Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3812218 A
Publication typeGrant
Publication dateMay 21, 1974
Filing dateMar 30, 1972
Priority dateMar 30, 1972
Also published asCA1004227A1, DE2315493A1, US3870771
Publication numberUS 3812218 A, US 3812218A, US-A-3812218, US3812218 A, US3812218A
InventorsJ Duffy, P Golborn
Original AssigneeHooker Chemical Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Diakyl alkyl and cyclic phosporamidomethyl phosphonates
US 3812218 A
New compounds are disclosed of the formula:
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Golborn et a1.

[11 1 3,812,218 [451 May21, 1974 DIALKYL ALKYL AND CYCLIC PHOSPHORAMIDOMETHYL PHOSPHONATES Inventors: Peter Golborn, Lewiston; James .1. Duffy, Buffalo, both of Assignee: Hooker Chemical Corporation, Niagara Falls, NY.

Filed: Mar. 30, 1972 Appl. No.: 239,799

US. Cl 260/926, 117/136, 117/137,

260/45.7 P, 260/45.8, 260/927 R, 260/969 Int. Cl. C07f 9/02, C07d 105/04 Field of Search 260/926, 927 R References Cited UNITED STATES PATENTS ll/l95l Walter et al. .1 260/926 Primary Examiner-Anton H. Sutto Attorney, Agent, or Firm-Peter F. Casella [57] ABSTRACT New compounds are disclosed of the formula:

6 Claims, N0 Drawings IDIALKYL ALKYL AND CYCIJC PI-IOSPHORAMIDOMIETIIYL PIIOSPHONATES FIELD OF INVENTION This invention relates to novel compounds of the formula wherein R is phenyl, lower alkenyl and halogen substituted and unsubstituted lower alkyl of l-6 carbon atoms, m is an integer from l-2 wherein m is 2, R is alkoxy of l-8 carbon atoms and when m is l, R is alkylene dioxy of 2-8 carbon atoms. The invention includes methods of applying the above novel compounds to normally flammable textiles and thermoplastic, thermosetting and elastomeric resin compositions so as to render them flame retardant.

BACKGROUND OF THE INVENTION strongly acidic solutions are employed thus posing the problem of possible textile degradation. Furthermore, metal oxide coatings on textile materials create difficulties in subsequent dyeing processes which deleteriously affect the hand of the finished product. Another process involves the use of a single processing bath wherein a dispersion of a chlorinated hydrocarbon and finely divided antimony oxide is padded on the textile material. Near the textile combustion temperature antimony oxide will react with hydrogen chloride, generated by degradation of the chlorinated hydrocarbon, to form antimony oxychloride which acts to suppress flame. This combination of a chlorinated hydrocarbon and finely divided antimony oxide are not acceptable finishes for closely woven textiles as they deleteriously affect the hand of the finished product. A further process for imparting flame resistance to cellulosic materials is by the esterification of the cellulose with diammonium hydrogen ortho-phosphate. Textile products so treated however are subjected to metathesis reaction with cations during washing, and must be regenerated by reacting the wash product with an ammonium chloride solution.

The production of thermoplastic resin compositions which are flame retardant is of considerable commercial importance. For example, such articles as castings, moldings, foamed or laminated structures and the like are required, or are at least desired, to be resistant to fire and flame and to possess the ability to endure heat without deterioration. The use of various materials incorporated into thermoplastic resins so as to improve the flame retardancy thereof has been known. Many compounds have been commercially available for such use, among them being chlorostyrene copolymers,

chlorinated paraffin wax in admixture with triphenyl styrene, chlorinated paraffins and aliphatic antimonical compounds, as well as antimony oxide-chlorinated hydrocarbon mixtures. A problem associated with these compounds has been however, the fact that generally a large amount, i.e., upwards of 35 percent of additive, must be incorporated into the resin in order to make it sufficiently flame retardant. Such large amounts of additive may deliteriously affect the physical characteristics of the thermoplastic resin, as well as substantially complicating and increasing the cost of preparation thereof. A further problem is that these prior art additives tend to crystallize or oil out of the resin after a relatively short time of incorporation. The present invention relates to a group of compounds which may be added to thermoplastic resins in relatively small amounts and still produce satisfactory flame retardant compositions which will not crystallize nor oil out of the resin after incorporation therein.

