Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3810473 A
Publication typeGrant
Publication dateMay 14, 1974
Filing dateDec 4, 1972
Priority dateDec 4, 1972
Also published asCA1020462A1, DE2359949A1, DE2359949B2, DE2359949C3
Publication numberUS 3810473 A, US 3810473A, US-A-3810473, US3810473 A, US3810473A
InventorsM Cruz, C Cirolla, O Battista, L Tressler
Original AssigneeAvicon Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Liquid-laid, non-woven, fibrous collagen derived surgical web having hemostatic and wound sealing properties
US 3810473 A
Abstract
Liquid-laid, non-woven, fibrous web having hemostatic and adhesive properties sufficient to seal a wound formed of fibers of ionizable, water-insoluble, partial acid salts of collagen, the web having certain specified absorbency and porosity characteristics. In order to prevent excessive swelling of the fibers with resulting excessive hornification or densification upon drying, it is essential that mixtures of water-miscible organic liquids such as ethanol with specified minor porportions of water be utilized as the slurrying media.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Cruz, Jr. et al.

1451 May '14, 1974 [54] LIQUID-LAID, NON-WOVEN, FIBROUS 3,438,374 4/1969 Falb et al. 128/334 R COLLAGEN DERIVED SURGICAL WEB HAVING HEMOSTATIC AND WOUND OTHER PUBLICATIONS SEALING PROPERTIES Peacock, E.E. Jr. Annals of Surgery, Vol. 161, Feb. [75] Inventors: Mamerto M. Cruz, Jr., Pennington, 1965, PP- U Of- Co lagen Sponges N.J.; Orlando A. Battista, Fort Worth, Tex.; LaVerne C. Tressler, gsr zg s'gg Clrona Primary Examiner-Aldrich F. Medbery [73] Assignee: Avicon, lnc., Ft. Worth, Tex.

22 Filed: 1 Dec. 4, 1972 [571 ABSTRACT [21] 'Appl. No.: 312,210 Liquid-laid, non-woven, fibrous web having hemostatic and adhesive properties sufficient to seal a wound formed of fibers of ionizable, water-insoluble, [52] us. Cl 25 22245 Partial acid salts of collagen, the web having certain specified absorbency and porosity characteristics. In 'i i order to prevent excessive swelling of the fibers with o earc 0 resulting excessive hornification or densification upon drying, it is essential that mixtures of water-miscible organic liquids such as ethanol with specified minor 1 uNlTE g gfizg gs giqrENTs porportions of water be utilized as the slurrying media.

3,742,955 7/1973 Battista et al. 128/334 R 13 Claims, 7 Drawing Figures s00 720 z Q 640 uJ a R w 560 P E Q 410 g n: 11.1 g m z 400 8 a 2 320 1 5 v q 240 z i 3 I60 a0 T l00/0 95/5 90/l0 85/l5 80/20 75/25 70/30 65/35 %ETHANOL/WATER V/V BURST FACTOR PATENTEU 3.810.473

SHEEI 2 F 2 FIG. 5 FIG. 6

A VACUUM DRIED WEB A VACUUM DRIED WEB 8 o FREEZE DRIED WEB 80 o FREEZE DRIED WEB (I l4 L101 140 l2 i I20 A l0 loo y 85/0 0 a l a so (I) 6 i g 60 4 4o A} 2 2o T ETHANOL/WATER V/V ETHANOL/WATER V/V 597 FIG. 7

-VAC DRIED 4o- El 8 3 30- 7) 0 E E 20- m 5 w w 7 I m l g |0- v I q l mom I 95/5 I 9on0 l 85/l5 80/20 /25 1 LIQUID-LAID, NON-WOVEN, FIBROUS COLLAGEN DERIVED SURGICAL WEB HAVING HEMOSTATIC AND WOUND SEALING PROPERTIES 76,638, filed Sept. 29, 1970 and now US. Pat. No.

3,742,955 thereis described a fluffy, finely-divided fibrous collagen product derivedfrom natural collagen which when wet with blood has hemostatic properties and a unique adhesive property which is sufficient to join together severed biological surfaces. This form of collagen demonstrates an unexpected and entirely unique adhesive property when wet with blood in live warm blooded animals and in many instances can actually be used to adhere severed .tissues without the use of sutures. The disclosure of this above identified application is herein incorporated and made a part of the present disclosure.

As indicated in the above entitled application, the hemostat-adhesive material is in a fluffy, finely-divided fibrous form and the form for use in this invention consists essentially of a water-insoluble, ionizable, partial salt of collagen, the fibrous mass having a density of not more than about 8 pounds per cubic foot, preferably the bulk density is between 1.5 and 6.0 pounds per cubic foot. The mass when combinedwith blood in a wound forms a mass that is self-adherent to the tissue surfaces and will seal the wound without the use of sutures. The partial salt of collagen consists essentially of an ionizable, water-insoluble, partial acid salt of collagen consisting from about 5 percent to about 90 percent of the theoretical stoichiometric amount of the ionizable acid. The fluffy, finely-divided fibers for use in the present invention may be prepared as described in the aforementioned application.

Because of the low density and fluffiness of the product of the aforementioned application, it is necessary to transfer the product to the wound by the use of forcep's or manually with rubber gloves. In such handling procedures fibers become dislodged from the bulk being handled and portions will adhere to the forceps or rubber gloves.

ln copending application Ser. No. 76,638, it is stated that the fluffy, finely divided fibrous collagen product may be converted into non-woven webs by a wet method such as commonly employed in forming papers. It is also stated that in such method the fibrous collagen is slurried in a water-miscible organic liquid of the type used in producing the fibrous collagen.

In the conventional production of water-laid fibrous sheets or webs such as papers, naturally occurring celand submicroscopic peeling of individual fibrils along the surface of the fibers and at the end of the fiber bundles. The slurry is then passed to a suitable screen to lay down the fibers as a sheet or mat. The physical properties of the sheet, such asstrength, tear and burst are dependent to a large extent on the hydration of the fibers and an interlocking of the hydrated fibers and of the fibrillae on the fibers and the fiber-to-fiber bonding which develops upon drying.

Because of the greater sensitivity to water of the fibers of the fluffy, finely divided partial salt of collagen having the hemostatic and unique adhesive characteristics as described in the afore-mentioned application, waterlaid fibrous sheets or webs formed from such fibers are harsh and boardy and parchment-like in structure with complete loss of hemostatic and adhesive properties thereby rendering such sheets unsatisfactory for surgical purposes.

