Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3812685 A
Publication typeGrant
Publication dateMay 28, 1974
Filing dateMay 11, 1973
Priority dateAug 19, 1971
Publication numberUS 3812685 A, US 3812685A, US-A-3812685, US3812685 A, US3812685A
InventorsT Brown
Original AssigneeT Brown
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Air conditioning process
US 3812685 A
A process for efficiently conditioning air for beneficial use by sequentially cooling dry air in three distinct steps, e.g., pre-cooling the air out of the presence of moisture, adiabatically cooling the air in the presence of moisture, and refrigerating the air to finally cool the air and coincidentally condense excess moisture.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Brown 1 11 3,812,685 1 1 May 28,1974

[5 AIR CONDITIONING PROCESS 1,863,577 6 1932 1,863,578 6/1932 Morse 55/35 [761 Invent Ted Bmwn, 12,12 Prmcem" 1,909,823 5/1933 FOIICSI 62/ 4 -1 Salt Lake Utah 84105 2,114,737 4/1933 Smith 62/94 2,355,828 8/1944 Taylor 62/79 [22] May 1973 2,378,964 6/1945 Williams 72/182 [21] Appl. No 359,368 2,811,223 10/1957 Newton 62/92 3,041,842 7/1962 Heinecke 62/95 Related Application D818 3,153,914 10 1964 Meckler 62 271 [63] Continuation-impart of Ser. No, 172,968, Aug. 19, v

1971' aband9ned- Primary ExaminerWi11iam J. Wye [52] U S Cl 62,93 62,271 62ml Attorney, Agent, or Firm-11. Ross Workman 62/92 51 1111. C1. F2511 17/06 [57] 1581 Field 61 Search 62/271, 91, 92, 93, 94, A Process for efficlently qondltwnmg 5 for beneficial 2 95 use by sequennally coolmg dry alr mthree distmet steps, e.g., pre-cooling the air out of the presence of 5 References Cited moist re, adiahatica1ly coeling theair in 'the presence UNITED STATES PATENTS o1 molsture, 21nd refrlgeratmg the an to finelly cool the 1 749 763 3 1930 P16151161 .L 62 92 and comcldemauy condense excess molsture' 1,863,576 6/1932 Morse 62/271 2 Claims, 3 Drawing Figures WARM AIR (dry) WATER EVAPORATING EQL cow VERY cow AIR 76 f v WASHER 78 7 6g 6 1 COMPRESSOR COOL comaemsrza 4 1 AIR CONDITIONING PROCESS This invention is a continuation-in-part of my copending application Ser. No. 172,968, filed Aug. 19, l97l, now abandoned.

BACKGROUND ing systems are employed to produceconsistently cold air. This is particularly true where high temperatures are accompanied by relatively high humidity levels. Socalled swamp cooler" type air conditioning systems become of almost negligible value when both the temperature and humidity of ambient air are high.

Because of the great difficulty with which air is reduced to a very low temperature in hot summer months, most air conditioning systems have been engi-, neered so as to recirculate and recool the conditioned air instead of continuously cooling fresh air. This procedure has been found necessary to keep the size and attendant costs of air conditioning systems from becoming prohibitive. Until this present invention, an economical and efficient way of substantially reducing the temperature of air or other gas for cooling purposes year-round without refrigeration has not been known.

It is also well-known to condition air by successive cooling, humidifying, drying and recooling steps which are inefficient, complicated and expensive. See, for example. U. S. Pat. No. 1,863,578.

BRIEF SUMMARY AND OBJECTS OF THE INVENTION The present invention relates to conditioning fresh air by sequentially (l) pre-cooling dry air out of the presence of moisture, (2) adiabatically cooling the air, and (3) refrigerating to finally cool the air and coincidentally condense excess moisture. Surprising efficiency and cooling results from this process using a total fresh air system and treatment of the air in quantities between 400 and 600 cubic feet per minute per ton of net sensible in-space cooling.

It is, therefore. a primary object to efficiently provide air having controlled temperature and humidity for air conditioning.

It is another important object to provide a process for effecting sensible cooling using a total fresh air system.

These and other objects of the present invention will become more fully apparent from the following description and appended claims taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1, 2 and 3 are schematic flow diagrams illustrating fluid circuits and apparatus for reducing air temperature according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS General Heat exchange processes such as used in air conditioning systems have always been required to have increased capacity in order to adequately cool air when the temperature and/or the humidity of external air climbs as in summer months and on hot days.

While it is relatively easy and comparatively inexpensive to remove heat from gases when the temperature of the gas is high, the difficulty with which heat is removed increases at an astonishing rate when the temperature of the gas is already low. Thus, generally speaking, it is much easier and less expensive to make hot air cool than to make cool air cold using prior art techniques. Historically, the approach used to make cool air cold was to increase the size and capacity of cooling systems.

The present invention includes treating dry warm air out of the presence of moisture to reduce its dew point.

