Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3811500 A
Publication typeGrant
Publication dateMay 21, 1974
Filing dateOct 2, 1972
Priority dateApr 30, 1971
Publication numberUS 3811500 A, US 3811500A, US-A-3811500, US3811500 A, US3811500A
InventorsBaker E, Morrisett O
Original AssigneeHalliburton Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Dual sleeve multiple stage cementer and its method of use in cementing oil and gas well casing
US 3811500 A
Abstract
This invention relates to a cementing tool used in oil and gas well multiple stage cementing operations, and more particularly to a cementing tool having an elongated case containing a plurality of ports, and two sliding sleeves within the case. The two sleeves, positioned in tandem relation one with the other, provide fluid tight seals between the ports and the interior of the cementing tool.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Morrisett et al. I

[ 1 DUAL SLEEVE MULTIPLE STAGE CEMENTER AND ITS METHOD OF USE IN CEMENTING OIL AND GAS WELL CASING Inventors: O. L. Morrisett; Eugene E. Baker, both of Duncan, Okla.

Assignee: Halliburton Company, Duncan,

Okla.

Filed: Oct. 2, 1972 Appl. No.: 294,426

Related U.S. Application Data Continuation-impart of Ser. No. 139,095, April 30, 1971, abandoned.

U.S. Cl. 166/154, 166/153 Int. Cl E2lb 27/00, E2lb 33/132 Field of Search 166/153, 154, 156, 289,

References Cited UNITED STATES PATENTS 9/1969 Chancellor et al. 166/154 Primary ExaminerStephen J. Novosad Assistant Examiner.lack E. Ebel Attorney, Agent, or Firm-John H. Tregoning [5 7] ABSTRACT This invention relates to a cementing tool used in oil and gas well multiple stage cementing operations, and more particularly to a cementing tool having an elongated case containing a plurality of ports, and two sliding sleeves within the case. The two sleeves, positioned in tandem relation one with the other, provide fluid tight seals between the ports and the interior of the cementing tool.

4 Claims, 3 Drawing Figures PATENTED MAY 21 1974 SHEEI 2 [IF 2 DUAL SLEEVE MULTIPLE STAGE CEMENTER AND ITS METHOD OF USE IN CEMENTING OIL AND GAS WELL CASING CROSS REFERENCES TO RELATED APPLICATIONS This application is a continuation-in-part of an original application of the same title, Ser. No., 139,095, by O. L. Morrisett and Eugene E. Baker, filed Apr. 30, 1971, now abandoned.

BACKGROUND OF THE INVENTION In order to cement a continuous, unbroken string of casing into a well bore in two cementing stages; i.e., placing a second quantity of cement slurry into the annular space above a previously placed first quantity, a multiple stage cementing tool which contains a number of ports thereon, is positioned in the casing string. The first quantity of cement slurry is pumped out into the annular space through the bottom of the casing string and the second quantity is pumped out into the annular space through the ports of the cementing tool. To insure that only the second quantity of cement slurry goes through the ports, sliding sleeves within the cementing tool keep the ports closed and sealed except during the time said second quantity of cement slurry is being pumped therethrough. These sliding sleeves must be fail-proof under all kinds and types of operating conditions and must provide a positive fluid tight seal.

The present invention provides a dual sleeve multiple stage cementing tool which comprises an elongated case having a plurality of ports therein, a first sleeve movably positioned in wall to wall engagement within said case and adapted to be shifted from closing said ports, and a second sleeve movably positioned in wall to wall engagement within said case, said second sleeve adapted to close said ports after shifting of said first sleeve therefrom.

