Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3811353 A
Publication typeGrant
Publication dateMay 21, 1974
Filing dateJan 8, 1973
Priority dateDec 30, 1971
Publication numberUS 3811353 A, US 3811353A, US-A-3811353, US3811353 A, US3811353A
InventorsMiles T
Original AssigneeLumber E Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for cutting lumber to specified clear lengths
US 3811353 A
Abstract
A piece of lumber is fed flat to the infeed end of a marking station, tilted on edge and driven endwise into the marking station where defects in the piece are detected and marked with a retroreflective material. The marked piece moves to a defect-cutting station where it is driven endwise past a pair of defect-cutting saws until a marked defect is sensed between the saws to stop movement of the piece and actuate the saws to remove the defective section. The clear piece downstream of the saws is measured and, if longer than a minimum length range, diverted to a cut-to-length saw station. If within the minimum length range, it is diverted to a "core block" sort. If shorter than the minimum range, it is diverted to junk. The piece upstream of the saws is measured and diverted in the same manner as the downstream piece except that upstream pieces longer than the minimum length range resume travel past the defect saws. Long-length sensors at the defect station determine if a piece contains any one of several specified defect-free long lengths and if so, set a stop downstream of the defect saws corresponding to the longest specified clear length sensed and then actuate only one of the defect saws to cut the piece to such length when the piece reaches the set stop. Such piece is then diverted directly to a sorting station. Random length clear pieces transferred to the cut-to-length station are pressed against a series of depressible stop-sensors determining various specified lengths, driven endwise over the stop-sensors past a length saw until one of the stop-sensors is released, then driven in reverse against the released stop. The length saw then strokes to cut the piece to specified length, after which the piece is sorted according to length as determined by the released stop-sensor.
Images(7)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 11 1 Miles A [111 3,811,353 1451 May21, 1974 APPARATUS FOR CUTTING LUMBER TO SPECIFIED CLEAR LENGTHS 75 Inventor: Thomas Rl Miles, Portland, Oreg.

[73] Assignee: Edward Hines Lumber Co., Hines,

Oreg.

[22] Filed: Jan. 8, 1973 [21] Appl. No.: 321,847

Related US. Application Data [62] Division of Ser. No. 214,011, Dec, 30, 1971.

Primary Examiner-Donald R. Schran Attorney, Agent, or F irm-Klarquist, Sparkman, Campbell, Leigh, Hall & Whinston [57] ABSTRACT A piece of lumber is fed flat to the infeed end of a marking station, tilted on edge and driven endwise into the marking station where defects in the piece are detected and marked with a retroreflective material. The marked piece moves to a defect-cutting station where it is driven endwise past a pair of defect-cutting saws until a marked defect is sensed between the saws to stop movement of the piece and actuate the saws to remove the defective section. The clear piece downstream of the saws is measured and, if longer than a minimum length range, diverted to a cut-to-length saw station. If within the minimum length range, it is diverted to a core block sort. If shorter than the minimum range, it is diverted to junk. The piece upstream of the saws is' measured and diverted in the same mannet as the downstream piece except that upstream pieces longer than the minimum length range resume travel past the defect saws. Long length sensors at the defect station determine if a piece contains any one of several specified defect-free longlengths and if so, set a stop downstream of the defect saws corresponding to the longest specified clear length sensed and then actuate only one of the defect saws to cut the piece to such length when the piece reaches the set stop. Such piece is then diverted directly to a sorting station. Random length clear pieces transferred to the cut-tolength station are pressed against a series of depressible stop-sensors determining various specified lengths, driven endwise over the stop-sensors past a length saw until one of the stop-sensors is released, then driven in reverse against the released stop. The length saw then strokes to cut the piece to specified length, after which the piece is sorted according to length as determined by the released stop-sensor.

7 Claims, 15 Drawing Figures PATENTEDMAY 21 m4 3Q81 1; 353

SHEET 3 OF 7 PATENTEDHAYZI 1914 SHEET R (If I PATENTEB 2 W4 SHEET 5 OF 7 Vmm @NN QVN PATENTEBNAYZ'I um 381 1.353

SHEET 7 UF 7 360 70 55 As INPUT ONE SHO 44 367 (DH) 365 OP osE GATE! GATE "2 GATE "3 378 CTL. FLlP-FLOP/ TIM sAw STROKE RETRACT OPEN CTL. LOSE JUNK GATE OPE CLOSE 406 CTL. COR E 402/ BLOCK GATE APPARATUS FOR CUTTING LUMBER TO SPECIFIEDCLEAR LENGTHS This application is a division of my prior co-pending application Ser. No. 214,011, filed Dec. 30, 1971, for Method and Apparatus for Cutting Lumber to Random or Specified Clear Lengths.

BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the cutting and sorting of lumber to random or specified clear lengths.

2. Description of the Prior Art Heretofore the removal of defects from lumber and the cutting of the resulting clear pieces to one of several specified clear lengths with a minimum of waste has been largely a manual, trial-and-error operation. For example, in one typical prior system, each of ten saws manned by twenty people is equipped with a set of some twenty manually operated stops spaced at varying distances from the saw to determine various specified lengths. Each person takes a piece of lumber, inspects it, then using one of the saws cuts the piece on opposite sides of any defect to remove the defective section. Thereafter the same person places each resulting random length clear piece against a manually set one of the several steps estimated to be the one that will cut the longest specified clear length from such piece with a minimum of waste. However, if the operator errs in his estimate, he must clear the set stop and set other stops until the one stop is set that will produce the longest possible specified length from the piece. In practice, an operator must re-estimate and reset stops for a given piece approximately fifty percent of the time, thereby losing valuable production time. Thus as presently practised, the upgrading of low-grade defectcontaining lumber by cutting it to specified clear lengths is a costly, time-consuming operation, particula'rly with the high labor costs involved.

SUMMARY OF THE INVENTION The present invention provides a method and apparatus for removing defects from lumber and cutting the lumber to random or specified clear lengths with a minimum of labor and at a high rate of production exceeding that possible with the aforementioned prior method. The invention eliminates the human guesswork and trial-and-error estimation of the longest specified clear length in a given piece of lumber involved with the prior method. The invention also eliminates the manual setting and resetting of stops.

A basic feature of the invention is the separation of the defectand length-cutting operation into two separate steps. including a defect-cutting step carried out at a first cutting station and a cut-to-length step carried out at a subsequent cutting station.

A further basic feature of the invention is the use of each individual piece of lumber to carry its own information necessary to trigger various machine operations in proper sequence, thereby eliminating the need for costly computer or memory systems to operate the apparatus.

Another feature of the present invention is a built-in sorting system which sorts pieces according to length from length sensings made at the defectand lengthcutting apparatus.

According to another feature of 1 the invention, various specified clear lengths in a board are sensed automatically and these sensin'gs used to operate various elements of the apparatus as required to position the board for cutting, to cut the board to a specified length and to sort pieces according to length.

A more specific feature of the invention is the mark ing of defects in a board with a retroreflective material which can be sensed to initiate machine functions which either remove the defect from the board or cut the board to a specified long clear length.

In another specific aspect of the invention, boards containing at least one of several specified long, clear lengths can be detected, positioned and cut automatically to the longest possible one of the specified lengths at the defect-cutting station and then diverted to a corresponding sorting station without passing through the cut-to-length station.

A prototype apparatus of the invention is designed to process 15,000 board feet per day using from one to three persons, thereby giving a production rate per person of from 5,000 to 15,000 board feet. This should be compared to the 1,500 board feet per person capable of being produced using the typical prior system previously described.