The principal purpose of the present invention is to provide a liquid-laid, non-woven web which retains the hemostatic-adhesive properties of the fluffy, fibrous partial salt of collagen.

A further purpose of the invention is to provide a method of forming the liquid-laid, non-woven sheet or web of the fluffy, finely-dividedfibrous collagen derived product which is flexible, non-flaking, and has sufficient strength to permit its application to a wound without separation into individual fibers.

A further purpose of the present invention is to provide a method of forming a liquid-laid, non-woven fibrous web of the finely-divided fibrous collagen derived product which retains the hemostatic and unique adhesive properties of a finely-divided fibrous mass as described in the aforementioned application.

Further objects and advantages of the present invention will become apparent to those skilled in the art from the following description of the method and product.

The present invention is based upon the discovery that non-woven webs or sheets which retain the hemostatic and unique adhesiveproperties of the fluffy, finely-divided fibers of the'partial'salt of collagen, can be In the drawings:

FIG. 1 is a graph illustrating the freeness of the fibers when-slurried in ethanol and ethanol-water mixtures of varying composition; and,

FIGS. 2 through 7 are graphs illustrating the variations in the physical properties of theliquid-laid, nonwoven sheets orwebs prepared from slurries of the fibers in ethanol and ethanol-water mixtures of varying composition.

In order to avoid the production of products having a parchment-like structure and to provide the web or sheet with requisite characteristics, it is essential that the slurrying liquid consists-of a mixture having a composition, by volume, in the range of from 95 percent organic liquid and 5 percent water to about percent organic liquid and 15 percent water. Where the amount of water is less than about 5 volumes of water to volumes of the organic liquid, the finished product is unsatisfactory in that it has no dry web strength and is extremely flaky; that is, upon handling, fibers readily separate from the sheet. At least this minimum amount of v water must be present so as to provide a sufficient degree of bonding between the fibers to form a coherent and handleable sheet. in those instances where the sheet is vacuum dried the amount of water preferably should not exceed about 15 volumes of water to 85 volumes of organic liquid, preferably 95 volumes of organic liquid and 5 volumes of water. if the amount of water exceeds this ratio, the fibers become so firmly bonded together that there is a loss in absorbency and flexibility and a marked loss of the hemostatic and adhesive properties of the sheet. Where the sheet is to be freeze dried the liquid may consist of up to about 20 volumes of water to 80 volumes of organic liquid, preferably 90 volumes of organic liquid and volumes of water. Here again, where the amount of water exceeds this value there is a loss in the desired properties.

The water-miscible organic liquid consists of low molecular weight alcohols, ketones and the like such as, for example, methanol, ethanol, isopropanol, amyl alcohol, methylethyl ketone, acetone, and mixtures of these organic liquids. It is possible to increase the amount of water providing that a salt which hydrates is present such as sodium sulfate and calcium chloride. The use of the organic liquids other than ethanol is feasible, however, where the product is intended for surgical uses it is essential that the product be freed of such solvent.

After depositing or sheeting the fibers upon a suitable collecting screen excess liquid may be separated as by pressing and the application of vacuum. The product is then freeze dried or vacuum dried to preserve the absorbency, flexibility and hemostatic-adhesive properties. Freeze drying is preferred because it provides softer, more absorbent and more flexible products that exhibit no noticeable decrease in the hemostaticadhesive properties of the fibrous material. One of the unique characteristics of these liquid-laid non-woven sheets or webs is that upon heat sterilization as by heating at l2()C. for from to hours there is an improvement in the tear strength of the sheet as well as in the hemostatic properties.

The fibrous collagen product can be prepared from any undenatured collagen in the natural state or delimed edible forms of collagen including, for example, hide, gut, tendon, cartilage or other high fibrous collagen source material preferably chopped up for easier handling. The collagen is preferably in a wet and never-dried state or, if dried, drying has been effected under conditions which minimize denaturation. Satisfactory raw materials for the collagen include, for example, fresh cowhides and calfhides, salted down cowhides, wet moosehide, pigskins, sheepskins and goatskins as conventionally used for making leather. Special technical hide collagen prepared from hide splits and possessing a minimal reduced bacteria count is also satisfactory. The preferred raw material, because of availability is corium derived from never-dried cowhide or technical grades of collagen prepared from cowhide and other animal hides.

The wet collagen source material such as hide is diced or chopped into small fragments of from onefourth to one-half inch sizes in a cutting or grinding mill, such as, for example, an Urschel Mill. Alternatively, these fragments may be mixed with crushed ice and then passed through the Urschel Mill with cutting heads of smaller dimension to fiberizethe collagen into a coarse fibrous product.

1f swelling or hydration of the collagen fibers is not controlled during the subsequent treatment wherein the collagen -is subject to mechanical shredding or opening in a liquid medium, excessive hornification or densification will occur when the material is dried down thereby effectively preventing the satisfactory deaggregation of the collagen fibrils during the final mechanical treatment. The initial swelling of the collagen fibers in the wet state affords many more sites for hornification that is desirable thus resulting in a dense, non-absorbent material. When hornification and densification occurs, the product will not have the required hemostatic and adhesive characteristics.

The wet or moist collagen source material is mechanically dispersed or slurried in an aqueous liquid which controls the swelling of the fibers. The aqueous liquid comprises water and a water-miscible organic liquid such as low molecular weight alcohols, ketones, and the like, such as, for example, methanol, ethanol, isopropanol, methylethyl ketone, acetone and the like in a weight range of between about 90 percent of the organic liquid and 10 percent water and about 50 percent organic liquid and 50 percent water. Where the proportion of water is too high, the collagen fibers swell to such a great extent that they lose their fiber identity with an attendant densification during the subsequent drying step. When this occurs, it becomes commercially unfeasible to subsequently deaggregate or fluff the fibrous product and attain the bulk density requirements necessary for the present invention. Although such product will' possess some hemostatic properties, it does not possess the desired adhesion to severed biological surfaces and will not provide the required mechanical properties of the collagen-blood matrix between the severed surfaces to seal the wound.

' The bulk of the liquid is drained from the mass and the fibrous collagen slurried and washed with a watermiscible organic liquid such as the alcohol and again the bulk of the liquid is separated from the partially swollen wet collagen material. Preferably, the collagen material is slurried in the organic liquid to reduce the water content to a minimum. In general, the use of three slurrying steps with the organic liquid will reduce the amount of water present to about 1 percent. The organic liquid is removed as by centrifugation and final drying. Drying may be effected either by oven drying or vacuum drying as at, for example, 40C. under a 29 inch vacuum for about 16 hours. In general, this vacuum drying will reduce the volatile content to under 1 percent.