OBJECTS OF THE INVENTION It is, therefore, a principal object of this invention to provide novel compounds of the formula:

wherein R is phenyl, lower alkenyl and halogen substituted and unsubstituted lower alkyl of l-6 carbon atoms, m is an integer from l-2 wherein when m is 2, R is alkoxyof 1-8 carbon atoms and when m is 1, R is alkylene dioxy of 28 carbon atoms. It is also an object of this invention to provide flame retarding textile materials comprising normally flammable cellulosic, proteinaceous or analogous man-made materials. Another object is to provide a method for treating normally flammable cellulosic, proteinaceous or analogous manmade materials to render them flame retardant. Another object is to provide flame retarding thermoplastic resin compositions comprising normally flammable thermoplastic resin materials. A further object is to provide a process for treating normally flammable thermoplastic resin compositions to render them flame retardant. A particular object is to devise a composition comprising normally flammable cellulosic, proteinaceous or analogous manmade materials and an effective flame retardant amount of the compound represented by the formula (mmi wncmr orv wherein R, R and in are as above described. A further particular object is to devise a composition comprising normallyflammable thermoplastic polymer and aneffective flame retarding amount of the before described novel compound.

These and other objects of the present invention will be obvious from the following description.

DESCRIPTION OF THE INVENTION In accordance with this invention there are provided novel compounds, for imparting flame retardancy to textiles and thermoplastic, thermosetting and elastomeric resin materials of the formula:

wherein R is phenyl, lower alkyl and halogen substituted and unsubstituted lower alkyl of l-6 carbon atoms, m is an integer from l-2 wherein when m is 2, R is alkoxy of 1-8 carbon atoms and when m is l, R is alkylene dioxy of 2-8 carbon atoms. More specifically, the preferred compounds of the present invention include these compounds wherein R is lower alkyl of l6 carbon atoms and m is 2.

Illustrative examples of compounds of the present invention include, for instance, compounds of the general formula such as O O -NH-CHr-QTOCHQ:

vention is accomplished by reacting a N- hydroxymethyl phosphoramidate of the formula with a trialkyl phosphite of the formula wherein R, R and m are as previously described neat, or in the presence ofa suitable solvent, or in an excess of the phosphite. Preferably the reaction is carried out for about 1 to about 6 hours at a temperature of about C to about C. The solvent, excess phosphite, or other volatile material, is thereafter stripped, under reduced pressure, or otherwise removed from the product. Suitable solvents include benzene, toluene, xylene, aliphatic, or aromatic hydrocarbons, glymes, diglymes, dimethyl formamide and the like. Typical N- hydroxymethyl phosphoramidate operable as reactants herein include One or more of the novel compounds of this invention may be applied to textile materials by conventional finishing techniques such as by thermal pad curing so as to incorporate into the textile a flame retardant amount thereof. The compounds of this invention have advantages over the flame retardant agents of the prior art in that they may be used on a variety of textile materials of different chemical composition, and they may be applied by a variety of methods. They may be applied to materials in either the fiber or fabric form to give flame retarding materials with minimum detectable physical changes in the quality or hand of the textile material.

The products of this invention may be applied to cellulosic materials in several ways to give a durable flame retardant treatment. For example, the products of this invention may be reacted with formaldehyde to give N- hydroxymethyl derivatives which can react with cellulosic materials in a known manner. Alternatively aqueous mixtures of the products with formaldehyde, urea, trimethylol melamine or other known cellulose crosslinking agents may be applied to a cellulose substrate with the aid of an acidic catalyst by a pad dry process.

More preferably the N-hydroxymethyl derivative of the products of this invention prepared by the condensation of the products with formaldehyde, are mixed in an aqueous medium with trimethylol melamine and a Lewis acid catalyst such as NH CI or Zn(NO '6H O. The cellulosic material is immersed in an aqueous solution of the methylol derivative, trimethylol melamine, and Zn(l lO -6H O and squeezed on a two roll padder to 70-90 percent wet weight pick-up. The material is dried at 220-270F for 1-3 minutes and cured at 300-370F for 1-6 minutes in a circulating air oven. The samples are then washed in hot water and dried. The finished samples have a flame retardant add-on of about 40 percent and preferably about to about 25 percent by weight.

The flame retardant agents of this invention may be applied to various textiles such as cellulosic or, proteinaceous materials. By cellulosic materials, applicant intends to embrace cotton, rayon, paper, regenerated cellulose and cellulose derivatives which retain a cellulose backbone of at least one hydroxy substituent per repeatin'gglucose unit. By proteinaceous material applicant intends to embrace those textile materials comprising the functional groups of proteins such as the various animal wools, hairs and furs.