BRIEF DESCRIPTION OF THE DRAWINGS The foregoing and other objects, features and advan- .tages of the present invention will become more apparent from the following detailed description which proceeds with reference to the accompanying drawings, wherein:

FIG. 1 is a plan view of an overall system in accordance with the invention;

FIG. 2 is a vertical sectional view on an enlarged scale taken approximately along the line 2-2 of FIG. 1 showing the-infeed end portion of the apparatus of FIG. 1;

FIG. 3 is a vertical section taken approximately along the line 3-3 of FIG. 1 showing the details of the marking station portion of the apparatus;

FIG. 4 is a view taken along the line 4-4 of FIG. 3 showing an infeed portion of the marking station in plan;

FIG. 5 is a plan view'of the sorting section of the apparatus of'FIG. l;

FIG. 5A is a continuation of FIG. 5 showing a plan view of an outfeed portion of the defect-cutting station;

FIG. 6 is a view taken approximately along the line 6-6 of FIG. 5 showing the sawing and sorting sections of the apparatus in elevation;

FIG. 7 is a plan view of the cut-to-length station as viewed along the line 7-7 of FIG. 6 rotated to a horizontal plane and with other portions of the apparatus i 3 FiG. 13 is a circuit diagram of the pneumatic-fluidic sensing and control system of the apparatus; and

. can be stationed at the stack on an extension 55 of the FIG. 14 isa diagram'of a manual control stick portion of the control system. I

DETAILED DESCRIPTION GENERAL ASSEMBLY With reference to the drawings, FIG. 1 shows the- ,overall apparatus, including an infeed section 10, a

marking. station 12 just downstream from the infeed section where 'defectsare marked, and an operator's station 14 alongside the marking station. A transfer,

section l6 transfers marked lumber from the marking station ,12 to a cutting and sorting section l8. At the cutting and sorting section, marked defects are firstdetected and cut from pieces at a defect-cutting station after which the resulting random-length clear pieces are dropped to a cut-to-length station 22 and then to a sorting section 24 where the pieces are sorted to length.

- lNFEED SECTION Referring to FIGS. land 2, piecesfrom a stack of lumber 26 on a scissors lift 27 at the head of the infeed section are fed onto adeclining skate wheel section 28 leading to a zero trim table 30. Pieces roll down the skate wheels 28 onto a series of driven ending rolls 32 which drive th epieces endwise against an ending bumper 34. Lug chains 36 push one piece at a time from the ending rolls through a zero' trim saw 38 and onto a declining skidw'ay comprising a series of skid rails 40. Each piece P'slides down the rails in a flat condition to a stop 42 at the bottom of the skidway. As' each piece arrives at the stop, it has its right-hand end as viewed in FlG.,l referenced in the same positionas every other piece with respect to the infeed end of the marking station 12 regardless of the length of the piece because of the zero-referencing action of the zero trimtable.

At the lower end of the skidway, meansare provided for turning each board on edge and for flipping it completely over. Such means includes a flipper arm assembly comprising a series of .flipper arms 44 mounted at spaced intervals along a common shaft 46. As clearly shown in FIG. 2, the flipper arms in their inactive positions lie below a piece of lumber P at the bottom of the skid rails. The flipper arm assembly is actuated by a tandem pair of air cylinders 47, 48 pivoted to the frame of the machine at and pivoted at 50 to a crank arm, 51 of shaft 46. Upon. extension of cylinder 47,. arm 44 pivots to aninelined position 440 to lift a piece P on edge as shown. Upon extension of both cylinders 47, 48, arm 44 is pivoted to a near vertical position 4412 to flip a piece P completely over to its opposite face. The flipper assembly is controlled from the operator's station 14. There the operator, positioned in a seat 53 on a platform 54, overlooks the flipper assembly and can flip a given board so that its most defective face will be tilted toward the operator as it passes through the marking station 12.

if desired, thezero trim table can be eliminated and additional skate wheels or other means provided for feeding pieces of lumber manually one at a time onto the skid rails 40 for manipulation by the flipper arms.

Lumber from stack 26 can be fed automatically to the skate wheels using automatic lumber feeder devices cornmon'in the industry. Alternatively, a second person MARKING STATION When a piece of lumber arrives at the bottom of the .skid rails and is tilted on edge at approximately a 60 angle to the horizontal by the flippers as shown in F IG. 3, its righthand end as viewedin FIGS. 1 and 4 is supported by a wear plate 58 and the driven roll 60 of a pair of nip rolls at the infeed end of the marking station. The infeed nip rolls also includean idler roll 61 movable toward and away. from the driven roll by an air cyl inder 62. Nip roll 60 is driven by a reversible orbit motor 64. idler roll 61 is carried on an arm 65 pivoted at 66 to a support 67. Wearplate 58 is downturned at its opposite ends as shown at infeed end 68 to prevent boards from hanging up on the plate. The wear plate forms part of an angle member 69 and also includes a fence portion 70 providing support fora back portion I piece of lumber P driven endwise through the marking station bythe infeednip rolls. The speed and direction of endwise travel of a piece through the marking station is controlled from the operators station by controlling the speed and direction of rotation of motor 64.

'A marking means shown most clearly in F lG.'3 is pro vided at the marking station along the path of travel of a piece The marking means includes a spraynozzle 72 directedtoward the face of any board passing through the marking station. The nozzle is supplied with a fastdrying retroreflective liquid from a reservoir (not shown) which is sprayed under control of the operator onto defects, such as knots, detected in a board as-it travels on edge through the marking station. Defects marked in this manner'are detected later by photosensors which actuate saws that remove such defects. A defect can readily be aligned with the marking nozzle- 72, which is preferably directly in front of the operator as shown in F IG. 1, by reason of the reversible and variable speed drive provided for the board.

The marking station also includes an outfeed means comprising a pair of outfeed nip rolls 74, 75 similar in arrangement and operation to the infeed nip rolls 60,

The opening and closing of both the infeed and the outfeed nip rolls are controlled automatically by photoelectric sensors shown schematically in FIG. 1 includingan infeed sensor PC-l and an outfeed sensor PC-Z. The infeed sensor detects the presence of a board in position at the infeed end of the marking station and in response to such sensing closes the normally open infeed nip rolls, driving the lumber into the'marking sta- I tion. When the leading end of the lumber passes outfeed sensor PC-2, the outfeed nip rolls close enabling the lumber to be driven out of the marking station and onto the aligned end of the transfer section 16.

When a board moving through the marking station clears the infeed rolls 60, 61, sensor PC-l causes such TRANSFER SECTION The fence serves to align each board endwise with the infeed end of the defect-cutting station. An angled bumper plate 88 limits the downstream movement of a board on the transfer table. Such plate also guides the leading end of each board toward a gate 94 anda pair of normally open nip rolls 90 at the infeed end of the defect-cutting station, as shown most clearly in FIG. 5. Nip rolls 90 are similar to the nip rolls previously described and include'an air cylinder-actuated upper idler nip roll and an orbital motor driven lower nip roll, the

air cylinder being shown at 91 and the orbit motor at Gate 94 is bounded on one side by a short fence sec tion 96 and on the opposite side by a gate idler wheel 98 on bumper 88. The lower portion of the gate is defined partially by another idler wheel 99. Gate idler 98 is pivoted at 100 to a slide plate 102 and spring-biased toward the gate opening to prevent boards from moving through the opening until they are positively driven by nip rolls 90. Slide plate 102 is slidably adjustable along the upper surface of bumper 88 to adjust the size of the gate opening to accomodate various board widths. I

Referring to FIG. 5, each screw roll 80 has two annular ribs 80a at its infeed end. These ribs prevent sidewise movement of the leading end ofa board as it is fed onto the screw rolls by the outfeed nip rolls at the marking station until the entire board clears the outfeed nip rolls. When this happens, the edge-tilted board falls flat on the screw rolls enabling the helical ribs to begin their sideways conveying movement of the board toward fence 86.

A photoelectric sensor PC-3 at the infeed end of the transfer table senses the presence ofa board on the table. This sensor illuminates a red warning light on a control panel at the operators station if the sensor remains activated too long, indicating a full table.

Another sensor PC-6 near gate 94 senses the presence ofa board at the gate and between nip rolls 90 to close such rolls, enabling the infeed of a board into the defect station.