Air most efficiently used with the illustrated embodiments has a dew point of not more than 57 which is low compared to the dry bulb temperature of the warm air. This treatment can be performed by pre-cooling in a conventional heat exchanger.

According to the present invention, the temperature of the pre-cooled gas is then adiabatically reduced so that the gas is cold. Adiaba-tic processes are defined as those processes carried out insuch a manner that heat is not exchanged between the system and its surroundings. Thus, the adiabatic cooling step does not require an energy input to reduce the temperature. When the gas is adiabatically cooled according to the present invention, heat is not actually removed from the cooling system but is reduced psychrometrically. I If a stream of gas is intimately mixed with a quantity of recirculating liquid at a given temperature in an adiabatic system, the temperature of the gas will drop and its humidity will increase. Furthermore, the temperature of the recirculating liquid will approach the wet bulb temperature of the gas. The low temperature gas which has been cooled adiabatically is subjected to refrigeration which both further cools the air and coincidentially condenses excess moisture. 1

When percent fresh (unrecirculated) air is used for cooling, air quantities treated according to the pre ferred embodiments of the invention mustnecessarily be limited to a rather narrow range in order to efficiently produce desired cooling to within a range of 53 to 60 F without imposing larger than necessary precooling and refrigeration loads on the air cooling process. i

It has been found according to the present invention that'approximately 400 to 600 cubic feet of fresh air per minute per ton (CFM/ton) of net sensible in-space cooling is an adequate amount to develop conditioned air at a desirable temperature of between 53 and '60 F. The surprising efficiency of this system can be recognized by observing that conventional fresh air swamp coolers require about L000 CFM/ton even with very dry fresh air. The efficiency of the system using this air volume range presumes 100 percent fresh (unrecirculated) air having a dew point of not more than 57 F I 60 F moisture conditioned air'with surprising efficiency and without requiring intermediate drying steps.

.having a dry bulb temperature of not less than 90 F is used.

The-warm air is first pre-cooled in a heat exchanger 62. The heat exchanger 62 may be any one of a variety of heat exchangers which will not add moisture to the air, one suitable type being the fin-coil heat exchanger often called an extended surface heat exchanger. This type of heat exchanger is very inexpensive to acquire and operate and is very efficient at high temperatures.

Therefore, according to the illustrated'embodiment of the invention, the pre-cooled dry air emerging from,

the heat exchanger 62 is conducted to an air washer 64 which scrubs the air with water or, if desired, other a cooling liquid. The water used to'scrub the pre-cooled dry air is recirculated through an external circuit 66 continuously. The temperature of ,the recirculating water in the circuit 66 approaches the wet bulb temperature of the air which enters the air washer 64. Thus,

. the entering pre-cooled air has its temperature adiabatventional expansion valve 78 admits refrigerant fluid into the evaporating coil 76.

The use of the refrigeration circuit 70 allows the temperature of air emerging from the air washer to be reduced to the desired temperature range of 53 to F. Also, excess moisture in the air emerging from the air washer 64 is condensed by the evaporating coil 76 to control the moisture content of the effluent, conditioned air. It should be observed that unless the temperature of the air'were first adiabatically reduced in the air washer 64, a far larger and more expensive coil 76 and larger refrigeration system 70 would be necessary to obtain the same very cold air temperature developed according to the embodiment of FIG. 1.

The system of FIG. 1 is designed to transport and condition about 400 to 600 CFM/ton net sensible cool ing. Using the air having a 57 dew point, temperatures as low as 53 to 60 F may be economically and effi-.

ciently achieved. Accordingly, the effluent conditioned air has a surprisingly low temperature and controlled humidity without requiring expensive dehumidifying (warming) and recooling steps. The FIG. 2 Embodiment The embodiment of FIG. 2 differs from the embodiment of'FIG. l principally in that the evaporating coil 76 acts upon the pre-cooled air as it traverses from the heat exchanger 62 to the air washer 64 (i.e., from the pre-cooling to the adiabatically cooling steps). When the pre-coolecl air is further cooled, its wet bulb temperature is lowered. Accordingly,'upon adiabatic-cooling in the air washer 64, its dry bulb temperature, is further reduced to about 53 to 60 F.

4 l The moisture content of the effluent from the air washer 64 will be controlled in proportion to the amount of cooling to which the air is subjected in advance of the adiabatic cooling in air washer 64. The dry bulb and wet bulb temperatures imposed upon the air in advance of the adiabatic cooling step will determine the amount of moisture that can be added in the adiabatic cooling step, The Embodiment of FIG. 3

The embodiment of FIG. 3 differs from the previously described embodiments principally in that the evaporation coil 76 reduces the temperature of recirculating water in the air washer 64. Accordingly, the temperature of the water is reduced sufficiently that both adiabatic and sensible cooling of the air results. The refrigeration system is specifically limited to avoid exclusive refri erated cooli ngin the air washer 64 to in- Wat efil T r Using the embodiments of FIGS. l3, cold air in the range of 53 to 60 F for air conditioning or any other desired beneficial use can be obtained with surprising efficiency using a 100 percent fresh air system at maximum outdoor temperatures. Thus, the need for recirculating the same air in order to reduce the costs of cooling is unnecessary. Furthermore, cold air can be obtained without using large and expensive refrigeration systems. The-refrigeration system 70 required for this combination of cooling steps'has been found to be approximately one-third the size required if conventional recirculating air refrigeration systems are employed. Accordingly, the advantages of a complete fresh air system can be substituted for the lower quality, more expensive recirculating air systems.

The invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive and the scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

What is claimed and desired to be secured by United States letters patent is:

1; A process for controlling the temperature and moisture content of air having a dew pointof not more than 57 corresponding to at least F dry bulb tem perature, sequentially preparing an air flow path accommodating 400-600 CFM/ton net sensible cooling;

drawing fresh dry air exclusively from a fresh air source and through the flow path in the amounts of 400 to 600 CFM/ton net sensible cooling; pre-cooling the fresh air with a heat exchanger without altering its moisture content; scrubbing the air with recirculating water to adiabatically cool the air; and

refrigerating the adiabatically cooled air to further cool the air to within a range of 53 to 60 F and coincidentally condensingexcess moisture.

2. A process for conditioning air sequentially comprising (a) first cooling I00 percent fresh air having a dew point of notmore than 57 corresponding to at least 90 F dry bulb temperature without altering its moisture content; (b) second cooling the air adiabatically'byscrubbing the dry air with recirculating water; (0) third cooling the air by refrigeration towithin the range of 53 to 60 F with coincidental condensation of excess moisture, all three cooling steps being appliedv sequentially to air quantities exclusively within the range of 400 to 600 CFM/ton net sensible cooling.

uent air is within the range of?" Y5 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,812,685 Dated May 28, 1974 Inventor(s) Ted R. Brown It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 2, line 21, "dew point" should be -wet bulb temperature.

Signed and sealed this 1st day of October 1974.

(SEAL) Attest:

McCOY M. GIBSON JR. (3. MARSHALL DANN Attesting Officer Commissioner of Patents ORM PO-IOSO (10-69) w u.s. GOVERNMENT PRINTING OFFICE: as" O--366-33l,

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1749763 *Aug 8, 1928Mar 11, 1930Cooling & Air Conditioning CorMethod and means for reducing temperature by dehydration
US1863576 *Nov 22, 1929Jun 21, 1932American Blower CorpApparatus and method of air conditioning
US1863577 *Nov 22, 1929Jun 21, 1932 Apparatus ant
US1863578 *Nov 22, 1929Jun 21, 1932 Apparatus and method of air conditioning
US1909823 *Nov 21, 1931May 16, 1933Henry O ForrestMethod and apparatus for conditioning air
US2114787 *Apr 20, 1934Apr 19, 1938Gen Motors CorpAir dehumidification
US2355828 *Feb 25, 1943Aug 15, 1944 Combined cooling and dehumdifxing
US2378964 *Aug 1, 1942Jun 26, 1945Niagara Blower CoApparatus for cooling or dehumidifying air
US2811223 *Dec 10, 1954Oct 29, 1957Coleman CoMethod of conditioning air
US3041842 *Oct 26, 1959Jul 3, 1962Heinecke Gustav WSystem for supplying hot dry compressed air
US3153914 *Dec 6, 1962Oct 27, 1964Lithonia Lighting IncComfort conditioning system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4089666 *Jun 25, 1976May 16, 1978Philip Morris IncorporatedMethod for control of air relative humidity with reduced energy usage
US4178946 *Sep 26, 1977Dec 18, 1979Philip Morris IncorporatedApparatus and method for control of air relative humidity with reduced energy usage in the treatment of tobacco
US4380910 *Aug 13, 1981Apr 26, 1983Aztech International, Ltd.Multi-stage indirect-direct evaporative cooling process and apparatus
US4399864 *Dec 10, 1981Aug 23, 1983The Bahnson CompanyControlling room-air temperature and humidity in an air-conditioning system
US4527398 *Jan 16, 1984Jul 9, 1985Schaetzle Walter JCascade desiccant air-conditioning/air drying process and apparatus with cold thermal energy storage
US5019300 *Jul 25, 1990May 28, 1991Carolina Power & Light CompanyDirect contact water-to-air heat exchanger and method
US6572689 *Sep 27, 2001Jun 3, 2003American Standard International Inc.Vapor/liquid separator for an absorption chiller
US6619053 *Oct 5, 2000Sep 16, 2003Integral Energietechnik GmbhMethod for regulating the climate in a room
U.S. Classification62/93, 62/92, 62/91, 62/271
International ClassificationF24F5/00
Cooperative ClassificationF24F5/0035, Y02B30/545
European ClassificationF24F5/00C7