The flame retardant compounds or additives of the invention may be incorporated into thermoplastic resin compositions by any known method. That is to say, the flame retardant additive may be added to the resin by milling the resin and the additive on, for example, a two-roll mill, or in a Banbury mixer etc., or it may be added by molding or extruding the additive and resin simultaneously, or by merely blending it with the resin in powder form and thereafter forming the desired article. Additionally, the flame-retardant may be added during the resin manufacture, i.e., during the polymerization procedure by which the resin is made, provided the catalysts etc. and other ingredients of the polymerization system are inert thereto. Generally, the compounds of this invention may be incorporated into the thermoplastic resin in flame-retarding amounts, i.e. generally amounts ranging from about 5 percent by weight, to about 50 percent by weight, preferably from about percent by weight, to about 40 percent by weight, based on the weight of the polymer, have been found sufficient.

The thermoplastic resin embraced within the scope of this invention include the homopolymers and copolymers of unsaturated aliphatic, alicyclic, and aromatic hydrocarbons. Suitable monomers are ethylene, propylene, butene, pentene, hexene, heptene, octene, 2-methylpropenel, 3-methylbutene-l, 4-methylpentenel, 4-methylhexene- 1,5-methylhexene-l, bicyclo- (2.2.l)-2-heptene, butadiene, pentadiene, hexadiene, isoprene, 2,3-dimethylbutadienel ,3, Z-methylpentadiene-l,3, 4-vinylcyclohexene, vinylcyclohexene, cyclopentadiene, styrene and methylstyrene, and the like.

Other polymers in addition to the above-described olefin polymers that are useful in the invention include polyindene, indenecoumarone resins; polymers of acrylate esters and polymers of methacrylate esters, acrylate and methacrylate resins such as ethyl acrylate, nbutyl methacrylate, isobutyl methacrylate, ethyl methacrylate and methyl methacrylate; alkyd resins and paint vehicles, such as bodied linseed oil; cellulose derivatives such as cellulose acetate, cellulose acetate butyrate, cellulose nitrate, ethyl cellulose, hydroxyethyl cellulose, methyl cellulose and sodium carboxymethyl cellulose; epoxy resins; furan resins (furfuryl alcohol or furfuralketone); hydrocarbon resins from petroleum; isobutylene resins (polyisobutylene); isocyanate resins (polyurethanes); melamine resins such as melamineformaldehyde and melamine-urea-formaldehyde; oleoresins; phenolic resins such as phenol-formaldehyde, phenolic-elastomer, phenolic-epoxy, phenolicpolyamide, and phenolic-vinyl acetals; polyamide polymers, such as polyamides, polyamide-epoxy and particularly long chain synthetic polymeric amides containing recurring carbonamide groups as an integral part of the main polymer chain; polyester resins such as unsaturated polyesters of dibasic acids and dihydroxy compounds, and polyester elastomer and resorcinol resins such as resorcinol-formaldehyde, resorcinol-furfural, resorcinol-phenol-formaldehyde, resorcinol-polyamide and resorcinol-urea; rubbers such as natural rubber, synthetic polyisoprene, reclaimed rubber, chlorinated rubber, polybutadiene, cyclized rubber, butadieneacrylonitrile rubber, butadiene-styrene rubber, and butyl rubber; neoprene rubber (polychloroprene); polysulfides (Thiokol); terpene resins; urea resins; vinyl resins such as polymers of vinyl acetal, vinyl acetate or vinyl alcohol-acetate copolymer, vinyl alcohol, vinyl chloride, vinyl butyral, vinyl chloride-acetate co polymer, viny pyrrolidone and vinylidene chloride copolymers; polyformaldehyde; polyphenylene oxide; polymers of diallyl phthalates and phthalates; polycarbonates of phosgene or thiophosgene and dihydroxy compounds such as bisphenols, phosgene, thermoplastic polymers of bisphenols and epichlorohydrin (trade named Phenoxy polymers); graft copolymers and polymers of unsaturated hydrocarbons and unsaturated monomer, such as graft copolymersof polybutadiene, styrene and acrylonitrile, commonly called ABS polyvinyl chloride polymers, recently introduced under the trade name of Cycovin; and acrylic polyvinyl chloride polymers, known by the trade name Kydex 100.