BRIEF DESCRIPTION OF THE DRAWINGS A dual sleeve multiple stage cementing tool for use in cementing casing in oil and gas wells constructed in accordance with a preferred embodiment of the invention is illustrated in the accompanying drawings in which:

FIG. 1 is a cross sectional view of the preferred embodiment of the invention; and

FIGS. 2 and 3 are cross sectional, operational views of the embodiment shown in FIG. 1.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawing and to FIG. 1 in particular, shown therein and generally designated by the reference numeral is a dual sleeve multiple stage cementing tool constructed in accordance with the preferred embodiment of the invention. Cementing tool 10 includes case 12 whose upper end 14 and lower end 16 are attached to upper and lower casing connectors 18 and 20 respectively via companion threads 22 and 24 respectively. Casing connectors 18- and 20are in turn attached to casing 26 via companion threads 28. A passageway 29 extends continuously through casing 26, cementing tool 10 and casing connectors 18 and 20.

Interior wall 30 of case 12 is smooth except for recesses 32 and 34 located near upper end 14 of case 12, a plurality of ports 36 which penetrate through case 12, a recess 38 on interior wall 30 surrounding ports 36, and recesses 39 and 40 near lower end 16 of case 12.

Recess 32 provides a housing for shear pin retaining ring 42. Retaining ring 42 contains a plurality of shear pins, collectively numbered 44, spaced apart equally around the ring and projecting inwardly into corresponding apertures, collectively numbered 46 positioned in the upper end 48 of upper sleeve 50.

Upper sleeve 50 is held within case 12 by said shear pins 44 as shown in FIG. 1. The outer wall 52 of sleeve 50 contains a pair of resilient, upper seal rings 54 which are housed in aforementioned recess 34 to equalize pressure between the two sets of seal rings. A second pair of resilient lower seal rings 56 are positioned near lower end 58 of upper sleeve 50. Two expandable steel lock rings 60 are positioned on outer wall 52 between seal rings 54 and 56.

Inner wall 64 of upper sleeve 50 is threaded toward lower end 58 to receive an elongated seat 66 which contains beveled surface 66a.

A lower sleeve 70, positioned immediately below upper sleeve 50, has upper end 72 and lower end 74. Outer wall 76 of sleeve contains upper seal ring 78 adjacent to upper end 72 and lower seal ring 80 about midway between upper end 72 and lower end 74. The two seal rings, 78 and 80, provide a fluid tight seal between passageway 29 and ports 36 so long as lower sleeve 70 is positioned as shown in FIG. 1. An expandable lock ring 82, located below seal ring 80 on outer wall 76, will be discussed further below. Adjacent to lower end 74 is a flattened; shear ring 84 projecting into aforementioned recess 39 in interior wall 30 of case 12; lower sleeve 70 is retained in the position shown in FIG. 1 by this arrangement.

The inside wall 85 ofv lower sleeve 70 is threaded to receive an elongated seat 86 which contains an inwardly and downwardly sloping surface 86a which will be discussed below.

OPERATION OF THE EMBODIMENT OF FIG. 1

In describing the preferred embodiment of the present invention, reference is now made to FIG. 2 which illustrates cementing tool 10, connected to casing 26, emplaced in well bore 100. A first quantity of cement slurry 102 had been pumped down passageway 29 from the surface of well bore (not shown) and into annular space 104 via the bottom of casing 26 (not shown). For purposes of this illustration the volume of slurry 102 was such as to fill the annular space 104 up to point 106 slightly below cementing tool 10.

Immediately behind'slurry 102 is a calculated volume of fluid 108 which fills passageway 29 from the bottom of the well up to cementing tool 10. Following fluid 108 down passageway 29 is an opening plug 110 which contains an inwardly and downwardly sloping surface 110a. Plug 110 is described in US. patent application, Ser. No. 136,928 by Morrisett et al., entitled An Oil Well Cementing Plug. As plug 110 drops into seat 86 of lower sleeve 70, surface 1 10a catches on surface 86a of seat 86 so that further independent downwardly movement of plug 110 is arrested. Also, the mating surfaces 86a and 110a provide a fluid tight seal between the portion of passageway 29 above plug 110 from that below.

A second volume of fluid 114 is pumped down passageway 29 following plug 110. This fluid presses down on lower sleeve 70 and plug 110 until ring 84 (FIG. 1) shears. Sleeve 70 and plug 110 then move downwardly until lower end 74 of sleeve 70 strikes casing connector 20, halting further downwardly movement.

