CN102847831BJul 30, 2012May 21, 2014苏州戴尔菲精密机械科技有限公司Binding jig
DE4221282A1 *Jun 29, 1992Jan 7, 1993Ball CorpVerfahren zur querschnittverminderung eines metallbehaelterkoerpers
EP0234839A2 *Feb 17, 1987Sep 2, 1987Adolph Coors CompanyApparatus and method for forming a surface configuration on a can body
WO1984003873A1 *Mar 19, 1984Oct 11, 1984Hans F StoffelImproved method and apparatus for making a necked container
WO1998039117A1 *Feb 27, 1998Sep 11, 1998American National Can CoMethod and punch for necking cans
WO2002060615A2 *Jan 9, 2002Aug 8, 2002Rexam Beverage Can CoMethod and apparatus for necking the open end of a container
Classifications
U.S. Classification72/361, 72/370.2, 413/69
International ClassificationB21D19/04, B21D19/00, B21D51/26, B21D41/04
Cooperative ClassificationB21D41/04, B21D51/2615, B21D51/2638
European ClassificationB21D51/26B4, B21D51/26B, B21D41/04