DEFECT-CUTTING STATION The details of the defect-cutting station are shown most clearly in FIGS. 5, S-A and 6. The relative levels of the defect-cutting station, screw roll transfer section 16 and cut-to-length station 22 with respect to floor level and each other are shown in FIG. 6. The defectcutting station is supported on a structural framework indicated generally at 104 which includes longitudinal channel members 106, 108 supporting the defectcutting means and its actuating mechanism and pairs of longitudinal and vertically stacked rectangular tube members 109, I supporting the other components of the defect-cutting station. All of these longitudinal frame members extend between and are supported by cross frame members I12, 114.

A pair of parallel, longitudinally extending fence assemblies, one fixed and one laterally movable. define a linear, horizontal path of travel for lumber fed endwise into and through the defect-cutting station. The fixed fence assembly includes a short fixed fence 116 and a longer fixed fence 118, both defining continuations of the fence 86 of the transfer section and the short fence 96 of the gate leading into the defect station. The movable fence assembly includes a short movable fence 120 in opposition to the short fixed fence and a long movable fence 122 opposite the long fixed fence 118.

The short movable and fixed fence sections are suspended beneath fence supports 124, 125. The long fixed and movable fence sections are supported from similar fence supports 126, 127 and 128. All of these fence supports are longitudinally slotted as shown at 129 on support 127 to receive suitable fasteners and to serve as slideways for the movable fence sections. The fence supports in turn are fixed to the tubular longitudinal frame members 109, 110. Air cylinders 132 fixed to the underside of fence supports 1 24, 125, 126 and 128 are connected also to the movable fence sections for moving-such sections in unison toward and away from the fixed fence sections.

As shown best in FIG. 6 with respect to short fixed fence 116 and short movable fence 120, all fence sections carry bottom plates I34, 136 which have lip portions extending inwardly beyond the fence members themselves to form a drop gate which either supports a board within the defect station or drops a board from it, depending on the position of the movable fences. The plate 136 on the fixed gate sections is downturned at its outer end so as to guide a board downwardly along an inclined slideway when the movable fence is retracted by cylinder 132 to release the board.

The defect-cutting means includes a pair of defectcutting circular saws 138, 139 positioned as shown in FIG. 5 in a gap between the short and long fence sections. Saw 139 is mounted on a fixed base 140. How ever, saw l38is mounted on an adjustable base 141 which enables the spacing between the pair of saws to be adjusted within the range ofa few inches, with such range, for example, normally being approximately four to six inches. Except for the adjustable nature of the base of the movable saw, the mounting and actuation of the two saws is identical and so will be described only for the movable saw.

Saw 138 is fixed to a driven shaft 142 rotatably mounted on a yoke arm 144. The yoke arm is pivoted to base 141 at 145. The yoke arm carries a pulley wheel 146. A drive belt 148 interconnects the yoke arm pulley and a driven pulley 150 connected to the drive shaft of an electric motor 152 for driving the saw. The motor is mounted on a base plate 153 which is pivoted at 154 to the main base 141.

The saw-actuating means includes a toggle mechanism 156 pivoted at one end to an overhead frame member 157, at the other end to the yoke arm 144 andin the center to an air cylinder 158 which in turn is connected to an upright frame member 159. Thus in the normal inactive, retracted position of the saw, air cylinder 158 is retracted to position the lower cutting edge of the saw above the level of a board P supported between the fixed and movable fences. However, upon extension of the air cylinder, the toggle mechanism forces the yoke arm 144 downwardly and then upwardly, thereby moving saw 138 through its cutting stroke to sever a board extending through the saw's cutting plane. Normally both the defect-cutting saws are actuated simultaneously to cut a short defective section from a board. The severed section then drops through the gap between fences to a junk" collection point. However, for a reason to be developed later, each saw is also capable of operating independently of the other.

The means for driving pieces through the defect sta tion comprises a pair of relatively fixed driver rolls 162 and an opposing pair of relatively movable idler rolls v 164 mounted on opposite sides of the pair of defect saws just inwardly toward the saws from adjacent ends of the fixed and movable fence sections. ldler rolls 164 are carried by the movable fence sections so as to move with them. Driver rolls 162 are carried by the fixed fence sections. They are spring-loaded to extend a short distance beyond the lumber-engaging edge of these fence sections. The idler rolls are spring-loaded to extend a slightly greater distancebeyond the lumberconfronting edge of the movable fence sections. Thus when the opposing spring-loaded drive and idler rolls press against the opposite edges of a piece of lumber within the defect-cutting station, they apply unequal forces against opposing edges of the lumber in a manner resulting in the lumber being held against the fixed fences with a positive force. This ensures that the drive'rs will firmly engage the lumber to drive it through the defect station while at the same time. the lumber will follow a truev straight course as defined by the fixed fence. The driver rolls are driven by orbital motors 166 depending beneath the rolls, one such motor being shown in FIG. 6.

The defect saws are covered by a removableoverhead guard 168. The overhead guard also mounts a bracket 170 to which four photoelectric sensors l-5, l-l0, -5, 0-10 are mounted. These photoelectric sensors and others are illustrated elsewhere schematically by triangular symbols for simplicity and clarity. Actually these sensors and others may be mounted anywhere on the apparatus where convenient. A fifth photosensor PC-4 is mounted behind and between the pair of defect saws on anfupright support member 176 to detect defects between the saws. The functions of these and other sensors are described subsequently.

Referring to FIG. S-A, fixed fence 118 ends a shorter distance downstream of the defect saws than correspending movable fence' 122. A stop bar 178 continues downstream .from the downstream end of the fixed fence. ThreeYair-actuated pop-out mechanical stops 180, 181,182 are pinned to the stop bar at predetermined but adjustable positions along it to determine the downstream ends of three specified 'long clearlengths which can be cut from a 'piece using one of the two defect saws. In conjunction with these mechanical stops, three end-of-piece photo sensors A-l, A-2, A-3 are positioned along the stop bar upstream of the stops and operate in conjunction with ya defect sensor PC-S upstream of the defect saws. 'A second set of three photoelectric end-of-piece sensors SA-l, SA-2, SA-3 are positioned on the stop bar. one just in front of each popout stop to slow the drive rolls before a board reaches such stops. Finally a maximum length mechanical stopsensor 188 is adjustably positioned on the stop bar downstream of the pop-out stops to stop and control the processing of any piece that is not acted upon by the pop-out stops and has no defect detected prior to reaching such stop.

FIG. 10 shows one of the pop-out stops in detail. This typical pop-out stop includes a stop body 190 adjustably connected to stop bar 178 by a pair of removable pins 191 extending through a pair of openings 192 in the stop body and through an aligned pair of stop bar openings 193. An upwardly extending portion 194 of thestop body pivotally mounts an air cylinder 195 via pivot pin 196. The air cylinder has a piston rod portion 197 pivotally connected at 198 to a pop-out stop lever 199. The stop lever is pivoted to the stop body at 200. Thus when the aircylinder extends, the piston rod 197 pivots stop lever 199 downwardly and outwardly to a horizontal position 199a in the path of lumber passing downstream through the defect station. I

Referring to FIG. 6, the defect-cutting station includes an associated sorting and transfer means. Such means includes inclined slideways 202, 204 which merge at their upper ends at a primary diverter or flipflop gate 106. This gate determines onto which slidev way a piece will drop when released from the defectcutting station through retraction'of the movable fence sections.

The transfer slideway 202 leads to cut-to-length station 22. The sorting slideway 204 leads to a series of sorting stations to which pieces from the defect station are directed according to length or condition without passing them through the cut-to-length station. Sorting slideway 204 includes a pair of sorting gates 208, 209 leading respectively when open to conveyor belts 210, 211. Pieces sliding down the slideway 204 with both diverter gates 208 and 209 closed will proceed onto a third, transfer belt 212. Thus, for example, defective sections cut from a piece can be diverted to a junk sort by belt 210 by positioning flip-flop arm 206 in its righthand position and gate 208 in its open position. Similarly, clear pieces too short to be dropped to the cut-tolength station can be diverted to a core block" sort on belt 211 by keeping gate 208 closed but opening gate 209. As a further example, long clear pieces cut to length at the defect station can be diverted directly to a sorting station Without passing to the cut-to-length station by positioning flip-flop gate 206 in its right-hand position and by closing gates 208 and 209 so that the long clear pieces drop onto transfer belts 212.