After sleeve 70 has moved down to the position shown in FIG. 2, upwardly movement can occur but the amount of travel is limited by expandable lock ring 82 on sleeve 70. As the sleeve moves upward, ring 82 would expand into aforementioned recess 40 and catch on the downwardly facing shoulder defined by the recess. Note that recess 40 does not hamper downward movememt of sleeve 70 since the lower shoulder defined by the recess is beveled inwardly and downwardly so as to compress ring 82 back into its recess on sleeve 70.

The downwardly movement of sleeve 70 and plug 110 described above results in the opening of ports 36 to passageway 29. Fluid 1 l4 and the second quantity of cement slurry 116 following fluid l 14 can now flow out from passageway 29 via ports 36 and into annular space 118 which extends upwardly from the top of the first quantity of cement slurry 102 to the surface of the well.

A closing plug 122, having beveled surface 122a thereon, follows behind cement slurry 116. A third volume of fluid, designated at 124 and immediately following plug 122, is pumped down passageway 29 from the surface to force plug 122 downwardly. In turn plug 122, having a plurality of resilient wiper blades 123 in contact with the walls defining passageway 29, drives cement slurry 116 downwardly, out through ports 36 and into annular space 118. This event continues until ports 36 are closed as will now be described with reference to FlG. 3.

In FIGS. 2 and 3, closing plug 122 passes through casing bore 29 and lands in upper sleeve 50 with face 122a of plug 122 abutting face 66a of seat 66. Mating of these two surfaces results in a fluid tight seal across the inner diameter of bore 29. Continued pressure on fluid 124 applies force to plug 122 thereby shearing pins 44 and causing downward movement of sleeve 50 until it contacts rod 111 which passes through the axial center of plug 110 in sealing engagement therewith and which rod is held in place in plug 110 by shear means 113.

Continued fluidic pressure applied to fluid 124 causes further downward movement of sleeve 50 pushing rod 111 downward, shearing means 113, and allow ing rod 111 to drop through the center of plug 110 thereby relieving entrapped fluid pressure between plugs 110 and 122.

Downward movement of plug 122 and sleeve is completed when lower end 58 of sleeve 50 abuts lower sleeve 70 thereby limiting further downward movement. This results in the components being positioned as shown in FIG. 3, with lower seal rings 56 below and upper seal rings 54 above ports 36 so that a fluid tight seal is provided between passageway 29 and ports 26. Double lock rings 60 are positioned in previously mentioned recess 38 so that upward movement of upper sleeve 50 is prevented. Note that as with recess 40, the lower shoulder defined by recess 38 is beveled so asnot to prevent downward movement of sleeve 50.

At the time that ports 36 have been reclosed as described above,:. the second quantity of cement slurry 116 has been placed into annular space 118 from the top of the first quantity of cement 102 up to a height sufficient to complete the cementing of casing 26 into well bore 100. After the cement slurry has set, plugs 110 and 122, and seats 66 and 86 in sleeves 50 and 70 respectively, are drilled out so that passageway 29 is once again open throughout casing 26. Note that one of the features of the present invention is that the inner diameters of sleeves 50 and 70 (after seats 66 and 86 have been drilled out) are the same as the inner diameter of casing 26. Thus, the presence of cementing tool 10. in the string of casing 26 will not hamper passage of oil well tools such as perforating guns, packers, tubing, pumps and so forth through passageway 29 after the cementing operations have been fully completed.

Another feature of the present invention is the use of large seal rings 54 and 56 on upper sleeve 50. Their use allows a greater clearance between sleeve 50 and interior wall 30 of case 12. The greater clearance will lessen or eliminate the effect of severe tensile and bending loads which may be imposed oncementing tool 10 if it is placed in a well which is extremely slanted from the vertical.

Yet another feature of this invention is the placing of the shear pin retaining ring 42 and shear ring 84 in recesses in the interior wall 30 of case 12. By so doing, holes through case 12, which would otherwise be necessary to hold shear pins, are avoided along with the difficulty generally encountered in preventing fluids from leaking therethrough.