The partial acid salt of collagen is formed by incorporating the required amount of an ionizable acid in the aqueous liquid wherein the collagen is dispersed or slurried. The amount of acid incorporated in the aqueous liquid is such as to provide the product with a bound acid content of from about 50 percent to 90 percent preferably about 60 percent to percent of the theoretical stoichiometric bound acid content. After the acid has reacted with the dispersed collagen, the reaction mass is subjected to slurrying and washing with the water-miscible organic liquid and the collagen salt processed as above described.

Before the final deaggregation into constituent fibers or fluffing operation to produce the product having the required bulk density, the fibrous material is preferably conditioned to contain about 8 percent to l5 percent volatiles. This conditioning may be readily effected by allowing the product to remain at normal atmospheric temperatures and humidities (for example, 70 75F., 40% 60% R.H.) for from about 8 to 24 hours. The final fiber deaggregation or fluffing operation is necessary to provide the requisite bulk density. This operation is an opening operation whereby the diced material is converted into bundles of individual fibers. ln forming the product of the present invention, the final fiber deaggregation or fluffing operation does not separate all of the dried bundles into ultimate individual fibrils but the product does contain finer fiber bundles (smaller in diameter) as compared to the coarser fiber bundles obtained at the end of the drying and conditioning operations. This deaggregation or tluffing may be effected by apparatus such as a hammer mill type comminution mill such as a Fitz Mill.

Alternatively, the wet collagen source material is merely diced or chopped into small fragments as described hereinbefore and then introduced into and mixed in a water-miscible organic liquid such as ethanol or isopropanol. Mixing is continued for about 1 hour so as to permit thorough penetration of the organic liquid into the smallfragments. The bulk of the liquid is then separated as by draining or centrifuging and the recovered fragments again introduced into and mixed in the organic liquid for about 1 hour. Again, the bulk of the liquid is separated and the procedure repeated. At the end of this period, the liquid is centrifuged from the mixture and the wet fragments dried as by oven drying or vacuum drying. The resulting product, after conditioning as described above, is then subjected to a fiberizing and deaggregation or fluffing operation. To produce a partial ionizable salt of collagen, the desired amount of acid may be mixed with the organic liquid in any one of the above described steps, preferably .in the second step. in such instances, the

. time of treatment with the organic liquid containingthe acid should be prolonged to permit the required reac- I ranges. The effective-fiber lengths may be determined in accordance with TAPPI Standard Method T233 su-64 utilizing a McNett Classifier having four tanks provided with a 20 mesh screen (openings 840 microns), a 35 mesh screen (openings 500 microns), a 65 mesh screen (openings 230 microns) and a 150 mesh screen (openings 100 microns), respectively.

Because of the excessive swelling of the fibers in water of the partial-salts of collagen, these fibers are unsatisfactory for use in a fiber classifier. Accordingly, the partial salt fibers are converted to collagen fibers while preventing excessive swelling of the partial salt fibers. Such conversion may be effected as by slurrying the partial salt fibers at a solids concentration of about 1 percent for about 30 minutes in a mixture of 90 volumes ethanol and 10 volumes water adjusted to and maintained at a pH of 10.5 by addition of ammonium hydroxide solution. The fibers are recovered by the use utes to wash out soluble salt and the fibers recovered by the same type filtration. The recovered fibers are then given two additional washes using 100 percent ethanol. The finally recovered alcohol-wet fibers should not be allowed to dry but are slurried in the required volume of water at the recommended solids content for the specific classifier.

When ten gram samples of partial salt fibers satisfactory for the purposes of the present invention are subjected to testing by the use of the McNett Classifier the samples exhibit a fiber length distribution of about 45 to 55 percent retained on a 20 mesh screen (840 microns) 20 to 25 percent retained on a 35 mesh screen (500 microns) v 3 to 6 percent retained on a mesh screen (230 microns) 0.5 to 1.5 percent retained on a 150 mesh screen microns) 30 percent maximum passing a mesh screen.

Where the proportion of long fibers is too high the partial salt fibers upon slurrying'in the ethanol-water mixture, the fibers floculate and agglomerate into ropey masses. Where the proportion of short fibers is too high, there is a loss in the adhesive properties of the liquid-laid sheets.

A measure of the fiuffiness and a rough indication of a satisfactory fiber length distribution of the fibers is bulk density.

The bulk density is measured by adding the fibrous collagen products as initially fluffedto a 100 ml. graduate cylinder without any compression step and deter-' mining the Weight of the added 100 mls. of the product.

In forming the partial salt of collagen, hydrochloric acid is the preferred acid and is used in the examples which follow merely because it is relatively inexpensive and allows ready flexibility and ease of control. Other ionizable acids, both inorganic and ionizable organic acids, such as, for example, sulfuric acid, hydrobromic acid, phosphoric acid, cyanoacetic acid, acetic acid, citric acid and lactic acid are satisfactory. Sulfuric acid, for example, is satisfactory, but control of the action is difficult. Citric acid may be substituted for hydrochloric acid with about equal results. Ease of control" has reference to the ability to arrest the swelling and hydrolysis of the collagen fibers so as to prevent the'rapid degradation of the material to a water-soluble product.

water-insoluble, ionizable, partial hydrogen chloride salt of collagen containing approximately 84% of the theoretical stoichiometric bound acid content. The product was deaggregated or fluffed by passing it through a fit; Mill (Model DA50-6-5634) operated at v 6,250 rpm. equipped with a No. 4 screen having openings of 0.243 inch. It was then subjected to a second pass using a special slotted sceen having openings 0.062'inch X 0.5 inch with the slots at an angle of 30 to the sides of the screen.

The fiber length distribution of the fibrous partial salt of collagen determined by the use of a McNett Classifier was about 48 percent retained on a 20 mesh screen 22 percent retained on a 35 mesh screen 3.6 percent retained on a 65 mesh screen 0.7 percent retained on a 150 mesh screen 25.7 percent passing a 150 mesh screen.

The bulk density of the fluffed, fibrous partial salt of collagen was 2.0 2.5 pounds per cubic foot.