The polymers of the invention can be in various physical forms, suchas shaped articles, for example, moldings, sheets, rods, and the like; fibers, coatings, films and fabrics, and the like.

The compounds of this invention have been found to have particular utility in ABS resins and in elastomeric materials such as acrylic rubber; acrylonitrilebutadiene styrene terpolymers; butadieneacrylonitrile copolymers; butyl rubber; chlorinated rubbers, e.g., polyvinyl chloride resins, chloroprene rubber, chlorosulfonated polyethylene; ethylene polymers, e.g., ethylene-propylene copolymers, ethylene-propylene terpolymers; fluorinated rubbers, butadiene rubbers, e.g., styrenebutadiene rubber, isobutyl-ene polymers, polybutadiene polymers, polyisobutylene rubbers, polyisoprene rubbers; polysultide rubbers; silicon rubbers; urethane rubbers; high styrene resins latices, high styrene resins, vinyl resins; sponge rubber',.and the like.

it should be noted that it is also within the scope of the present invention to incorporate such ingredients as plasticizers, dyes, pigments, stabilizers, antioxidants, antistatic agents and the like to the novel composition.

In all the examples of the application of the products of the invention to textile materials the following general procedure was used except when otherwise specifically noted.

Padding was done on a standard two roll laboratory padder at a gauge pressure of 60 pounds per square inch in all cases. Drying and curing during processing were done with a standard laboratory textile circulating air oven. Washing and drying was done in standard home top loading automatic washer and dryer. Flammability testing was done in accordance with the American Association of Textile Chemists and Colorist Test Method 34-1969, the standard vertical char method.

Therein 2% in. X 10 in. fabric test specimens are exposed to a controlled burner flame under controlled conditions for a period of 12.0 seconds and 3.0 seconds. The charred specimens are thereafter subjected to controlled tearing tests, using tabulated weights, and the average tear length is measured as representing the char length of the flame retardant treated fabric. For comparison purposes, it should be noted that untreated fabric samples used in the examples of this case would be consumed in the test.

ASTM Test D2863-70, used in accordance with the following examples, generally provides for the comparison of relative flammability of self-supporting plastics by measuring the minimum concentration of oxygen in a slowly rising mixture of oxygen and nitrogen that will support combustion. The procedure encompasses supporting cylindrical test specimens 70-150 mm X 8 mm vertically in a glass tube fitted with controlled upward oxygen/nitrogen gas flow. The top of the specimen is ignited and oxygen flow is adjusted until it reaches that minimum rate at which the specimen is extinguished before burning 3 minutes or 50 mm whichever happens first. The oxygen index(n) is then calculated as follows:

wherein O is the volumetric flow ofoxygen, at the mindant additive. Each sample is marked at points 1 inch and 4 inches from its end and held, marked end in the flame, at a 45 angle in a controlled burner flame (1 inch flame length) for two 30 second attempts. The movement of the flame up the length of the sample through the two points is measured for rate of burning, non-burning or self-extinguishing characteristics. A sample is rated SE(self-extinguishing) if the flame burns through the first point but extinguishes before reaching the second point. A sample is rated NB(nonburning) if, upon ignition it does not burn to the first point.

The following examples are set forth for purposes of illustration only and are not to be construed as limitations of the present invention except as set forth in the appended claims. All parts and percentages are by weight unless otherwise specified.

EXAMPLE 1 I Preparation of ll oHiomo i NHCHzP (0 omens A 250 ml. flask, fitted with a reflux condenser, mechanical stirrer and thermometer, was charged with 83g. (0.5 mole) triethyl phosphite and was heated to 100C. 73.2g. (0.4 mole) of diethyl phosphoramidate was added to the flask over a period of minutes and the reaction mixture was thereafter heated at 1 15C for 2 hours. After cooling the reaction mixture was stripped, at C under a reduced pfessure of0.5 mm mercury, to give 109g. of a pale yellow liquid. Infrared and nuclear magnetic resonance spectroscopy confirmed the structure to be essentially pure.

EXAMPLE 11 Preparation of EXAMPLE lll rai t saef- A 250 ml. flask was charged with 18.3 g. (0.1 mole) of N-hydroxymethyl diethylphosphoramidate and 27g. (0.1 mole) of tris-2-chloroethyl phosphite. The reaction mixture was heated at C for 2 hours, then stripped at 120C under a reduced pressure of 2 mm mercury to yield 39g. of a clear liquid. This product was shown, by infrared and nuclear magnetic resonance spectroscopy, to be essentially pure.