Case 12 and sleeves 50 and 70 are made from steel. Seats 66 and 86 are made from aluminum, a material easily drillable. The several seal rings, such as 54 and 56, are made from resilient material such as rubber. Of course other materials may be used but those mentioned above have been found to give excellent results.

The present invention has been described in a cementing operation wherein one cementing tool 10 was employed and wherein cement slurry 102 filled the annular space up to cementing tool 10. However, and as is well known to those skilled in the art, cementing operations are designed for each individual well so that the physical conditions present in that well can be taken into account. These conditions, such as bottomhole temperature, the presence of a weak, easily fracturable formation, pressures, and so forth, dictate the type of cement slurry to be used and the manner and position that the slurry will be placed in the annular space. For example, a particular cementing operation may require use of two cementing tools in the string'of casing so that three quantities of slurry can be spotted behind the casing with drilling mud separating each quantity. Other examples can be given, however the above suffices to demonstrate that cementing operation described relative to the preferred embodiment is not to be considered as limiting the present invention.

Although the invention has been described with reference to the embodiment illustrated, it will be appreciated by those skilled in the art that additions, modifications, substitutions, deletions, and other changes not specifically described may be made which fall within the spirit of the invention as defined in the following claims.

I What is claimed is:

1. Dual sleeve cementing apparatus for multiple stage cementing of a wellbore comprising:

a tubular cylindrical housing having one or more ports through the wall thereof;

opening sleeve means slidably located in said housing, said opening sleeve means being located in a first position covering said one or more ports and slidable to a second position thereby uncovering said one or more ports;

closing sleeve means slidably located in said housing arranged to slide from a first position wherein said one or more ports are not covered by said closing sleeve means to a second position covering said ports;

first shearable means retaining said opening sleeve means within said housing, said first shearable means comprising an annular shear ring partially inset in an annular grooved recess in the inner wall of said housing, with the remainder of said annular shear ring being inset in an exterior annular recess in said opening sleeve means;

second shearable means retaining said closing sleeve means within said housing, said second shearable means comprising an annular shear pin retaining ring concentrically located in an annular space between said closing sleeve means and said housing, with said retaining ring being removably attached to said closing sleeve means by one or more shear pins passing through said ring and into said closing sleeve means, and said retaining ring being unattached to said housing, with downward movement of said ring in said housing being prevented by abutment shoulder means on the interior wall of said housing, said abutment shoulder means arranged to abut the lower edge of said retaining ring, limiting downward movement thereof;

opening means providing a differential pressure area across the entire inner bore of said housing; closing means providing a differential pressure area across the entire inner bore of said housing; and said first and second shearable means arranged within said housing so as not to penetrate through the wall thereof. 2. The apparatus of claim 1 wherein said opening sleeve means and said closing sleeve means each comprise a nondrillable metallic sleeve having an inner bore as large or larger than that of the casing string containing said cementing apparatus;

said opening means comprises a first drillable valve seat collar fixedly attached in the interior bore of said opening sleeve nondrillable metallic sleeve and having a symmetrical beveled inner seat therein and a bore opening therethrough; and

said closing means comprises a second drillable valve seat collar fixedly attached in the interior bore of said closing sleeve nondrillable metallic sleeve and also having a symmetrical beveled inner seat therein and having a bore opening therethrough generally larger than the bore opening through said first drillable valve seat collar.