Upon disintegrating a sample of the fluffy, finelydivided fibrous material in water at a solids concentration of 0.5 percent by weight by subjecting the mixture to the action of a Waring Blendor at high speed for 30 minutes, a stable dispersion was formed having a pH of In the production of the liquid-laid, non-woven webs of the present invention, conventional apparatus such as used in the papermaking industry and in the production of non-woven webs may be used. The finelydivided, fibrous collagen product is slurried in the water-miscible organic liquid-water mixture by the use of a suitable mixing device such as a beater wherein the beater is used solely as a mixing device since the fibrous product does not require hydration or fibrillation. The slurry or furnish may contain from about 0.1 percent to about 3 percent of the fibrous product, preferably about 0.5 percent. The slurry or furnish is then passed to a suitable collecting screen where the fibrous product is sheeted or deposited. Fourd'rinier, cylinder vat, Rotoformer and other sheet forming devices are satisfactory. After removing the wet-laid sheet or web from the collecting screen, excess liquid may be removed by passing the sheet between press rolls and then drying the sheet.

The degree of swelling or hydration of the fibers in ethanol and ethanol-water mixtures is illustrated by a fr'eeness test using a Canadian Standard Freeness Tester. The method of testing was in accord with TAPPl Standard Test Method T227 m-58. ln this series of tests, slurries containing 0.3% fibers were formed in ethanol and ethanol-water mixtures, as set forth in Table l, by adding the fibers to the liquid and manually agitating with a wide blade spatula for 5 minutes. 1,000 mls of the slurry were then poured into the cylinder of the Freeness Tester and measuring the volume ofliquid discharged from the side discharge tube. This volume in mls. is reported in Table 1 as CSF No. and the data illustrated in FIG. 1. This test illustrates that as the proportion of water in the slurrying liquid increases, the swelling of the fibers increases and, accordingly, the freeness decreases. 7

The variations in absorbency, tear strength, burst factor, tensile strength, stiffness as well as other properties of the he'mostatic-adhesive non-woven webs of the present invention may be illustrated by reference to the preparation of handsheets utilizing liquids varying in relative proportions of ethanol and water. 1n the preparation of these handsheets a modified 8 inch X 8 inch Williams handsheet mold was utilized. The normal wire mesh screen at the bottom of the handsheet mold was covered with a polypropylene filter fabric consisting of a 2/2 twill weave structure, the fabric having a porosity of 85-90 CFM (Chicopee Polypropylene 6016800 fabric) the edges of the fabric being sealed to the wire mesh.

In each instance the ball valve located at the bottom of the hand-sheet molds water leg was closed and the specified liquid, about 4,000 mls., poured through the polypropylene filter cloth to bring the level of the liquid to just cover the polypropylene filter cloth. For the preparation of hand-sheets of approximately 1 mm.

thick (approximately 175.5 lbs. per 3,000 sq.ft.), 9.0 gms. of the fluffy, fibrous material was added to 3,000 mls. ofthe liquid, forming a slurry of about 0.37% by weight of the fibers, and the slurry gently agitated for approximately 5 minutes. The slurry was then poured into the handsheet mold and the slurry agitated by lowering and raising a perforated plunger 3 times. The ball valve was then opened to allow most of the liquid to drain by hydrostatic pressure usually requiring from about 20 to 30 seconds. About 1 to 2 inches of liquid was allowed to remain over the polypropylene filter fabric and thin areas or voids in the sheet on the filter fabric were filled in with suspended fibers by gently agitating the slurry with a spatula and moving fibers to the thin areas or voids. When the sheet appeared to be quite uniform, the ball valve was opened completely and all liquid allowed to drain.

The mold was then opened and the formed wet nonwoven web covered with a plain weave polypropylene filter fabric having a porosity of about CFM (Chicopee Polypropylene 6970500 fabric). Dry blotting paper was sandwiched between very fine Dacron cloths and then placed over the polypropylene fabric and gently pressed to absorb some of the liquid. This procedure with the sandwiched blotting paper was repeated a second time. A similar sandwich of dry blotting paper and Dacron'cloth' was then placed over the polypropylene fabric and the formingplate with the sandwiched wet laid web removed from the mold and gently placed upside down with the sandwiched blotting paper being placed on a sheet of polyester film. The forming plate was then lifted and the wet laid web gently peeled from the polypropylene filter fabric covering the forming plate wire mesh. The exposed side of the removed wet laid web was then covered with a polypropylene filter fabric (Chicopee Polypropylene 697050 fabric) and a sandwiched blotting paper between Dacron cloth placed over the fabric. The assembly was then gently rolled with a printers rubber roller to remove additional liquid and this procedure repeated by rolling at 90 to the direction of the first rolling. A dry sheet of sandwiched blotting paper was then applied after removal of the wetted sandwiched blotting paper and the assembly turned over and a dry sheet of sandwiched blotting paper placed on the upper side and the rolling procedure was repeated. The sandwiched blotting paper and polypropylene filter fabrics were then removed and the wet laid web placed between polyester films and both sides gently rolled with a printers roller. The wet-laid webs between polyester films were then stored in polyethylene bags until sufficient numbers of the sheets were prepared to subject them to a drying step using either a photographic dryer, freeze dryer, Noble and Wood hot plate or vacuum oven.

Freeze drying was effected in a Repp Freeze Drier,

Model 40, with an initial shelf temperature of about 40C., a vacuum of 50 microns, heating cycle to 38"C. over a period of 2 hours and a condenser in'al fibers.

a Waring Blendor at high speed for 30 minutes formed dispersions having a pH of 3.22 which was substantially identical to the pH of dispersions formed from the orig- The absorbency of freeze dried and vacuum dried products formed from the slurries in different compositions was determined by the use of a mixture of 90'volumes of ethanol and 10 volumes of water. The central portions (1 1% inch in diameter) of plastic screw tops of 4 oz. jars were removed leaving a sufficient annular flange to cover the top edge of the jars. Samples of the various non-woven sheets in the form of circular discs 2 inches in diameter were placed on the top edges of the jars and the cut screw tops placed on the jars to secure the circular discs on the jar tops. The liquid was allowed to drip through a distance of one-half inch on to the center of the sheet drop by drop allowing each drop to be absorbed by the sheet before the succeeding of the original dry sample and the weight of the wetted sample, the data, the average for two samples, being presented in Table 1. The data are plotted in FIG. 2.

The tensile strength of the various sheets was mea- 'sured-by the use of a Thwing-Albert electrohydraulic tensile tester Model No. 37-4 at a 5.5 Kg and 3 I .8'Kg loading. In .accordance with TAPPI Standard Test Table I and plotted in FIG. 5 are the average values for two samples.