OPERATION AT DEFECT STATION time movable fence sections 120 and 122 move inwardly to support the piece as it travels downstream in the defect station and to press the piece against the fixed fence sections and drive rolls 162. When photoelectric sensor PC-4 detects a marked defect on the piece between the saws, a signal from the sensor stops drive rolls 162 and the driven nip roll 90 and extends air cylinders 158 to stroke defect saws 138, 139 simultaneously to cut the defective section from the piece. This defective section drops from between the saws along slideway 204 through open gate 208 onto belt 210 where it is conveyed to the junk sort.

The remaining clear piece downstream of the defect saws is measured by a pair of outfeed photo sensors spaced apart a short distance downstream of the saw 139 including a junk sensor -5 and a core block sensor 0-10. If such downstream piece is longer than, say, 10 inches, it is diverted to the cut-to-length saw station. If such piece is within the range of, say, from to inches in length or as otherwise determined by spacing between the two sensors, it is diverted to the core block sorting station by opening gate 209. if shorter than 5 inches or any other predetermined minimum length as determined by'sensor 0-5, such piece is diverted to junk via open gate 208.

An identical pair of infeed sensors, including a junk sensor 1-5 and a core block sensor 1-10, measure and divert the remaining piece upstream of the saws in the I same manner as the outfeed sensors except that upstream pieces longer than l0 inches or some other predetermined length resume their travel downstream toward the defect saws for processing as previously described through reactivation of nip rolls 90 and drive rolls 162.

A piece having an exceptionally long clear length as measured from its leading end can be cut to one of three specified long lengths at the defect-cutting station, thereby eliminating the need to transfer such pieces to the cut-to-length station, and enabling direct sorting of these pieces from the defect station.

Whether or not a given piece contains a clear length at least as great as one of the three specified long clear lengths is determined by defect sensor PCS upstream of the defect saws and by the three end-of-piece sensors A-l, A-2, A-3 downstream of the saws. For example, if a piece moving past the defect saws has its leading end sensed by sensor A-l but not sensor A-2 and A-3 as defect sensor PC-S detects a defect, the associated electrical control circuit causes the air cylinder of pop-out stop 180 to extend and set such stop to block downstream travcl of the piece when it reaches such stop. As the piece approaches stop 180, sensor SA-l slows drive rolls 162 and nip roll 90. When the leading end of the piece reaches set stop 180, the drive rolls stop and only the second defect saw 139 strokes to cut the piece to the shortest one of the three specified long lengths. The movable fences retract and the gates are set to drop the long clear piece onto belt 212 to convey it to a long length sorting station, bypassing the cut-to-length station.

in a similar manner the activation of sensor PC-5 and both A-] and A-2 would set stop 181, and the activation of sensor PC-S with all three stops A-l, A-2, A-3 would set stop 182. The end-of-piece sensors and their corresponding stops can be adjusted to various positions along the stop bar to provide various specified long lengths. Also a fewer or greater number of pop-out stops and corresponding sensors could be provided as desired to meet the needs of the user.

C UT-TO-LENGTH STATION bottomdrop gatemember 224 and a movable sidesupporting fence 226. As shown in FIG. 7, gate 224 is composed of three gate sections 224a, 224b, 224c mounted for downwardly pivoting movement on a common shaft 230 (FIG. 9). The fence and drop gate position a piece delivered to the cut-to-length station in parallel relationship to the position it occupied at the defect-cutting station. As shown best in F IGS. 8 and 9, the sections of drop gate 224 are fixed to long lengths of tubing 229 pinned to common shaft 230. The shaft is pivotally mounted in three sleeve bearings 228 having supports 227 attached to a frame portion 231 of the machine. The drop gate sections are pivoted downwardly simultaneously from a lumber-supporting position as shown in FIG. 8 to a position dropping lumber to the sorting area byan air cylinder 232 pivotally connected to a drop gate actuating arm 233.

A cut-to-length saw 234 is positioned along drop gate 224 and has a cutting plane 234a extending normal to the l'ength of the drop gate in the gap between the drop gate sections 2240 and 224b. -With reference to FIG. 5, it will be seen that length saw 234 is in substantial alignment with the downstream saw 139. However, the cutto-length saw is offset just'slightly downstream from such defect saw so that random lengths dropping laterally to the cut-to-length station from the'defect station will have one end extending slightly into the cutting plane of length saw 234. Y

Cut-to-length saw blade 234 is fixed to a shaft 235 carried on the outer end of a yoke arm 236. The yoke arm is pivoted at its inner end at 237 to a support base 238. The pulley 239 fixed on shaft 235 is driven by drive belt 240 from a second pulley 241 on the drive shaft of an electric motor 242. Yoke arm 236 pivots upwardly to move the cut-to-length saw through its cutting stroke by an air cylinder 244 acting on a toggle linkage 246. The cutting stroke of the saw is indicated by dashed lines in FIG. 6.

Two pairs of nip-drive rolls, including two inwardly movable idler rolls'248 on fence 226, an opposing fixed idler roll 249, and a single fixed driven roll 250 are positioned along drop gate 224 for moving a piece at the cut-to-length station endwise toward and away from the cut-to-length saw. The driven roll 250 is driven by an orbital motor 251 mounted on a support above the drive roll as shown in FIGS. 6 and 8.

A piece P dropped from the defect station to the cutto-length station and supported on drop gate 224 is pressed against the fixed drive rolls 249, 250 by idler rolls 248 which move inwardly to engage one side of the piece with movable fence 226 under the influence of air cylinders (not shown).Drive motor 251 is reversible so that a piece can be driven in either direction along the drop gate, either toward or away from the cut-to-length saw.

A stop-sensor bar 254, shown in FIGS. 7 and 9, is positioned downstream of the cut-to-length saw'opposite fence 226 and along drop gate sections 224b and 224C. The stop bar 254 is mounted on frame member 231. A portion of the stop bar overhangs the drop gate and is provided with a series of spaced-apart pin-openings which provide for adjustable connection of a series of stop-sensors SS at various distances from the saw 234 so as to determine specified lengths to which randomlength pieces will be cut by such saw. The stop bar also adjustably mounts a piece-present sensor PP which detects the presence of a piece of lumber at the cut-tolength station to trigger the actuation of the nip-drive rolls. One or more random-lengthsensors RS may also be mounted on the stop bar to drop certain long random-length pieces from the cut-to-length station without cutting them to length.

The stop-sensors SS are adjustably secured to stop bar 254 by a'pair of removable pins 257 extending through aligned pin openings in the stop bar and stopsensor. Referring to FIG. 11, the stop-sensor includes a stop body 260 having an upper groove 261 receiving a depressible stop lever 262. The stop lever is pivoted at 263 to the stop body and is biased outwardly by a spring 264 against the force of which the stop lever is depressible inwardly by a board forced against the stop bar. The lower portion of the stop body includes a pair of pin openings 265 which receive pins 257 for attaching the stop-sensor at the stop bar. For this purpose the lower portion of the stop body includes a groove 266 into which the stop bar projects.

Stop body 260 also includes an air tube connector 269 for connecting an air tube from a pneumaticfluidic control panel (not shown). The connector leads into a drilled opening 267 in the body which connects to an air outlet 268 leading into the upper groove 26] of the body. Air entering the stop body is normally blocked by the stop lever 262 when in its normal released position. Thus normally the connected air tube will have a high back pressure. However, when the lever is depressed by a piece of lumber, air can escape through outlet 268, producing a low pressure in the connected air tube. However, when the stop lever is againreleascd, this will again block the escape of air from the stop body, sending a pulse of high-pressure air to the pneumatic-fluidic control circuit for a purpose to he described in conjunction with FIG. 13.

The piece-present sensor PP and random-length sensor RS may be similar in construction to the stopsensor. except that in the former the stop lever and associated outer groove are eliminated and the air tube connector communicates with an air outlet passage extending completely through the sensor body to its lumber-engaging surface.