3. The apparatus of claim 1 wherein said opening means comprises a first beveled inner seat collar located in said opening sleeve means, said collar adapted to receive and sealingly engage a first cementing plug in said beveled seat thereof, so that when said first cementing plug sealingly engages said first inner seat collar the apparatus is rendered capable of distributing fluidic pressure across the entire inner bore' of said houssaid closing means comprises a second beveled inner seat collar located in said closing sleeve means, said second collar adapted to receive and sealingly engage a second cementing plug, so that when said second cementing plug sealingly engages said second inner seat collar the apparatus is rendered capable of distributing fluidic pressure across the entire inner bore of said housing; said opening sleeve means movable only between a first shearably attached position to a second nonshearably fixed position; and said first cementing plug having pressure relief means therethrough for preventing fluid lock between said first cementing plug and said second cementing plug. 4. A dual sleeve oil well cementing valve for installation in a well casing string comprising: a

a cylindrical nondrillable tubular housing having an inner bore therethrough having a diameter generally larger than the diameter of the bore of the easing string in which it is to be installed;

one or more cementing ports through the wall of said housing communicating the inner bore of said housing with the annular area outside said housing;

a first nondrillable slidable tubular sleeve inside said housing arranged to be movable from a first position covering said ports to a second position uncovering said ports;

said first sleeve having an inner bore diameter generally equal to or larger than said casing bore diameter; 7 a

a first drillable valve seat collar fixedly attached to the interior of said first sleeve and having an open bore therethrough and an upwardly facing inner annular beveled seat therein adapted to sealingly receive a cementing plug;

a second nondrillable slidable tubular sleeve located within said housing above said first nondrillable sleeve and having an inner bore diameter generally equal to or larger than that of the well casing and arranged to be above said ports in an initial position and movable to a second position covering said ports;

a second drillable valve seat collar fixedly attached to the interior of said second sleeve and having an open bore therethrough larger than that of said first drillable valve seat collar, and an upwardly facing inner annular beveled seat therein adapted to sealingly receive a second cementing plug;

a shear pin retaining ring annularly located between said housing and said second nondrillable sleeve,