The stiffness of the sheets was measured by maintaining samples wrapped on a glass cylinder for 24 hours at room temperature (73F) and a relative humidity of about 50 percent and then releasing the samples and allowing them to flatten under their own weight. The samples were cut into 3 in. X 7 in. strips. wrapped around a glass tube 2.25 in. in diameter and held in place by scotch tape. At the end of the 24 hour-period the tube was placed on a horizontal surface with the mid portion of the sample sheet in contact with the horizontal surface. The tape was then cut and the free ends of the samples allowed to separate from the glass tube and unfold or uncurl under their own weight. 'The amount of uncurling was determined by measuring the angle between the horizontal surface and the uncurled ends of the samples. The angle in degrees is termed-the Stiffness Factor, which is the average for four sheets, both ends, and is reported in Table 1 and plotted in- FIG, 6. I V

The porosities of the sheets were determined by the use of a Gurley Densometer (Closed-Top Model) in ac cordancewith TAPPI Standard Test Method T460 os-68. This test measures the air resistance of the sheets and is reported in Table l as the average time in seconds required to displace 100 ml. of air through an area of 6.45 sq.cm. ofthe paper. The reported values are averages for two to six tests. These data are plotted Method T220 m-60, the test was applied to six strips 30 in FIG. 7 and reported in Table 1.

TABLE 1 Freeze dried Absorb- Volume percent ofeney Tensile, Stifi- CSF weight Kg./15 Tear Burst ness Ethanol Water No percent mm. factor factor factor Porosity 7O Not: tested, too harsh and boardy Vacuum dried 70 30 55 Not tested, too harsh and boardy of each of the sheets cut 15 mm. wide and the results reported in Table l are the average breaking load in Kg for the 15 mm strips. The data are plotted in FIG. 3.

Samples of the sheets were-subjected to a tear test in accordance with TAPPI Standard Test Method T220 m using an Elmendorf Tear Tester. The Tear Factor (average of two sheets) was calculated from the average force in grams to tear a single sheet. The Tear Factor as reported in Table I is equivalent to the number of square decimeters of the sheet, the weight of which, if applied to a single sheet would cause a tear in the sheet to progress. The Tear Factor is plotted in FIG. 4.

Samples of the sheets were also subjected to a bursting test in accordance with TAPPI Standard Test Method T403 ts-63 using a Mullen Burst Tester. The. Burst Factor was calculated from the pressure in psi required to burst the samples. The values reported in The data in Table l and FIGS 2 through 7 illustrate that more than about 15% water by volume in the ethanol-water mixtures used in forming'the slurries or furnishes for the preparation of the liquid-laid, vacuum dried sheets causes excessive swelling of the fibers and the sheets begin to exhibit hornification or densification. Similarly, in the case of the freeze dried sheets,

where the ethanol-water mixtures contain more than of the sheets.

Similar properties result when the other watermiscible organic liquids are substituted for the ethanol. As indicated hereinbefore, where the product is intended for surgical procedures it is essential that such organic liquid and/or salt used in the slurrying liquid must be removed.

The fibrous collagen products prepared in the above examples were employed in surgical test procedures 5 designed to provide the efficacy of the material both as a hemostat and adhesive for severed biological surfaces in a warm blooded animal when wet with blood. Severed biological surfaces for the purposes of this invention includes cut, sliced, ripped, abraded, torn, punctured, burned, and tissue severed by any means or method whereby a fresh biological surface is present. Biological surfaces will include tissue, cartrilage, vessels, bone or other normal organic parts of the warm blooded animal which may require mending or joining.

samples of the various hand-sheets prepared as described hereinbefore. The investigators were providedwith swatches without knowledge of the history of the used as control was ineffective in producing hemostasis, was not adhesive to the wound and, of course, the entire pad could be lifted from the wound. Upon this basis it received a 0 rating and was unsatisfactory. A rating of 1 indicating poor and unsatisfactory properties. A rating of 2 indicating a fair functioning but unsatisfactory. A rating of 3 indicating a good functional action and the acceptability of the material is questionable. A rating of4 indicating a very good functional action and satisfactory. A rating of5 indicating an excellent functional action and satisfactory.

The investigators ratings of the samples based upon the evaluations and based upon the foregoing considerations are set forth in Table 2. in addition, the investigators also observed the handling characteristics of the samples. These characteristics included a consideration of the physical properties such as. cohesiveness and flakiness of the sheet, the friability, the stiffness and the ability to cut swatches of the required size from the sheet with scissors to form a clean cut. The investigators comments with respect to these characteristics are set forth in the Table 2.

Although the sheets prepared from the 100% ethanol slurries received high in vivo ratings, based upon hemo- TABLE 2 Freeze dried In vivo Evaluation Hemostatic Adhesive Delam- Example efficacy quality ination Comments Be: physical characteristics A-l 5 5 5 Loose, crumbly, tears easily, difficult to cut, does not withstand handling. A-Z. 5 5 3 Soft, little crumbly-satisfactory. 11-3. 5 5 5 Soft, pliable-satisfactory. A-4. 5 5 5 Slightly still-satisfactory. A5.. Not tested, manifestation of stiffness-fairly satisfactory A-6 Not tested, excessively stiff-unsatisfactory A-7 Not tested, too harsh and bawdy-unsatisfactory Vacuum dried B-l 5 5 5 Too friable and crumbly, does not withstand handling. 3-2.... 5 5 5 Soft piiabiesatisfactory. B-3 4 5 5 Pliab e-satisfaetory. B4... Not tested, manifestation of stiffness-fairly satisfactory B5 Not tested, too stiff-unsatisfactory 11?? Not tested, excessively stiff-unsatisfactory samples so that all testing was blind." Each swatch was placed over the uniformly bleeding lesion and pressure applied for 60 seconds, after which pressure was removed. in the case of satisfactory samples, hemostasis was effected within this time period. After 5 to minutes, removal of the excess outer marginal portions of the swatch was attempted by pulling off such portions. Subsequent to rating the swatch, it was forcibly removed and a uniformly bleeding lesion reestablished and another swatch placed over the lesion as described and the swatch rated.

The investigators evaluated the samples and rated them upon their hemostatic efficacy, degree of adhesiveness to the bleeding surface and delamination property. The rating was on an arbitrary scale of 0 to 5, 0

indicating that the sample exhibited no hemostatic property, no adhesiveness to the wound surface and that the sample could not be delaminated; that is, excess marginal portions could not be removed without overcoming the adhesiveness and thereby permitting resumption of bleeding. The delamination is highly desirable so that in an internal surgical procedure, no more of the material be allowed to remain than is necessary to effect hemostasis and seal the wound and excess material be removed. A surgical cotton gauze pad Not tested, too harsh and board-unsetisfactory static efficacy, adhesiveness and delamination, the sheets are not deemed satisfactory from a handling viewpoint. Because of the loose, crumbly and friable characteristics of these sheets, the products may be said to be delicate and can not withstand normal shipping and handling. Upon handling, the sheets exhibit excessive flaking and loss of fibers. Such sheets can not withstand slight abrasion.