Below the cut-to-length station there is another sorting area (HO. 6) where boards cut to length by the length saw are sorted according to length. The sorting area includes two inclined'slideways 270, 272. Slideway 270 includes a series of four diverter gates 274 selectively pivotable upwardly on shafts 275 by air cylinders (not shown) to divert boards into one of four chutes or bins 276. Each chute leads to one of two driven side transfer belts 278, 279, which, when the machine is in operation, continuously convey sorted material from the apparatus. The sorting chutes are constructed in pairs, with each pair being formed by two outer walls-280, 281 and a vertical divider wall 282. An additional series of end transfer belts 284 convey pieces not diverted into one of the four chutes from the apparatus. The four gates 274 include a random sorting gate 274a, a No. l sorting gate 2741), a No. 2 sorting gate 274C, and a No. 3 sorting gate 274d.

Slideway 272 includes a junkgate 286 and a core block gate'288. Each of these gates is upstream of the 'cut-toJength saw, whereas the sorting gates 274 are downstream of such saw.

OPERATION AT CUT-TO-LENGTH STATION ln operation a random-length clear piece of lumber from the defect-cutting station longer than the minimum length of, say, 10 inches drops along slideway 202 onto closed drop gate 224 with one end in alignment with the cut-to-length saw; Piece-present sensor PP detects the piece and closes the drive-nip rolls, causing the rolls and fence 226 to press one face of the piece against driven roll 250 and stop-sensors on bar 254, depressing some or all of the stop-sensors, depending on the length of the piece. When this occurs, drive roll 250 rotates in a counterclockwise direction, driving the piece endwise toward the cut-to-length saw. The piece continues toward such saw until the first one of the depressed stop sensors SS is released. Upon such release, drive roll 250 reverses to drive the downstream end of the piece against the released stop. Then air cylinder 244 extends to stroke the length saw 234, cutting the piece to a specified length as determined by the released stop. Air cylinder 232 then retracts, opening drop gate 224 and dropping the piece of specified length into one of sorting chutes 276. The chute into which the piece is diverted is determined by the released stop SS which, as soon as released, signals one of gates 274 to open through the pneumatic-fluidic control circuit of FIG. 13.

A pair of sensors upstream of the cut-to-length saw, including a junk sensor S-5 and a core block sensor S-l0, determine the length of the short piece on that side of the saw. Pieces less than a minimum length of, say, 5 inches are diverted to junk through gate 286, whereas pieces between the minimum length and, say, 10 inches are diverted to the core block sort through diverter gate 288.

If a piece arriving at the cut-to-length station is less than the shortest specified length as determined by the position of the closest stop sensor 55-15 to the length saw, then piece-present sensor PP acts through the fluidic circuit to divert such short random-length piece directly to the. random sort through gate 2740 without stroking the saw. Additional adjustable random-length sensors such as sensor RS can be mounted on the stopsensor bar tocause lumber covering such stops but not stop-sensors beyond such stops to be diverted to the random sort without saw operation.

The sensors on the stop-sensor bar are adjustable in short increments of, say, one-fourth inch. Each-stopsensor SS can be connected to field-changeable connections in the pneumatic-fluidic controlcircuit in'such a way as to cause any selected one of the sorting gates 274 to open when a given stop-sensor is released.

CONTROL SYSTEMS The control system of the illustrated embodiment is broken down into two parts. First, an electrical control system shown in FIG. 12 controls the operation of the marking and defect-sawing sections of the apparatus. Second, a pneumatic-fluidic control system shown in FIG. 13 controls the operation of the cut-to-length section and sorting therefrom.

ELECTRICAL CONTROL SYSTEM.

four switches are opened and closed selectively by the operator using a four-way wobble stick'cont rol 302 shown schematically in FIG. 14. With this stick theoperator controls actuation of flipper arms 44 at the infeed side of the marking station and operation of the driven infeed nip roll 61. More specifically, with the wobble stick in its down" position, arms 44 assume their retracted near-horizontal position as shown in-full lines in H0. 2. With the wobble stick moved to its centered position, flipper arms 44 pivot to their midway position 44a of FIG. 2 to tilt a board o n-edge at approximately a 60 angle to the horizontal. When the wobble stick moves to its flip position, flipper arms 44 pivot to their near-vertical position 44b in vFlG. 2 to turn a board over on skid rails 40. When the desired face of a board is tilted toward the operator, movement of the wobble stick to its feed position activates the driven infeed nip roll 60 at the marking station to feed a board toward marking nozzle 72. in the illustrated circuit, the fifth position of the wobble stick is not used but could be used if desired to activate the infeed drive 60 in a reverse direction to help center a defect at the marking nozzle 72.

Time delay relay TDB in line 294 controls the time interval between commanding the flipper arms to their down position and their return to their centered position 44a by closing contact TDB in line 295. When flip" is commanded by the wobble stick, flip switch 290 moves downwardly to close lines 296, 297, thereby extending both air cylinders 47 and 48 in FIG. 2. With the wobble stick centered, center" switch 291 closes in line 295, and as soon as relay TDB times out, its contact TDB in line 295 also closes,'thereby extending only air cylinder 47 to move flipper arms 44 to their midway positions 44a. With the wobble stick in the down position, lines 304 and 304a are closed by upper throw of switch 292 to retract cylinders 47 and 48 and return flipper arms 44 to their lowered positions.

A relay X in line 30611 is a control relay which allows the infeed nip rolls 60, 61 to remain closed if a piece of lumber is present between such rolls and feed" is commanded by the wobble stick. Sensor PC-l is a retroreflective photocell which senses lumber in the marking station infeed nip rolls and in response closes a normally open contact PC-l in line 306 to retract air cylinder '62 and thereby close the nip rolls. A spring return on cylinder 62 opens the infeed nip rolls when contactv PC-l is reopened by the absence of a piece between such rolls.

Retroreflective photocell PC-2 at the outfeed nip rolls 74, 75 of the marking station closes a corresponding contact PC-2 in line 308 when a piece is present between such rolls, thereby actuating an air cylinder to close the outfeed nip rolls. The outfeed nip rolls reopen via a spring return when a piece is no longer present between such rolls.

A retroreflective photocell PC-3 on the screw roll transfer table senses the presence of lumber on such table and closes a corresponding contact PC-3 in line 310to energize a time delay relay TD-l. This relay times out if photocell PC- 3 is blocked longer than its setting to close relay contact TD-l in line 310a and thereby illuminate a warning light R on the operator control panel to warn the operator that'the transfer table is full.

Photocell PC-4 is aretroreflective line scan" photocell which senses a marked defect between the defect saws. When a defect is sensed, corresponding contacts P C-4 in lines 312, 315 close to energize single coil latching relays L-l and L-2. These relays close corresponding contacts L-l and L-2 in lines 313, 316 to extend the air cylinders 158 for the defect saws to stroke such saws simultaneously. Normally closed latching relay contacts L-] and L-2 in lines 314, 317 retract the defect saw actuating cylinders to return the saws to their initial positions.

The portion of the circuit within bracket 318 represents an anticipator circuit which provides the control for cutting pieces to specified long clear lengths at the defectcutting station. Thiscircuit includes a permanent magnet latch relay PML in line 319. A pulse through line 319a causes unlatching of the relay, whereas a pulse through line 31% causes latching of the relay. The relay latches if the anticipator system is to be used. In this regard a pulse from photocell PC-4 closes a corresponding contact PC-4 in line 319a to cause unlatching of the relay. On the other hand, a pulse from the retroreflective line scan photocell PC-S upstream from the defect saws closes a contact PC-S in line 31% to cause latching of the relay when it senses a marked defeet. This photocell is also used to control the screw roll transfer table off-feed nip rolls 90, although a separate photosensor PC-6 also serves this function.

A limit switch SW-l senses lumber at the defect saw outfeed drive roll. It has a contact SW-l in line 3l9cin parallel with a normallyopen contact PC-4 in line 319a which functions to control the resetting of relay PM L.