EXAMPLE 1V Preparation of o o 1 oHioHioni NH-oHi-i (o-@) A mixture of 31g. (0.1 mole) of triphenyl phosphite and 18.3g. of N-hydroxymethyl diethylphophoramidate was heated at about C for about five hours in a round bottomed flask. The mixture was then stripped at about 120C and about 22 mm pressure for about two hours to remove all volatiles. The resulting product, a viscous oil, was obtained in quantitative yield. The structure was confirmed by elemental and spectroscopic analysis to be substantially pure desired product.

EXAMPLE V Preparation of CH; CH:

N-hydroxymethyl-( l-isopropyl-2,2-dimethyl)-1, 3 propylidenyl phosphoramidate, 59.3 g. (0.25 mole) was mixed with 37g. (0.3 mole) of trimethyl phosphite and 80 ml. diglyme in a 250 ml. flask. The reaction mixture was slowly heated to 1 15C and held at this tem- EXAMPLE VI To 70 parts of polypropylene was added 30 parts of N-(diethylphosphonomethyl) diethylphosphoramidate and dry blended for about minutes. The resulting mixture was then brought to a melt and thoroughly mixed for about minutes. After cooling the resulting solid was cut into small pieces and added slowly to a 9 mm glass tube immersed in a hot salt bath. The temperature of the salt bath is maintained above the melt temperature of the polymer mixture added. After all the pieces had been melted a steel rod with a weight attached is placed in the glass rod and the mixture allowed to cool. The resulting rod of polymer and additive l50-200 mm. length) is then removed and tested by modified ASTM Tests D2863-70 and D635-68 as previously described. The test results are set forth in Table Ibelow.

EXAMPLES VII-XIV Various phosphonates are mixed with polymers in the preparations and according to the process of Example 6. Testing under modified ASTM Tests D2863-70 and D635-68 are recordedin Table I.

EXAMPLES xv-xxl Various polymers are treated bythe process of Ex- .ample 6 with the exception that no phosphate additives are mixed therewith. Test results thereof are recorded in Table I.

' TKBLEF EXAMPLE xxu N-(Diethylphosphonomethyl)-diethylphosphoroamidate, 60g was dissolved in 200 ml of water containing l.l molar equivalents of formaldehyde. The pH was adjusted to 10.0 with percent sodium hydroxide solution and the mixture stirred for three hours at about 50C. The mixture was then cooled to room temperature and the pH adjusted to 7.0 with hydrochloric acid.

Trimethylol melamine, 20 g. was added with 5.0g of ammonium chloride.

A sample of 5.0 oz. per square yard cotton sheeting was immersed in the above solution and padded through a two roll laboratory padder, at about lb' per sq. in. gauge pressure, to give a wetpick-up of about 92 percent. The sample was dried in a circulating air oven for about 2.0 minutes at about 250F and then cured for about 4.0 minutes at about 350F. The sample was then washed in an automatic washer using Tide as the detergent, and tumble dried. Flame retardancy was then determined by the standard vertical char test AATCC D34-l969 and oxygen index test ASTM D2863-70. The weight add-on was 22.3 percent.

Durability towashing was determined bywashing the sample through one cycle of an automatic washerusing Tide as the detergent. l

The results are contained in Table ll. Therein B indicates the sample burns so that char length was non determinable, and SE indicated the sample selfextinguished.

EXAMPLE XXlll N-( Diallylphosphonomethyl )diethylphosphoroamidate 40g was mixed with 60 g offormalin (40 percent) solution and stirredovernight at room temperature at a pH of 8.5-9.5. The pH was adjusted to 7.0 with hy- Flammability tests Oxygen Percent Example Additive Polymer index D-635 additive- VI i H H Polypropylene 23.2 NB 30 omommm-NrPoHr-P oomomn VII H Polystyrene 5 2 3.0 NB 30 (CHaGH2O)zP-NHCH:P(OCHzCHzCl):-

VIII (I) M H ABS 243 N13 so (CHaOHzOh-NH-CHFP(OCHzCH=CHz)z IX t") v H Epoxy 27.2 NB

cmomom Nm-om-woan X CH3 Polypropylene... 19.8 NE 30 X P-NH-orn-Pwomn CH3 CH:

XI Same as above ABS 22.0 XII. .....d Nylon 29.0 XIII Polyethylene terephthalate 25.0 XIV SBR 24.8 XV Polypropylene 17.4 XVI. Polystyrene... 18.0 ABS i 19.0 22.1 22.7 22.5 19.6


drochloric acid and 23g of a 50 percent solution of trimcthylolmelamine added along with 5g of NH Cl.