Where the sheets are too stiff and are too harsh and boardy, they have a low hemostatic efficacy, low adhesive quality and cannot be delaminated without opening the wound. Furthermore, such sheets do not readily conform to irregular surfaces encountered in a wound and, hence, are unsatisfactory. I

From the foregoing discussion and the in vivo evaluation, it is clear that severed biological surfaces may be joined and a wound sealed without the use of sutures by the application of the sheets or webs of this invention. in sealing the wound, the web when wctted with blood combines with the blood to form a mass that is self-adherent to the wound tissue to seal the wound. it 1 is only necessary to apply pressure to the web for a short period sufficient only until hemostasis hasoccured after which pressure may be removed.

7 Based upon the evaluations of the various handsheets, products satisfactory for the purposes of the present invention have physical properties within the following ranges:

Absorbency of a mixture of 90 volumes of ethanol ..and.l volumes of water from about 100% to about 300% by weight;

Tensile strength in Kg. per 15 mm. strip from about 1 to about 4;

Tear Factor from about 5 to about 50;

Burst Factor from about 1.2 to about 6;

, St i ness Fac o f qrna out 1.53.19, Q QQL JOQ"; a I

Porosity in seconds to pass 100 ml. of air per 6.45

sq.in. from about 4 to about 15.

I ries of the fibers in 95 volumes of ethanol and 5 volumes of water have closely similar physical properties and from the in vivo evaluations are about equivalents and the preferred products.

What is claimed is: l. A hemostatic adhesive dressing for severed biological surfaces comprising a liquid-laid, non-woven web having hemostatic-adhesive properties comprising hemostatic-adhesive fibers of ionizable, waterinsoluble, partial acid salts of collagen, the web having an absorbency of a mixture of 90 volumes of ethanol and 10 volumes of water of between about 100 percent and about 300 percent by weight and a porosity of from about 4 to about seconds per 6.45 sq. cm based upon a web having a basis weight of about l75.5 lbs. per 3,000 sq.ft., the fibers of the partial acid salt of collagen containing fromabout 50% to about 90% of the theoretical stoichiometric amount of ionizable acid.

2. A dressing as defined in claim 1 wherein the web has a Stiffness Factor of from about l5 to about 100 based upon a web having a basis weight of about 175.5 lbs. per 3,000 sq.ft. 3. A dressing as defined in claim ll wherein the fibers are partial hydrogen chloride salts of collagen 4. A dressing asdefined in claim 2 wherein the fibers are. partial hydrogen chloride salts of collagen containing from 60 percent to 85 percent of the theoretical stoichiometric amount of hydrogen chloride.

5. A dressing as defined in claim 1 wherein the fibers ,have a fiber length distribution by the McNett Classifier such that about 45 to 55% are retained on a mesh screen, 20 to are retained on a 35 mesh screen, 3 to 6% are retained on a 65 mesh screen, 0.5 to 1.5% are retained on a 150 mesh screen, and not more than pass a 150 mesh screen. i 6. A dressing as defined in claim 2 wherein the fibers are partial-hydrogen chloride salts of collagen containing from 60% to 85% of the theoretical stoichiometric amount of hydrogen chloride and the fibers have a fiber 'length distribution by the McNett Classifier such that iabtTuf48% are retained on a 20 mesh screen,-about 22% are retained on a mesh screen, about 3.6% are retained on a 65 mesh screen, about 0.7% are retained on a 150 mesh screen and thebalance passes a mesh screen.

7. The method of forming a hemostatic adhesive liquid-laid, non-woven web dressing for severed biological surfaces from hemostatic-adhesive fibers of ionizable, water-insoluble, partial acid salts of collagen including the steps of slurrying the fibers in a mixture of a watermiscible organic liquid and water, sheeting the fibers :6 form a web and drying the web, the fibers of the partial acid salt of collagen containing from about 50% to about 90% of the theoretical stoichiometric amount of ionizable acid, the mixture of organic liquid and water consisting of from about 95 -volumes of organic liquid' and about 5 volumes of water to about 80 volumes of organic liquid and 20 volumes of water.

8. The method as defined in claim 7 wherein the fibershave a fiber length distribution by the McNett I Classifier such that about 45 to are retained on a 20 mesh screen, 20 to 25% are retained on a 35 mesh screen, 3 to 6% are retained on a mesh screen, ..Q- ..I2l-5 are fl lpfle ltfl lt n i.

not more than 30% pass a 150 mesh scree;

9. The method as defined in claim 7 wherein the organic liquid is ethanol.

10. The method as defined in claim 7 wherein the mixture consists of from about 95 volumes of ethanol and about 5 volumes of water to about volumes of ethanol and about 20.volumes of water and the web is freeze dried.

11. The method as defined in claim 7 wherein the mixture consists of from about 95 volumes of ethanol and about 5 volumes of water to about volumes of ethanol and about 15 volumes of water and the web is vacuum dried.

' 12. The method as defined in claim 7 wherein the fibers of the partial acid salt of collagen contain from 60% to 85% of the theoretical stoichiometric amount of hydrogen chloride, the mixture consists of volumes of ethanol and 10 volumes of water, the fibers have a fiber length distribution by the McNett Classifier such that about 48% are retained on a 20 mesh screen, about 22% are retained on a 35 mesh screen, about 3.6% are retained on a 65 mesh screen, about 0.7% are retained on a mesh screen and the balance passes a 150 mesh screen and the web is freeze dried.

13. The method of joining severed biological surfaces in a living warm blooded animal which comprises placing between and in contact with the severed surfaces a liquid-laid, non-woven fibrous web of hemostatic.

adhesive fibers of ionizable, water'insoluble, partial acid salts of collagen, allowing the web to become wetted with blood, pressing the web into contact with the severed surfaces until hemostasis has been effected and then releasing the pressure, the web having the property of combining with blood to effect hemostasis and to form a mass with the blood that is self-adherent to the severed surfaces and thereby seal the wound, the

web having an absorbency of a mixture of 90 volumes UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. {810 1 Dated 1 1, 197 1 Mamerto M. Cruz, Jr., Orlando A. Battista, Laverne C. Tressler and Carmine Cirolla It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 2, line 11, "finely divided" should read -finelydivided--.

Column l, line 10, "{h should read --'i'hran--.

Columns 9 and 10, Table I, lines A-7 and B-7, the words "not tested, too harsh and boardy" should have dashes extending from both sides of this phrase to include columns lacking numbers.