An additional switch contact SW-l in line 323!) controls a relay 'KA in line 323 which stops the motorfor drive rolls 162 by closing contact KA in line 327. A third contact SW-l in line 3380 energizes time delay relay TD-4 in line 338. Thisrelay controls the time allowed for the defect saws to stroke by delaying the retraction of the movable fence to drop a clear piece until after it times out to. close relay contact TD-4 in line 340. 1

Sensors A-l, A-2 and A-3 are retroreflective photocells positioned on the outfeed side of the defect saws and at adjustable distances therefrom for sensing the downstream end of a piece traveling downstream through'the defect station. These three sensors determine the maximum length available for the long clear cut-to-length function of the defect station. Latching of the PML relay in line 319 by photocell PC-S closes a contact PML- in line 326, energizing a time delay relay TDA forming part of a one-shot" system for the anticipator circuit. The closing of the PML contact also energizes a control relay in line 326a, in parallel with the relay TDAvRelay C is an output control for the one-shot anticipator system and remains energized until relay TDA times out to open contact TDA in line 326a. Energization of relay C closes a corresponding contact C in line 320. At this moment if the photocell A-lsenses the end of a board on the outfeed side of the defect saw but photocells A-2 and A-3 do not, the corresponding contact A-l in line 320 also closes, causing the air cylinder on the first pop-out stop to extend to set such stop and determine the specified long length to be cut.

On the other hand, if, at the time the PML relay is latched, both photocells A-1 and A-2 sense the downstream end of the piece, corresponding contacts A-1 pop-out stops.

. v 15 and A-2 in line 321 close while the corresponding contactA-2 in line' 320 opens, thereby extending the air cylinder on the second pop-out stop 181 to set that stop and determine a slightiy longer specified length to be cut.

A third line 322 with normally open sensor contacts A-l, A-2 and A-3, all close when all three of the corresponding sensors detect the downstream end of a piece at the same time sensor PC- detects a marked defect. This event also opens the contacts A-3 in lines 320 and 321 so that only.the third of the three pop-out stops 182 is set to determine the longest of the three specified clear lengths to be cut by the defect saw.

Sensors SA-l, SA-Zand SA-3'are retroreflective photocells which detect the end of a board as it approaches one of the stops and function to slow the drive rolls 162 to slow down the lumber before it reaches theset mechanical stop. These sensors have corresponding normally open contacts in line 324. When any one of such sensors senses a piece, it closes its corresponding contact in line 324 to energize time delay relay TD-2 which times out the deceleration period prior to stopping the lumber at the set mechanical stop. When relay TD-2 times out, it closes a contact TD-2 in line 323 thereby energizing a control relay KA. This relay has a contact KA in line 327 which closes when the relay is energized to stop drive rolls 162. Contacts PC-4 and SW-l in parallel with contact TD-2 in line 323 also servesthis function. a

A single coil latching relay K-l in line 325 is energized either when a relay contact KA is closed or a relay contact TD-6 is closed in the same line. Relay TD-6 is a time delay relay in line 344 controlling the time allowed for the defect saws to clear the piece before restarting drive rolls 162. Relay K-l thus is controlled by the drive start-stop" signals and includes a corresponding contact K-l in line L to enable operation of the sorting gate circuitry.

Time delay relay TD-4 in line 338 can be energized either by closing limit switch contact SW-l in line 338a or by closing relay contact K-l through its corresponding latching relay K -1 inline 325. When time delay downstream defect saw 139. Sensor 0-5 has normally open contacts 0-5 in lines 332 and 333 and a normally closed contact 0-5 in line 334. Outfeed sensor L-10 has a normally open contact in line '332 and normally closed contacts in lines 333 and 334. Thus if both sensors 0-5 and 0-10 sense the piece, indicating a piece longer than 10 inches on the outfeed side of the defect or junk sort. At the same time another relay contact relay TD-4 times out, it closes contact TD-4 in line 328' to retract the air cylinder on the set one of the three A time delay relay TD-3 in line 329 controls the spacing between pieces of lumber fed into the defect station by the nip rolls 90. It controls the spacing by controlling the delay in reopening of infeed nip rolls 90. Relay TD-3 is energized when a contact PC-S in line 329 closes; This contact is closed by the corresponding photocell PC-S. When relay TD-3 times out, it closes contact TD-3 in line 330 to open nip rolls 90*.

The piece-present sensor P06 is also a retroreflective photocell which functions to reclose nip rolls 90 when a piece is present at the fence on the screw roll table by closing sensor contact PC-6 in line 331.

The remaining portion of the circuit controls the sorting from the defect station. As previously mentioned. itis necessary for the functioning of the sorting circuit for the normally open gate set-up control contact K-l in line L to be closed by relay K-l in line 325, which can only occur when drive rolls 61 are stopped.

The two outfeed sensors 0-5 and 0-10 are retroreflective photocells which measure a piece at 5 inches and '10 inches, respectively, downstream from the K-2 in line 336 closes to open core block gate 209.

Similarly, if a piece on the outfeed side of the defect saws is less than 5 inches, neither lines 332 or 333 close, but line334 remains closed, energizing relay K-3 which closes relay contacts K-3 in lines 335 and 337 to divert the short piece to junk, the line 337 controlling the junk sort gate. a

The similar retroreflective photocell sensors l-S and 1-10 at the infeed side of the defect sawsmeasure pieces at 5 inches and l0 inches, respectively, from upstream defect saw 138. If the piece upstream of the defect saws is shorter than 5 inches so that neither photocell is activated, the normally closed contacts in line 339 and 339a remain closed to open infeed junk gate 208. However, if the sensor l-5 is energized, the contact l-5 in line 339a opens and the contact 1-5 in line 339 closes, opening infeed core block gate 209.

Now, however, assuming that the piece remaining upstream of the defect saws is so long that it energizes both sensors l-S and l-l0 indicating that its length is greater than l0 inches, neither the infeed core block gate nor the infeed junk gate opens, and contacts L5 and 1-10 in lines 346 and 346a open to prevent retraction of the short movable fence and release of the piece to the sorting area. ln the meantime, time delay relay TD-6 times out and drive rollers 162 restart to feed the piece into the defect saws.

Time delay relay TD-4 in line 338 -controls the time allowed for the defect saws to stroke before the movable fence retracts to drop the piece. Time delay relay TD-S in line 341 controls the time allowed for the movable fences to operate. When relay TD-4 times out, it closes contact TD-4 in line 340 to retract the long movable fence 122 and drop the cut piece to the cut-tolength station. At the same time it closes contact TD-4 in line 341 to energize time delay relay TD-5. When relay TD-5 times out, it closes contacts TD-S in lines 342 and 343 to extend the short and long movable fences 120,122. The timing out of this relay also closes contact TD-S in line 344 to energize relay TD-6. When relay TD-6 times out, it closes contact TD-6 in lines 345, 3450 to restart drive rolls 162. i

The retroreflective photocells are complete units including light source, pick-up, amplifier and output relay. The line scan photocells are complete with power supply, amplifier and relay. Both types of photocells are well known and readily commercially available.

PNEUMATlC-FLUlDlC CONTROL SYSTEM Referring to the control logic diagram of FIG. 13, a pneumatic-fluidic control system is used for controlling the operation at the cut-to-length station and the sorting which takes place from the cut-to-length station.

The circuit includes an air supply line 360 supplying air to each of the 15 stop-sensors SS-l through SS-l positioned along stop-sensor bar 254 and also to piecepresent sensor PP and random-length sensor RS on the bar. All these sensors are on one side of the cutting plane 2344 of the cut-to-length saw. The air supply line also supplies air to two measuring sensors 85-5 and 58-10 on the opposite side of the cut-to-length saw.

From the construction of a typical stop-sensor SS as shown in FIG. 11, it will be seen that when the depressible stop lever of each stop-sensor is in its released position, there will be a relatively high back pressure in the various input lines 361 leading to the various pairs of input one-shot gates M-l through M-4. This is the normal condition of the circuit when there is no board present at the cut-to-length station.

However, with no board present, random-length sensor RS, piece-present sensor PP and core block and junk-measuring sensors S-5 and 8-10, all of which are normally open to atmosphere when unblocked, induce a relatively low back pressure in their input lines 362, 363, 364, 369, respectively, leading to their respective input gates M-6, M-8, M-9.