A sample of rayon staple fiber was immersed in the solution and excess solution removed by passing through a two roll padder at about 60 lb. gauge pressure to give a wet pick-up of about l%. The sample was then dried about 2.5 minutes at about 250F and cured for about 5.0 minutes at about 350F in a circulating air oven. the sample was washed by hand in a water detergent mixture for 3 minutes and then dried. Flammability was determined by holding an end of the fiber in a bunson flame for approximately 2 sec. and withdrawmg.

Durability was determined by washing the samples in a cotton bag in an automatic washer with Tide in a standard home wash cycle. The sample was then tumble dried and tested as above. Results of these tests and tests for other compositions on rayon are shown in Table ll.

EXAMPLE XXlV N-( Bis-betachloroethylphosphonomethyl )-diethylphosphoramidate, 30 g, was mixed with 45g of formalin solution (40 percent) and stirred overnight at a pH of 10. The pH was adjusted to 7.0 with hydrochloric acid and 5g of ammonium chloride and 17g of a 50 percent solution of trimethylolated melamine added.

A sample of 6.0 02. sq. yd. of wool was padded through the above solution and the excess squeezed out by passing through a two roll laboratory padder at about 60 lb. sq. in. gauge pressure. The sample was then dried at about 250F for about 2 minutes and cured at about 350F for about 4 minutes. The sample was then given a standard home wash, i.e. one cycle in a standard home type automatic washer using Tide detergent. Flame retardancy was determined by the oxygen index and standard vertical char tests. The results thereof are contained in Table ll.

. an: II

I2 We claim:

1. A compound of the formula 3. A compound of claim I of the formula 4. A compound of claim I of the formula 5. A compound of claim I of the formula Flammability testing Percent Example Compound Textile magi $35 3; Initial 1 InitgiIl XXII 0 Cotton 92 22. 3 3.7 in. 4.1 in. 24. 3

(CHaCH2O)2l -NHCH2l (O CHQCHS)? XXIII O Rayon. 100 13. 8 SE SE 25. 0

(CHaCHzO)zI -NHC Hr- I "(O CH2CH=CH2)2 XXIV O WooL... 126 36. 6 3.2 in. 3.8 in. 28. 5

(CHaCH2O)zI NH-CH2(OCHzCHzCl): v

XXV Rayon 106 23 SE SE 24. 7

l CHa CHa EXAMPLE xxv a. A compound of claim lot the formula zgggg UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTIUN- Patent No. 3,812, 21.8 Dated May .21., 197

Invencofl Peter Golborn and James J. Duffy and that said Letters Patent are hereby corrected as shown below:

It is certified that error appears in the above-identified patent Column 3, formula 3, I that portion of the formula reading I u (CH CH O) P should read (CH CH '0) P--; formula 6, that portion of the formula reading "(CCl-l should read 6-(OCH formula 7,

n A II n that portion of the formula reading "(CH CH 0)P should read -line 26, "ABS polyvinyl" the formula reading "-NH=CH should read -NH-CI-l --(CH3CH20)2P- -I-.Column 6, line 17, "viny" should read --vinyl--;

should read --ABS resins; ABS polyvinyl.

Column 8, line 46, "diethylphophoramidate" should read --diethylphosphor amidate-- .0 Column 12, line 17, that pgrtion of the formula reading I ll 1 "(CH CH O)P should read --(CH CH O) P line 23, that portion of Signed ahd sealed this 1st day of Obtober 197a.

(SEAL) Attestr C. MARSHALL DANN Commissioner of Patents McCOY M. GIBSON JR. Attesting Qfficer

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4061604 *Dec 15, 1975Dec 6, 1977Ciba-Geigy Corporation3-hydroxy-5-phosphono-1,2-oxaphospholanes
US6388046Oct 30, 2000May 14, 2002General Electric CompanyMixture containing thermoplastic resin
US6433046Oct 30, 2000Aug 13, 2002General Electric CompanyMixture with thermoplastic resin and flame retardant; computer housings, panels, appliances, automobiles, sports equipment; melt processability heat resistance
US6569929May 4, 2001May 27, 2003General Electric CompanyContaining thermoplastic resins
Legal Events
Jun 28, 1982ASAssignment
Effective date: 19820330