Column 11, line 6, "provide" should read --prove--- Signed and sealed this 17th day of June 1975.

(SEAL) Attest:

C. MARSHALL DANN RUTH C. E'IASON Commissioner of Patents Attesting Officer and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3438374 *Feb 28, 1966Apr 15, 1969Us Health Education & WelfareMethod of bonding tissue surfaces and controlling hemorrhaging thereof using a tissue adhesive and hemostatic composition
US3742955 *Sep 29, 1970Jul 3, 1973Fmc CorpFibrous collagen derived product having hemostatic and wound binding properties
Non-Patent Citations
Reference
1 *Peacock, E.E. Jr. Annals of Surgery, Vol. 161, Feb. 1965, pp.238 247, Use of . . . Collagen Sponges . . .
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4016877 *Feb 23, 1976Apr 12, 1977Avicon, Inc.Fibrous collagen derived web having hemostatic and wound sealing properties
US4034750 *Apr 22, 1975Jul 12, 1977Maurice SeidermanElectrochemically linking collagen fibrils to animal tissue
US4060081 *Jul 15, 1975Nov 29, 1977Massachusetts Institute Of TechnologyMultilayer membrane useful as synthetic skin
US4089333 *Jun 22, 1976May 16, 1978Nippi, IncorporatedDressing with non-woven collagen free of telopeptides
US4204992 *Jan 11, 1979May 27, 1980Avicon, Inc.Method for preparing pyrogen free collagen
US4292972 *Jul 9, 1980Oct 6, 1981E. R. Squibb & Sons, Inc.Medical sponges, gelatin
US4361552 *Sep 26, 1980Nov 30, 1982Board Of Regents, The University Of Texas SystemWound dressing
US4404970 *Jul 22, 1980Sep 20, 1983Sawyer Philip NicholasHemostatic article and methods for preparing and employing the same
US4578067 *Mar 4, 1985Mar 25, 1986Alcon (Puerto Rico) Inc.Self-supporting webs of collagen fibers
US4767401 *Aug 26, 1982Aug 30, 1988Maurice SeidermanIontophoretic administration of ionizable or polar medicaments to a mammalian body
US4950483 *Dec 16, 1988Aug 21, 1990Collagen CorporationImplantation, fibrils are not cross-linked
US5024841 *Jun 30, 1988Jun 18, 1991Collagen CorporationCollagen wound healing matrices and process for their production
US5110604 *Dec 19, 1990May 5, 1992Collagen CorporationWound healing
US5531791 *Jul 23, 1993Jul 2, 1996Bioscience ConsultantsComposition for repair of defects in osseous tissues, method of making, and prosthesis
US5874500 *Dec 18, 1996Feb 23, 1999Cohesion Technologies, Inc.Crosslinked polymer compositions and methods for their use
US5895412 *May 2, 1997Apr 20, 1999Fusion Medical Technologies, Inc.Device and method for sealing tissue
US5986168 *Sep 12, 1997Nov 16, 1999Nicem, Ltd.Prosthesis containing bioabsorbable materials insolubilized without chemical reagents and method of making the same
US6051648 *Jan 13, 1999Apr 18, 2000Cohesion Technologies, Inc.Crosslinked polymer compositions and methods for their use
US6166130 *Apr 30, 1999Dec 26, 2000Cohesion Technologies, Inc.Providing synthetic polymer containing nucleophilic groups and second polymer containing electrophilic groups; contacting polymers to initiate crosslinking; simultaneously applying to tissue surface; crosslinking to form three-dimensional matrix
US6206931Aug 22, 1997Mar 27, 2001Cook IncorporatedGraft prosthesis materials
US6261679May 22, 1998Jul 17, 2001Kimberly-Clark Worldwide, Inc.Fibrous absorbent material and methods of making the same
US6323278Dec 8, 2000Nov 27, 2001Cohesion Technologies, Inc.Method of making crosslinked polymer matrices in tissue treatment applications
US6458889Jun 15, 2001Oct 1, 2002Cohesion Technologies, Inc.Crosslinking nucleophilic and electrophilic material; bonding strength
US6534591Aug 17, 2001Mar 18, 2003Cohesion Technologies, Inc.First and second polymers containing nucleophilic groups and electrophylic groups capable of reacting to form covalent bonds between polymers, resulting in formation of three-dimensional matrix
US6603054Apr 26, 2001Aug 5, 2003Kimberly-Clark Worldwide, Inc.Fibrous absorbent material and methods of making the same
US6833408Sep 30, 2002Dec 21, 2004Cohesion Technologies, Inc.Methods for tissue repair using adhesive materials
US6911496Jan 27, 2004Jun 28, 2005Cohesion Technologies, Inc.Composition for administration of a biologically active compound
US6969400Jan 27, 2004Nov 29, 2005Cohesion Technologies, Inc.bioadhesives, for tissue augmentation, in the prevention of surgical adhesions, and for coating surfaces of synthetic implants, as drug delivery matrices and for ophthalmic applications
US6974862Jun 20, 2003Dec 13, 2005Kensey Nash Corporationmalleable, biocompatible material for tissue repair or replacement; centrifugal force interlaces and interlocks fibers to retard dissociation; collagen, chitosan, alginate, hyaluronic acid, polylactic acid, polycaprolactone, polyurethane
US7101862Dec 31, 2002Sep 5, 2006Area Laboratories, LlcHemostatic compositions and methods for controlling bleeding
US7151135Mar 10, 2005Dec 19, 2006Angiotech Pharmaceuticals (Us), Inc.biocompatible, synthetic, and nonimmunogenic, crosslinkable polymer compositions of a first synthetic polymer containing multiple nucleophilic groups and a second synthetic polymer containing multiple electrophilic groups; use as implant coatings, preventing surgical adhesions
US7176256Jun 21, 2004Feb 13, 2007Angiotech Pharmaceuticals (Us), Inc.Reacting by crosslinking a first synthetic polymer containing multiple nucleophilic groups such as amino groups, with a second synthetic polymer containing multiple electrophilic groups such as succinimidyl groups to covalently bind them; use to prevent surgical adhesions, coat implants