When a board arrives at the cut-to-length stationnormally blocking at least piece-present sensor PP and the random-length sensor RS, a relatively high back pressure is induced in their respective input lines 362, 363. Of course, when sensors S-5 and 8-10 are blocked, there is a high back pressure output from these sensors also to their respective input gates.

However, when a board is pressed against the stopsensors S8 to depress their stop levers, a low pressure pulse is induced in their input lines 361. When one of the stop-sensors SS is released again, its input line 361 transmits a high pressure pulse.

The illustrated control circuit includes ten series of NOR gates M-l through M-l0 interconnected in such a manner with each other and connected to the various stop-sensors, random sensors and other sensors to operate the various elements at the cut-to-length station in the manner previously described under the heading Operation at Cut-to-Length Station."

In addition to the NOR gates, the circuit includes three sorting gate manifolds 365, 370, 374. Manifold 365 controls the air supply through line 366 to a No. l sorting gate flip-f|op circuit 367 which controls the opening and closing of the No. l sorting gate 274a through controlling the shifting ofa No. l gatecylinder operating valve 368.'

Manifold 370 controls the air supply to a second flipflop circuit 367a through line 371 to control the shifting movement of the No. 2 sorting gate cylinder operating valve 372.

The third gate manifold 374 controls the supply of air through a line 375 to a third sorting gate flip-flop circuit 36711 which controls the operation of the No. 3 sorting gate cylinder operating valve 376.

Lines 377 from each of the three sorting gate manifolds lead to a CTL flip-flop circuit 378 which controls signals to a drive reverse timing control one-shot circuit 380, including a variable timer D-4 and a pair of gates M-7. The CTL flip-flop circuit also controls the signal to a saw stroke time delay D-3, to saw stroke one-shot gates M-7 at 382, and to the CTL drive motor control valve 384. Signals from the saw stroke one-shot gates 382 are transmitted to a saw single stroke" steerable flip-flop circuit 386 controlling the operation of the saw stroke control valve 388.

Because there are only three sorting gates which sort material to length but a total of 15 stop-sensors, the sensors are arranged in the circuit so that sensors SS- 1, SS-S, -9 and 88-13, that is every fourth sensor, lead to manifold 365 so as to sort into the No. l sorting gate. Then sensors SS-2, SS-6 and so forth sort into the N0. 2 sorting gate, and sensors SS-3, SS-7 and so forth sort into the No. 3 sorting gate. Sensors SS-4, SS-8 and SS-l2 then can be arranged to either sort into the random sorting gate, not shown in the circuit, or con nected so as not to actuate any of the gates whereby they are carried off on the transfer belts 284. In any event, the input gates for the sensors 884, SS-8, SS-l2 are connected so as to transmit a signal into the CTL flip-flop circuit 378 in a manner, for example, shown with respect to the stop-sensor SS-8, which is typical of the way in which the input gates from sensors SS-4 and 35-12 would also be connected.

When random-length sensor RS is covered but downstream sensors SS-12, SS-l3, etc., are not depressed, a high pressure air pulse is transitted from random-length sensor RS through input line 362 to a series of three gates M-6. These gates transmit a signal to a randomlength flip-flop circuit 390 including a pair ofgates M-8 which, in conjunction with downstream pairs of gates M-8 and M-7, maintain the CTL drive motor valve 384 in its neutral position so that the CTL drive does not operate. At the same time a signal shafts control valve 392 to operate the CT L drop gate and drop the random piece to its sorting area.

The piece-present sensor PP, when blocked, transmits a high pressure signal through line 363 to piecepresent flip-flop circuit 394 including a pair of gates M-8, which controlsthe operation of a CTL fence control valve 396 anda fence-extend time delay D-l. At the same time a line 397 leading from sensor SS-l5, under high pressure when sensor SS-l5 is not depressed, leads to a series of three short length random control gates 398. These gates produce a signal which shifts the CTL drop gate valve 392 in a direction for opening the drop gate when only the piece-present sensor is blocked and none of the stop-sensors are depressed. These control gates also control the operation of a piece drop time delay D-2.

Further down the diagram of F l0. l3, measuring sen sors 8-5 and 8-10, when blocked, transmit a high pressure pulse through a series of input gates M-9 to a junk gate flip-flop circuit 400 in the case of sensor S-5 and to a core block flip-flop circuit 402 in the case of sensor S-l0. Flip-flop circuit 400 controls the operation of a CTL junk gate cylinder operating valve 404. Flip-flop circuit 402 controls the operation of a valve 406 for controlling the operation of the core block gate cylinder.

ln typical-operation of the logic circuit to cut a board to length, assume that a long, clear, random-length board drops to the cut-to-length'station and is long enough to cover all of the 15 stop-sensors from SS-l through SS-lS. First the board blocks piece-present sensor PP, sending a high pressure signal to the flip-flop gates 394 and resulting in a high pressure signal to the *extend" side of the CT L fence-operating valve to shift the valve, whereby fence 224 and the drive-nip rolls press the board against the CTL stop bar 254, depressing all of the stop-sensors SS-l through 85-15. At this time the stop-sensor input gates place the manifolds flop circuit 378 to transmit a low pressure signal to the input side of the gate M-7 leading to the CTL drive motorcontrol valve 384 whereby such gate transmits a high pressure output to the forward side of valve 384, causing the CTL drive roll to operate in a direction to feed the board endwise toward the saw cutting plane 234a. This endwise movement continues until stop SS-l is released.

When stop-sensor SS-l releases, its input gates M-l send a high pressure signal into manifold 365 causing the No. l sorting gate valve 368 to shift to open the N04 1 sorting gate. At the same time, a high pressure signal from manifold 365 causes a high pressure input into the CTL flip-flop circuit 378, resulting in a high pressure input signal at the drive reverse timing one-shot 380 to shiftthe CTL' drivemotor valve 384 to its reverse position, reversing the direction of the CTL driven roll, and at the same time-actuating the drive reverse timer'D-4 and the saw stroke time delay D-3. Thus the board is driven back against the released stop lever of stopsensor 85-! and the CTL drive motor stops whentimer D-4, times out. Thereafter timedelay D-3 also times out. whereby the saw stroke one-shot 382 transmits a signal to saw stroke steerable flip-flop 386 which actuates the saw stroke operating valve 388 to stroke the saw. Thus the board is cut to specified length as determined by the distance of a stop-sensor SS-l from the cutting plane 234a.

After the CTL saw strokes, piece drop time delay D-Z times out, permitting the CTL drop gate valve 392 to shift to open the drop gate. dropping the cut-to-length piece through the open No. l sorting gate. When the piece drops from the. cut-to-length station, all of the stops are cieared and the piece-present sensor is opened causing the CTL fence to retract and the CTL drop gate to reclose to await arrival of the next piece.

With the foregoing description of the operation of the circuit. those skilled in the art should be able to tracethe operation of the circuit for other lengthsof boards, including short boards which cover only the piece-present sensor and longer boards extending only to random sensor RS. Under both mentioned conditions. the CTL drop gate opens without the drive motor operating and without the saw stroking.

Having illustrated and described a prototype of my invention and what is now a preferred embodiment thereof-it should be apparent to those skilled in the art that the same permits of modification in arrangement and detail. It will be apparent. for example, that various types of control circuits may be employed other than the typical electrical and fluidic circuits illustrated. it will also be obvious that various other sorting and transfer arrangements could be used. it may also be desirable in certain instances to increase the speed of production by providing two cut-to-length stations to which pieces are fed alternately from the defect-cutting station. In any event. I claim as my invention all such modifications coming .within the true spirit and scope of the following claims.