and removably attached to said second sleeve by of said second sleeve; and

locking means between said second sleeve and said housing and arranged to engage an annular recess in said housing in said lower position of said second sleeve thereby preventing upward movement of said second sleeve within said housing.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2435016 *Jun 5, 1944Jan 27, 1948Halliburton Oil Well CementingMultiple stage cementing
US2627314 *Nov 14, 1949Feb 3, 1953Baker Oil Tools IncCementing plug and valve device for well casings
US2655216 *Apr 23, 1948Oct 13, 1953Baker Oil Tools IncPositive shutoff ported casing apparatus
US2928470 *Dec 3, 1956Mar 15, 1960Baker Oil Tools IncWell cementing apparatus
US2998075 *Jul 29, 1957Aug 29, 1961Baker Oil Tools IncSubsurface well apparatus
US3338311 *Dec 14, 1964Aug 29, 1967Conrad Martin BStage cementing collar
US3464493 *Dec 26, 1967Sep 2, 1969Chancellor Forrest EPort collar for well casings and method for packing well bores
US3527297 *Feb 17, 1969Sep 8, 1970Jerry L PinkardStage cementer
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3948322 *Apr 23, 1975Apr 6, 1976Halliburton CompanyMultiple stage cementing tool with inflation packer and methods of use
US4042014 *May 10, 1976Aug 16, 1977Bj-Hughes Inc.Multiple stage cementing of well casing in subsea wells
US4246968 *Oct 17, 1979Jan 27, 1981Halliburton CompanyCementing tool with protective sleeve
US4842062 *Feb 5, 1988Jun 27, 1989Weatherford U.S., Inc.Hydraulic lock alleviation device, well cementing stage tool, and related methods
US4850432 *Oct 17, 1988Jul 25, 1989Texaco Inc.Manual port closing tool for well cementing
US4940094 *Aug 19, 1988Jul 10, 1990Institut Francais Du PetroleMethod and device to actuate specialized intervention equipment in a drilled well having at least one section highly slanted with respect to a vertical line
US4941535 *Jan 17, 1989Jul 17, 1990Texaco Inc.Manual port closing tool for well cementing
US4949788 *Nov 8, 1989Aug 21, 1990Halliburton CompanyWell completions using casing valves
US4991654 *Nov 8, 1989Feb 12, 1991Halliburton CompanyA sliding sleeve
US5024273 *Apr 4, 1990Jun 18, 1991Davis-Lynch, Inc.Cementing apparatus and method
US5038862 *Apr 25, 1990Aug 13, 1991Halliburton CompanyExternal sleeve cementing tool
US5095992 *Mar 22, 1991Mar 17, 1992Parco Mast And Substructures, Inc.Process for installing casing in a borehole
US5109925 *Jan 17, 1991May 5, 1992Halliburton CompanyMultiple stage inflation packer with secondary opening rupture disc
US5117910 *Dec 7, 1990Jun 2, 1992Halliburton CompanyPacker for use in, and method of, cementing a tubing string in a well without drillout
US5137087 *Aug 7, 1991Aug 11, 1992Halliburton CompanyCasing cementer with torque-limiting rotating positioning tool
US5279370 *Aug 21, 1992Jan 18, 1994Halliburton CompanyMechanical cementing packer collar
US5299640 *Oct 19, 1992Apr 5, 1994Halliburton CompanyKnife gate valve stage cementer
US5314015 *Jul 31, 1992May 24, 1994Halliburton CompanyFor use in a well bore
US5325917 *Jun 1, 1993Jul 5, 1994Halliburton CompanyShort stroke casing valve with positioning and jetting tools therefor
US5368098 *Jun 23, 1993Nov 29, 1994Weatherford U.S., Inc.Stage tool
US5381862 *Aug 27, 1993Jan 17, 1995Halliburton CompanyCoiled tubing operated full opening completion tool system
US5398763 *Mar 31, 1993Mar 21, 1995Halliburton CompanyFor use in a well casing
US5400855 *Jan 27, 1993Mar 28, 1995Halliburton CompanyIn a well bore
US5464062 *Oct 12, 1994Nov 7, 1995Weatherford U.S., Inc.Metal-to-metal sealable port
US5513703 *Apr 4, 1994May 7, 1996Ava International CorporationMethods and apparatus for perforating and treating production zones and otherwise performing related activities within a well
US5615740 *Jun 29, 1995Apr 1, 1997Baroid Technology, Inc.Casting assembly for use in drilling lateral boreholes
US6041855 *Apr 24, 1998Mar 28, 2000Halliburton Energy Services, Inc.High torque pressure sleeve for easily drillable casing exit ports
US6651743 *May 24, 2001Nov 25, 2003Halliburton Energy Services, Inc.Slim hole stage cementer and method
US8727026 *Dec 31, 2009May 20, 2014Weatherford/Lamb, Inc.Dual isolation mechanism of cementation port
US20100163253 *Dec 31, 2009Jul 1, 2010Caldwell Rebecca MDual isolation mechanism of cementation port
US20130175040 *Jan 6, 2012Jul 11, 2013Baker Hughes IncorporatedDual Inline Sliding Sleeve Valve
EP0166568A2 *Jun 18, 1985Jan 2, 1986Halliburton CompanyCement collar and method of use
EP0224942A1 *Sep 18, 1986Jun 10, 1987Compagnie Des Services Dowell SchlumbergerStage cementing apparatus
EP0327405A1 *Feb 6, 1989Aug 9, 1989WEATHERFORD-PETCO, Inc.Well cementing stage tool and method and device for alleviating a hydraulic lock
EP1262629A1 *May 20, 2002Dec 4, 2002Halliburton Energy Services, Inc.Slim hole stage cementer and method
WO1988000275A1 *Jul 1, 1987Jan 14, 1988Robert E BodeCement control valve device
WO1991005134A1 *Oct 2, 1990Apr 18, 1991Lynch Davis IncCementing apparatus
WO2010024687A1 *Aug 25, 2009Mar 4, 2010I Tec AsValve for wellbore applications
Classifications
U.S. Classification166/154, 166/153
International ClassificationE21B34/00, E21B34/14, E21B33/13, E21B33/14, E21B33/16
Cooperative ClassificationE21B33/146, E21B34/14, E21B33/16
European ClassificationE21B33/16, E21B34/14, E21B33/14C