US7214765Jul 8, 2005May 8, 2007Kensey Nash CorporationApplying a gyroscopic force to a low concentration slurry of polymer fibers, evenly dispersed and randomly oriented throughout the volume of the suspension fluid, to cause the fibers to flocculate and migrate through the fluid and amass at a center point where they interlace with one another
US7358284Jan 20, 2005Apr 15, 2008Lifecell CorporationParticulate acellular tissue matrix
US7652077 *Mar 26, 2004Jan 26, 2010Cook IncorporatedGraft prosthesis, materials and methods
US7699895Dec 23, 2003Apr 20, 2010Cook Biotech IncorporatedMulti-formed collagenous biomaterial medical device
US7883693Jan 31, 2006Feb 8, 2011Angiodevice International GmbhCompositions and systems for forming crosslinked biomaterials and methods of preparation of use
US7883694Jan 27, 2004Feb 8, 2011Angiodevice International GmbhMethod for preventing the formation of adhesions following surgery or injury
US7910690Apr 27, 2007Mar 22, 2011Kensey Nash Bvf Technology, LlcHigh density fibrous polymers suitable for implant
US8007542Oct 31, 2007Aug 30, 2011Cook Biotech IncorporatedFreeze-dried collagenous biomaterial medical sponge device
US8067031Apr 28, 2005Nov 29, 2011Angiodevice International GmbhCompositions and systems for forming crosslinked biomaterials and associated methods of preparation and use
US8128708Jan 28, 2010Mar 6, 2012Cook Biotech IncorporatedMulti-formed collagenous biomaterial medical device for use in wound care
US8188229Feb 14, 2011May 29, 2012Kensey Nash Bvf Technology, LlcHigh density fibrous polymers suitable for implant
US8197802Dec 28, 2010Jun 12, 2012Angiodevice International GmbhMethod for treating or inhibiting the formation of adhesions following surgery or injury
US8257715Aug 24, 2005Sep 4, 2012University Of Notre DameTissue vaccines and uses thereof
US8377466Oct 22, 2004Feb 19, 2013Angiotech Pharmaceuticals (Us), Inc.Adhesive tissue repair patch
US8414550Apr 11, 2007Apr 9, 2013Lexion Medical, LlcSystem and method to vent gas from a body cavity
US8460708Oct 24, 2011Jun 11, 2013Angiodevice International GmbhCompositions and systems for forming crosslinked biomaterials and associated methods of preparation and use
US8481073Oct 24, 2011Jul 9, 2013Angiodevice International GmbhCompositions and systems for forming crosslinked biomaterials and associated methods of preparation and use
US8585646Mar 3, 2008Nov 19, 2013Lexion Medical, LlcSystem and method to vent gas from a body cavity
US8608715Apr 8, 2013Dec 17, 2013Lexion Medical, LlcSystem and method to vent gas from a body cavity
US8617584May 25, 2010Dec 31, 2013Angiodevice International GmbhAdhesive tissue repair patch and collagen sheets
US8623842Sep 26, 2007Jan 7, 2014Hemostasis, LlcHemostatic agent and method
US8633299May 25, 2012Jan 21, 2014Kensey Nash Bvf Technology LlcHigh density fibrous polymers suitable for implant
US8716227Oct 31, 2007May 6, 2014Cook Biotech IncorporatedGraft prosthesis, materials and methods
US8778360Oct 20, 2006Jul 15, 2014University Of Notre DameExtracellular matrix cancer vaccine adjuvant
US8778362Sep 13, 2010Jul 15, 2014University Of Notre DameAnti-tumor/cancer heterologous acellular collagenous preparations and uses thereof
US8802113Oct 19, 2007Aug 12, 2014University Of Notre DameExtracellular matrix cancer vaccine adjuvant
US8808392Oct 31, 2007Aug 19, 2014Cook Biotech IncorporatedGraft prosthesis, materials and methods
EP0042253A1 *Jun 10, 1981Dec 23, 1981Alcon (Puerto Rico) Inc.Fibrous collagenous hemostatic-adhesive web and method for its preparation
EP0091821A1 *Apr 12, 1983Oct 19, 1983Alcon (Puerto Rico) Inc.Method of forming a hemostatic-adhesive web dressing and dressing formed thereby
EP1156765A1 *Nov 12, 1999Nov 28, 2001Polymer Biosciences, Inc.Hemostatic polymer useful for rapid blood coagulation and hemostasis
EP2305320A2 *Jun 19, 2004Apr 6, 2011Kensey Nash BVF Technology, LLCHigh density fibrous polymers suitable for implant
WO2000032250A1 *May 27, 1999Jun 8, 2000Cook Biotech IncA multi-formed collagenous biomaterial medical device
WO2004112854A1 *Jun 19, 2004Dec 29, 2004Kensey Nash CorpHigh density fibrous polymers suitable for implant
Classifications
U.S. Classification606/213, 606/229, 128/DIG.800, 106/157.3, 106/156.1
International ClassificationA61F13/02, D04H1/04, A61L15/58, A61L15/32, A61L15/16, A61K9/70, A61F13/00, A61F13/15
Cooperative ClassificationA61L15/58, A61F13/8405, A61F2013/00221, A61L15/325, A61F13/00034, A61F2013/00744, A61F2013/00472, A61L2400/04, A61F13/0223, Y10S128/08, A61F13/0289, A61F2013/15821
European ClassificationA61L15/58, A61F13/02M6, A61F13/00A6, A61F13/02B10, A61L15/32A
Legal Events
DateCodeEventDescription
Jul 11, 1991ASAssignment
Owner name: MEDCHEM PRODUCTS, INC., PUERTO RICO
Free format text: RELEASE OF SECURITY INTEREST PREVIOUSLY RECORDED AT REEL 4825 AND FRAME 562.;ASSIGNOR:SIGNAL CAPITAL CORPORATION, A CORPORATION OF DE;REEL/FRAME:005763/0764
Effective date: 19910619
Jul 11, 1991AS25Release of security interest
Free format text: MEDCHEM PRODUCTS, INC. MEDCHEM, PUERTO RICO * SIGNAL CAPITAL CORPORATION, A CORPORATION OF DE : 19910619
Dec 28, 1987ASAssignment
Owner name: SIGNAL CAPITAL EQUITIES, INC., A DE. CORP.
Free format text: SECURITY INTEREST;ASSIGNOR:MEDCHEM PRODUCTS, INC.;REEL/FRAME:004825/0562
Effective date: 19871218
Dec 28, 1987AS06Security interest
Owner name: MEDCHEM PRODUCTS, INC.
Owner name: SIGNAL CAPITAL EQUITIES, INC., A DE. CORP.
Effective date: 19871218
Jun 6, 1985ASAssignment
Owner name: ALCON (PUERTO RICO) INC., P.O. BOX 3000, HUMACAO,
Free format text: CHANGE OF NAME;ASSIGNOR:AVICON, INC.;REEL/FRAME:004413/0956
Effective date: 19821215