I claim: I. An apparatus for cutting lumber to specified lengths comprisingz,

length-cutting means defining a cutting plane,

stop bar means extending normal to said cutting plane and including a series of programmable depressible stop and length-sensing means spaced at predetermined distances from and on one side of said cutting plane corresponding to specified lengths of lumber to be cut,

.means for delivering a random length of lumber to a position extending along said stop bar means with one end of said pieceadjacent said cutting plane.

drive means for pressing said piece toward said stop bar means to depress one or more of said stop and sensing means and for driving said piece endwise in opposite directions along said stop bar means,

and control means operable in response to the presence of said piece along said stop bar means first to operate said drive means in one direction to drive said random length toward said cutting plane until a depressed one of said stop and sensing means is released and then in response to such release to reverse said drive means to drive the oppo site end of said random length against said released stop means and then to actuate said cutting means to cut said random-length piece to the longest specified length as sensed by said stop and sensing means.

2. An apparatus according to claim 1 including drop gate means providing in its closed position alumbersupporting surface extending normal to said cutting plane along said stop bar means, said control means being operable to open said gate means after the random length is'cut to a specified length to discharge the resulting pieces from said apparatus. 3. Apparatus according to claim 2 including a sorting area below said drop gate meansinc luding a series of sorting gates for diverting lumber according to length to a series of sorting stations, said series of sorting gates being operable by specified-length sensings from said stop and sensing means.

4. Apparatus according to claim lincluding short length-sensing means on the opposite side of said cutting plane from said 'stop and sensing means, and means operable following the cutting operation in response to sensings from said short length-sensing means for diverting pices on said opposite side of greater than a predetermined minimum length toa first collection point and for diverting pieces on said opposite side of less than said predetermined length to a'second collection point.

5. Apparatus according to claim 3'wherein said control means includes sensing means for sensing the presence of a piece -'of lumber adjacent said stop bar means positioned on said one side of said cutting plane and toward said cutting plane from the closest one of said I stop and sensing 'means to said cutting plane, said control means being operable in response to a sensing from said piece-present sensor and the abscence of sensing from said stop and sensing means indicated the presence of a random-length piece shorter than the shortest specified length. to open said drop gate means and pre determined sorting gate means to divert said piece to a random-length'sort'ing station without operating said cutting means.

6. Apparatus according to claim 1 wherein said control means comprises a pneumatic-fluidic logic circuit and said stop and sensing means includes'pneumatic sensing means operable to input pressure signals into said logic circuit.

7. Apparatus according to claim 1 wherein said stop and sensing means are adjustable at small increments along said stop bar means.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION lmted g 21 1974 Inventofl AS R. MILES It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 1, line 27, "steps" should be stops--; column 6, line 51, "driven" should be drive-; column 8, line 19, "106" should be 206-; column 11, line 17, "at" should be --to-; column 15, line 29, "serves" should be -serve-; column 18, line 31, "shafts" should be shifts-; column 19, line 21, "driven" should be --drive; column 20, line 42, claim 4, "pices" should be -pieces--; column 20, line 54, claim 5, "abscence" should be -absence; column 20, line 54, claim 5, "sensing" should be -sensings;

Signed and sealed this 1st day of October 1974.

(SEAL) Attest:

McCOY M. GIBSON JR. C. MARSHALL DANN Attesting Officer Commissioner of Patents JRM PO-IOSO (10-69) USCOMM-DC 60375-P69 W U.$. GOVERNMENT PRINTING OFFICE: I969 O36G-334

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2291982 *Jul 12, 1941Aug 4, 1942Earl Wark DavidElectrogauge setup board
US2815074 *Mar 1, 1954Dec 3, 1957Cleveland Crane EngSheet cutting apparatus
US3186453 *May 9, 1963Jun 1, 1965H E Bovay JrAutomatic apparatus for sawing logs to desired lengths
US3687178 *Mar 1, 1971Aug 29, 1972Randolph Arthur JLumber sorting method
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3885483 *Oct 16, 1973May 27, 1975Nippon Musical Instruments MfgSaw apparatus
US3941019 *May 9, 1973Mar 2, 1976Oliver Machinery CompanyMethod and apparatus for cutting lumber and the like
US3988983 *Jun 18, 1975Nov 2, 1976Kawasaki Jukogyo Kabushiki KaishaTransfer machine and system
US4085638 *Nov 10, 1976Apr 25, 1978Fifer James TApparatus for cutting lumber to variable clear lengths
US4095497 *Apr 6, 1977Jun 20, 1978Gte Sylvania IncorporatedArticle handling apparatus
US4099434 *Feb 15, 1977Jul 11, 1978Alcan Research And Development LimitedSawing apparatus
US4364311 *Sep 5, 1980Dec 21, 1982Platt Iii James BPrecision trimming and precision cross-cutting apparatus and method for bulk material
US4596172 *Jan 22, 1985Jun 24, 1986Oliver Machinery CompanyLumber cutting saw
US4794963 *Oct 5, 1987Jan 3, 1989Nemschoff Chairs, Inc.Method and apparatus for optimizing the cutting of raw boards into product boards
US4887219 *Feb 2, 1988Dec 12, 1989Strauser Manufacturing, Inc.Board cut-off saw assembly
US5243888 *Sep 17, 1991Sep 14, 1993Bowlin William PPivoting carriage and saw
US5444635 *Sep 8, 1993Aug 22, 1995Alpine Engineered Products, Inc.Optimizing technique for sawing lumber
US6216574 *Feb 2, 1998Apr 17, 2001Leonard HainAutomated stop positioning system apparatus
US6539830 *Oct 13, 1999Apr 1, 2003The Koskovich CompanyAutomated board processing apparatus
US6698159 *Jun 21, 2001Mar 2, 2004Hem, Inc.Adjustable shuttle stop apparatus
US7011006Mar 10, 2003Mar 14, 2006Mitek Holdings, Inc.Automated board processing apparatus
US7036411Jun 21, 2002May 2, 2006Hem, Inc.Active measurement and control system for a material cutting apparatus
US7134465Oct 18, 2004Nov 14, 2006Coe Newnes/Mcgehee Inc.Process and apparatus for identifying, tracking and handling lumber to be cut-in-two
US7168353May 26, 2005Jan 30, 2007Frecision Automation, Inc.Material handling systems
US7171738Oct 12, 2004Feb 6, 2007Precision Automation, Inc.Systems for processing workpieces
US7182009Jan 27, 2004Feb 27, 2007Hem, Inc.Adjustable shuttle stop apparatus
US7245981May 26, 2005Jul 17, 2007Precision Automation, Inc.Material handling system with saw and wheel drag mechanism
US7347232 *May 31, 2006Mar 25, 2008Edwards Jerry LLumber processing apparatus and method
US7450247 *Apr 7, 2005Nov 11, 2008Fermax, Inc.Automated product profiling apparatus and product slicing system using same
US7483765Feb 26, 2007Jan 27, 2009Precision Automation, Inc.Gauge system
US7640676 *Oct 6, 2006Jan 5, 2010Gregory Scott PoolePower tool measuring device
US7792602Aug 22, 2007Sep 7, 2010Precision Automation, Inc.Material processing system and a material processing method including a saw station and an interface with touch screen
US7835808Dec 21, 2007Nov 16, 2010Precision Automation, Inc.Method and apparatus for processing material
US7950316Jun 28, 2006May 31, 2011Mitek Holdings, Inc.Automated system for precision cutting short pieces of lumber
US7966714Feb 5, 2007Jun 28, 2011Precision Automation, Inc.Multi-step systems for processing workpieces
US8117732Oct 22, 2008Feb 21, 2012Precision Automation, Inc.Multi-step systems for processing workpieces
US8783140Jun 9, 2010Jul 22, 2014Lean Tool Systems, LlcGauge system for workpiece processing
WO2002032635A1 *Oct 13, 2000Apr 25, 2002Koskovich Jerome EAutomated board processing apparatus
WO2007143332A2 *May 11, 2007Dec 13, 2007Edwards Jerry LLumber processing apparatus and method
Classifications
U.S. Classification83/75.5, 83/241, 83/250, 83/268, 83/157, 83/468, 83/371
International ClassificationB27G1/00, B27B5/00, B27B5/18, B07C5/04, B07C5/14, B27B27/00, B27B27/10
Cooperative ClassificationB27G1/00, B27B5/18, B07C5/14, B27B27/10
European ClassificationB27G1/00, B27B5/18, B27B27/10, B07C5/14